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The design of bio-sequences for biosensing and therapeu1cs is a challenging mul1-step search 
and op1miza1on task. In principle, computa1onal modeling may speed up the design process by 
virtual screening of sequences based on their binding affini1es to target molecules. However, in 
prac1ce, exis1ng machine-learned models trained to predict binding affini1es lack the flexibility 
with respect to reac1on condi1ons, and molecular dynamics simula1ons that can incorporate 
reac1on condi1ons suffer from high computa1onal costs. Here, we describe a computa1onal 
approach called DeltaGzip that evaluates the free energy of binding in biopolymer-ligand 
complexes from ultra-short equilibrium molecular dynamics simula1ons. The entropy of binding 
is evaluated using the Kolmogorov complexity defini1on of entropy and approximated using a 
lossless compression algorithm, Gzip. We benchmark the method on a well-studied dataset of 
protein-ligand complexes comparing the predic1ons of DeltaGzip to the free energies of binding 
obtained using the Jarzynski equality and experimental measurements.  
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Introduc)on 
Short biopolymers such as pep1de and nucleic acid aptamers have shown a capacity to bind 
diverse molecular targets strongly and selec1vely posi1oning them as promising candidates for 
therapeu1cs and biosensing. Examples of molecular targets include clinical drugs1–5, food 
toxins6–8, hormones9–11, cells12–14, etc. As illustrated in Figure 1A, a typical sequence design 
starts with a large library of fixed-length random (pep1de or nucleic acids) sequences, followed 
by an itera1ve selec1on process in lab, such as SELEX (systema1c evolu1on of ligands by 
exponen1al enrichment) for aptamers.15–18 The resul1ng candidate sequences ofen require 
further op1miza1on to improve their binding affinity, selec1vity, and responsiveness. 
 
The first task on the op1miza1on list is improving the binding to target. It requires experimental 
evalua1on of the binding affinity for many sequences. This is expensive and performing some of 
the search computa1onally would be an agrac1ve op1on if a fast, accurate, and flexible enough 
computa1onal method was available. A machine learning model trained on experimental data 
would have been the best solu1on, but data-driven approaches19–29 are largely ineffec1ve in this 
space. This is because the reac1on condi1ons as well as measurement techniques vary 
depending on the intended applica1ons and the measured values of binding affinity vary 
sensi1vely with them. Well-curated sufficiently large and diverse datasets with condi1ons and 
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measurement techniques either standardized or accurately labeled for biopolymer-ligand 
complexes currently are unavailable to the research community. 
 
In the absence of data, molecular dynamics (MD) simula1ons may be used to include custom 
reac1on condi1ons in the calcula1on, including pH, temperature, ionic strength, choices of ions, 
etc. Several popular protocols for evalua1ng binding free energy using MD simula1ons have 
been developed, such as alchemical method30, Jarzynski equality31, and umbrella sampling 
method32, which leverage a large number of trial paths, either virtual or physical paths, linking 
bound state and free state and serving as a hypothesized reac1on coordinate, as shown in 
Figure 1B. Recent advances demonstrate improved accuracy of these techniques thanks to the 
development of machine learned poten1als33 and ac1ve learning34. These simula1on protocols 
are computa1onally intensive, require hyper-parameteriza1on, and do not present an adequate 
solu1on to the problem of computa1onal high-throughput search in the sequence space of 
biopolymers for strong binders to a par1cular ligand. 
 
In this paper, we present a cost-effec1ve method for fast computa1onal evalua1on of the 
binding free energy in biopolymer-ligand complexes from MD simula1ons. Our method is based 
on the recently proposed approach to approxima1ng the entropy in molecular systems by 
approxima1ng the Kolmogorov complexity using lossless compression35–40. This approach 
removes the need for simula1ng the state-state transforma1on and thereby significantly 
reduces the required computa1onal effort rela1ve to exis1ng methods. We call the method 
DeltaGzip to indicate that we evaluate the free energy using the popular lossless compression 
algorithm Gzip.41 We benchmarked it against results obtained using the Jarzynski equality as 
well as experimental data and obtained strong results at a very low computa1onal cost. 
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Figure 1. A) A typical computer-aided pipeline of designing biopolymer sequences for binding a 
molecular target of interest in applica1ons such as biosensing. B) A schema1c that highlights the 
computa1onal advantage of DeltaGzip over other computa1onal protocols for evalua1ng 
binding free energy from molecular simula1ons that commonly rely on simula1ng a large 
number of paths, either physical or virtual, connec1ng the bound and the free states. In 
contrast, the DeltaGzip only requires short equilibrium simula1ons of the terminal states. 
 
 
Methods 
Sec1on I: Theore1cal background 
We evaluate the free energy change (∆𝐺) by evalua1ng the enthalpy change (∆𝐻) and the 
entropy change (∆𝑆) separately and combining them using the standard thermodynamic 
equality 
 

𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆, (1) 
 
where T is temperature. To approximate the enthalpy of binding Δ𝐻 for a biopolymer-ligand 
complex, we subtract the energy stored in the nonbonded interac1ons (Lennard-Jones and 
Coulomb based on the force-field parameters, see Sec1on III for details) between the 
biopolymer and ligand in the bound state from the energy stored in the unbound state (the 
lager vanishes by construc1on) and average over all configura1ons in our ensemble. The 
screening effect of the solvent is included via the medium dielectric constant in the Coulomb 
interac1on term, and the enthalpy change within biopolymer is neglected as simplifying 
approxima1ons. 
 
Entropy is a fundamental concept in both thermodynamics and informa1on theory. In 
thermodynamics, Gibbs entropy 𝑆!"##$ of a macrostate 𝜒 described by macroscopic parameters 
such as temperature, volume, or pressure is given by Equa1on 2 where 𝑃(𝑥) is the probability 
of each microstate configura1on 𝑥  
 

𝑆%&''( = −𝑘)2 𝑃(𝑥) ln 𝑃(𝑥)
*∈,

	 (2) 

  
 
Similarly, in informa1on theory, the Shannon’s entropy42 is defined for a random variable x with 
known sample space 𝜒 and probability distribu1on 𝑃(𝑥) as 
 

𝐻(𝑃) = −2 𝑃(𝑥) log- 𝑃(𝑥).
*∈,

(3) 

 
The	rela1onship between the two quan11es is given by  
 

𝑆%&''( = 𝑘) ln(2)𝐻(𝑃). (4) 
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Unlike 𝐻(𝑃) that is defined for a random variable, the Kolmogorov complexity 𝐾(𝑥) is defined 
for the realiza1ons of a random variable as the length of the shortest computer program that 
generates the data43. It has been shown that an inequality governs the rela1onship between 
Shannon’s entropy and the Kolmogorov complexity44 
 

𝐻(𝑃) ≤2 𝑃(𝑥)𝐾(𝑥)
*∈,

. (5) 

 
Combining 𝐸𝑞𝑛. 4 and 𝐸𝑞𝑛. 5, we see that using Kolmogorov complexity 𝐾(𝑥) we approach the 
Gibbs entropy 𝑆%&''( from above 
 

𝑆%&''( ≤ 𝑘) ln(2) E2 𝑃(𝑥)𝐾(𝑥)
*∈,

F . (6) 

 
This inequality informs the strategy of choosing the compression algorithm that gives the lowest 
value of entropy on a given dataset. Gzip was used in this work. Overall, in order to approximate 
𝑆!"##$ we will draw samples of molecular configura1ons from the equilibrium Boltzmann 
distribu1on using a molecular dynamics simula1on, approximate the Kolmogorov complexity for 
each sample using a lossless compression algorithm Gzip, and take an average, see Sec1on III 
for more details.   
 
Sec1on II: Choice of test systems 
Our main goal in this paper is to demonstrate the performance of DeltaGzip. An exis1ng 
limita1on of this method is that the outcomes for different systems should be compared to each 
other only if the biopolymers have similar lengths. This does not pose any problems for the field 
of aptamer design (our target applica1on) because the length of the biopolymer is typically 
fixed in the relevant high-throughput experiments. Nonetheless, it posed an addi1onal 
constraint on the datasets we could use for benchmarking. We searched for a dataset in which 
the free energy was characterized under iden1cal reac1on condi1ons for all points in the 
dataset and in which the biopolymer length did not vary significantly. We have chosen to test 
the method on the dataset of 23 ligand-AmpC 𝛽-lactamase protein pairs where the binding free 
energy was determined from the inhibi1on constant 𝐾" 	obtained from IC50 plots assuming 
compe11ve inhibi1on45–50. Importantly, the experimental protocol did not change from ligand 
to ligand. The binding affinity in this set of systems was explored computa1onally in the past 
using the Jarzynski equality with high reported correla1on between the computa1onal and 
experimental results. The results and the full details on the protein and the ligands can be found 
in the original publica1on51.  
 
Sec1on III: Implementa1on 
Although theore1cally incomputable, Kolmogorov complexity can be approximated by the 
length of byte-stream obtained by lossless compression of the input. In this work, we chose 
Gzip as the lossless compressor for its simplicity and easy implementa1on, implemented as part 
of Python’s na1ve module. It has been used for this purpose in the past52–54 and preferred over 
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other common algorithms such as LZMA (Lempel–Ziv–Markov chain algorithm) and Bzip2 for its 
speed advantage. 
 
Representa)on: When compressing data that represents a molecular configura1on a choice of 
representa1on must be made. The entropy change that will be captured by compression 
depends sensi1vely on the representa1on. For example, the Gzip compressor would struggle to 
dis1nguish two dis1nct states by Δ𝑆%&''( if provided with too general or too detailed 
informa1on about the configura1ons in each state, or alterna1vely it could yield a non-
vanishing Δ𝑆%&''( for the same state even though the system has simply shifed and rotated in 
space. A good representa1on would be invariant to transforma1ons that do not alter the 
physics (transla1ons and rota1ons of the en1re system), and it would include important details 
while ominng the rest thereby striking a good balance between including useful informa1on 
and making the compression task easier.  
 
In our work, we deal with two macrostates of a biopolymer: bound state and free state. Since 
the molecular ligands that we explore are small molecules that are not expected to significantly 
contribute to the entropy change we simplify the calcula1on by only including the biopolymer 
backbone degrees of freedom (DOFs).  To ensure that our representa1on is roto-transla1onally 
invariant we convert the Cartesian coordinates of atoms that belong to the biopolymer 
backbone into the Z-matrix representa1on of internal coordinates. Each internal coordinate is 
rounded to the first decimal point (bond length is measured in angstrom, and angle and 
dihedral are in radian), mul1plied by 10 and stored as an integer.  
 
As a preliminary analysis we scager the entropy in the bound state against the free state 
evaluated for each DOF separately, see Figure 2A. To do this, we collect the values for each DOF 
separately from an equilibrium MD simula1on of bound/free state into 1D arrays and compress 
them individually using Gzip. By scagering the compressed sizes of these arrays for the bound 
and the free states against each other, we no1ce that for a subset of DOFs shown in orange in 
Figure 2A the change in entropy is very small (≤ 125 bytes) in going from the bound to the free 
state. We label these DOFs ‘unresponsive DOF’. DOFs which show a stronger entropy change (> 
125 bytes) shown in green in Figure 2A are labelled ‘responsive DOF’. Figure 2B shows the 
backbone atoms that exclusively belong to the ‘responsive’ (green) and ‘unresponsive’ (orange) 
DOFs on the protein structure. The atoms in gray par1cipate in both responsive and 
unresponsive DOFs. In an effort to make the compression task easier we will exclude these 
‘unresponsive DOFs’ from the calcula1on of entropy for each full molecular configura1on.  
 
Entropy evalua)on: To summarize, the coordinates of backbone atoms in each frame generated 
by the equilibrium MD simula1ons are transformed into internal coordinates, ‘unresponsive’ 
DOFs are removed, each value is rounded to the first decimal point (bond length is measured in 
angstrom, and angle and dihedral are in radian), mul1plied by 10 and stored as an integer, the 
result is compressed using the Gzip compression algorithm. The sizes of compressed files are 
summed together, divided by the number of samples in the ensemble, and the result is plugged 
into 𝐸𝑞𝑛. 6 producing the value of entropy in physical units. 
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Figure 2. Iden1fying the subset of degrees of freedom (DOFs) to be used in compression. Panel 
A) Scager plot of compressed DOFs in the free state against the compressed DOFs in the bound 
state. DOFs that are close to the diagonal (orange) are compressed to very similar sizes in both 
states (‘unresponsive DOFs’), whereas DOFs away from the diagonal (green) show a difference 
in compressed size (‘responsive DOFs’). Ver1cal lines indicate boundaries between regions 
characterized by a different type of DOFs: bonds and angles, and angles and dihedrals.  Panel B) 
highlights the backbone atoms exclusively involved in responsive DOFs (green) vs. in 
unresponsive DOFs (orange). The gray regions indicate the backbone atoms that par1cipate in 
both responsive and unresponsive DOFs. 
 
MD simula)ons: In this work, we run both equilibrium and non-equilibrium molecular dynamics 
(MD) simula1ons using OpenMM55. Amber14 force fields are used for modeling biopolymers 
(FF14SB for protein)56,57, general Amber Force Field (GAFF) 2.11 for molecular target58, and 
TIP3P model59 for water and ions, unless indicated otherwise. Langevin integrator is applied 
with fric1on coefficient of 1 per ps and 1me-step of 1fs. Par1cle Mesh Ewald (PME) method is 
used with 1nm cutoff and frac1onal error tolerance of 5.0 × 10./ in force computa1on for 
modeling electrosta1c interac1ons. Proteins are simulated in 300K, neutralized by adding 3 Cl- 
ions to the water box and accompanied by no other ions, consistent with the computa1onal 
work reported in literature.51 The simula1ons in the bound state are ini1alized with the 
biopolymer-ligand complex and to ini1alize the free state simula1on the ligand is removed. 
 
In our preliminary calcula1ons the equilibrium simula1ons consisted of 1ns equilibra1on, 20ns 
sampling, genera1ng 5000 configura1ons (4ps print interval). By systema1cally cunng short the 
trajectory used in our modeling, we found that ultra-short trajectories of only 100ps of sampling 
for the bound and free states were sufficient giving similar accuracy to longer trajectories and 
making this protocol extremely computa1onally efficient. The results shown in Figure 3 were 
obtained using 100ps-long trajectories. 
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Jarzynski equality calcula)ons: In non-equilibrium MD simula1ons, pulling is realized by 
displacing an external harmonic force, force constant 𝑘 = 20000	𝑘𝐽/𝑚𝑜𝑙/𝑛𝑚- or 16.6	𝑝𝑁/Å, 
which is exerted on the molecular target in the bound state structure. Molecular target is pulled 
along a direc1on that was chosen in a way that leads to the least clash with biopolymer. A total 
pulling distance of 1nm is evenly divided into 3200 stops and the external force recurrently 
snaps to the next stop afer being fixed for 50 steps (1fs 1me step). So total simula1on 1me is 
160ps. In this work, for each biopolymer-ligand pair, a total of 5000 pulling trajectories were 
simulated with ini1al configura1ons sampled from an NVT ensemble simula1on in which the 
external force is fixed at the loca1on of the bound molecular target, so that the Hamiltonian in 
the ini1al configura1on-genera1ng simula1on is the same as that at the start of each pulling 
simula1on, as required by Jarzynski equality theory.  
 
Results and discussion 
The DeltaGzip protocol presented in the methods sec1on aims to offer a cost-effec1ve 
computa1onal evalua1on of binding free energy in biopolymer–ligand systems in a way that can 
incorporate realis1c bioassay condi1ons in a flexible manner. We demonstrate a protocol for 
free energy calcula1ons from very short molecular dynamics simula1ons based on the 
Kolmogorov complexity approximated using lossless compression. This approach circumvents 
the need for lengthy sampling simula1ons and offers a much cheaper and faster simula1on 
op1on while maintaining the flexibility in specifying reac1on condi1ons and producing high-
accuracy results. We note that in the context of computa1onal screening our approach should 
be used for the compara1ve analysis of biopolymers of similar lengths. This scenario arises in 
many important applica1on cases such as the design of aptamers for biosensing and 
therapeu1cs. We leave the generaliza1on to length-independent evalua1on of free energy to 
future work. 
 

 
Figure 3. Correla1on between Δ𝐺0"1 and reference free energy: A) Δ𝐺0"1 vs Δ𝐺234  – the free 
energy evaluated computa1onally using the Jarzynski equality, B) Δ𝐺0"1vs Δ𝐺5*1 – 
experimentally evaluated free energy of binding. For simplicity, the plot shows the rela1ve free 
energy change ΔΔ𝐺 = Δ𝐺 − Δ𝐺63*. 
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Figure 3 shows the performance of DeltaGzip on 23 ligand-AmpC 𝛽-lactamase protein pairs. The 
performance against computa1onal results obtained using the Jarzynski equality is shown in 
Figure 3A: the correla1on between the two computa1onal techniques is 83% linear and 87% 
Spearman correla1ons. We found that the results of the Jarzynski equality calcula1on depended 
sensi1vely on the choices made in the implementa1on such as the direc1on of pulling and the 
type of equilibra1on we performed. We agribute some of the lost correla1on ul1mately to the 
compromises we had to make in the Jarzynski equality implementa1on in order to keep the 
calcula1on affordable. The performance on the experimental dataset shown in Figure 3B is very 
encouraging. DeltaGzip achieves 84% linear correla1on with the experimentally measured free 
energy of binding, and 87% Spearman correla1on that indicates the correct ranking of binding 
strengths. This result suggests that the method can be useful and prac1cal in computa1onal 
screening of biopolymer-ligand complexes in scenarios in which data is limited and/or the 
flexibility with respect to reac1on condi1ons is of essence. 
 
Conclusions 
In this work, we proposed and tested a protocol called DeltaGzip for evalua1ng biopolymer-
target binding free energy from MD simula1on using Kolmogorov complexity. We showed that 
this approach has achieved strong correla1ons with reference data (Figure 3) on a dataset of 
protein-ligand complexes and we recommend its applica1on for computa1onal screening of 
biopolymer-ligand pairs (biopolymers must be of similar lengths) for important applica1ons 
such as therapeu1cs and biosensing. 
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