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ABSTRACT: The management and analysis of large in silico molecular libraries is pivotal in many 

areas of modern chemistry. The adoption and success of data-oriented approaches to chemical 

research is dependent on the ease of handling large collections of in silico molecular structures in a 

programmatic way. Herein, we introduce the MOLecular LIibrary toolkit, “molli”, which is a 

Python 3 chemoinformatics module that provides a streamlined interface for manipulating large in 

silico libraries. Three-dimensional, combinatorial molecule libraries can be expanded directly from 

two-dimensional chemical structure fragments stored in CDXML files with high stereochemical 

fidelity. Geometry optimization, property calculation, and conformer generation are executed by 

interfacing with widely used computational chemistry programs such as OpenBabel, RDKit, ORCA, 

and xTB/CREST. Conformer-dependent grid-based feature calculators provide numerical 

representation suitable for diversity analysis, and interface to robust three-dimensional visualization 

tools provide comprehensive images to enhance human understanding of libraries with thousands of 

members. The package includes command-line interface in addition to Python classes to streamline 

frequently used workflows. This work describes the development and implementation of molli 1.0 

and highlights the available functionality. Parallel performance is benchmarked on various hardware 

platforms and common workflows are demonstrated for different tasks ranging from optimized grid-

based descriptor calculation on catalyst libraries to NMR prediction workflow from CDXML files.  
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1 INTRODUCTION 

Modern synthetic chemistry is increasingly incorporating theoretical and empirical data-

oriented approaches for designing functional small molecules, understanding reaction pathways, 

and predicting and optimizing reaction outcomes.1–5 In recent years, medium- to high-throughput 

experimentation techniques have provided access to large data sets suitable for subsequent 

statistical analysis and predictive modeling.6–10 Critically, encoding molecules in a machine-

readable format is essential before any computational analysis of the physical molecular entities 

can commence.11 Although great strides have been made in the high-throughput generation of 

empirical chemical data, suitably general tools for the high-throughput generation of in silico 

chemical data are lacking. 

Representations of molecules with calculated features range from computationally simple to 

highly complex. In general, feature extraction from a molecule can be accomplished by 

considering, in order of increasing computational complexity: (1) only the atoms and bonds 

encoded in the molecular graph, (2) the three-dimensional (3D) shape, and (3) the full electronic 

structure of the molecule.12 Molecular graph-based feature extraction methods such as 

fingerprinting13 are fast but may lack 3D information that is critical for certain optimization 

problems. Indeed, the low-energy conformations of a molecule play an essential role in 

determining its chemical properties and recent interest in incorporating 3D information into 

molecular graph objects has led to a variety of feature extraction methods employing graph neural 

networks.14–16 More challenges in representation arise when considering conformational 

flexibility, solvation, catalyst-substrate interaction and other molecular features that can only be 

described by full explicit 3D molecular encoding.  

Our interest in molecular representation stems from our attempts at modelling quantitative 

structure-(enantio)selectivity relationships (QSSR) in enantioselective chemical reactions using 

chiral, small molecule catalysts.17 Our group and others have designed a variety of alignment-

dependent molecular interaction field (MIF) descriptors intending to capture the relevant features 

of a chiral catalyst that lead to high enantioselectivity.18–20 A particular catalyst scaffold typically 

offers numerous options for analogue synthesis at well-defined positions on the structure and each 

analogue then has potentially many possible conformers. Therefore, our workflow required the 

ability to write custom code to manipulate large collections of 3D molecular structures and perform 

high-throughput computations on combinatorially constructed libraries of compounds.21 In 2019, 

this laboratory disclosed the ccheminfolib toolkit,18 an early iteration of a software package 

designed to handle combinatorial construction of large in silico libraries. One of the main 
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motivations for the creation of a new software package was to establish a modern, convenient and 

extensible interface that would allow rapid prototyping of chemical library-oriented workflows. 

Since the disclosure of ccheminfolib, we sought to address the following problems: 

1. Generation of molecule and conformer libraries directly from ChemDraw™ .CDXML files 

with stereochemical fidelity. 

2. Parallelization mechanisms and the capability for the parallel processing of chemical 

libraries with external computational software. 

3. Address the performance issues in storage and retrieval of molecular entities from the disk, 

as well as calculating the grid-based descriptors,  

As a result, we began the project to create the MOLecular LIbrary toolkit python 3 package we 

have dubbed “molli”.  

2 COMBINATORIAL LIBRARY GENERATION PIPELINE 

2.1 CDXML File Parsing  

Most computational workflows start with either 1D representations (SMILES) or 3D 

representations (.xyz or .mol files). We frequently faced challenges associated with the 1D 

representations. Axial and planar chirality cannot be encoded in SMILES strings and the 

stereochemical information is therefore lost upon the library generation. Although 3D structures 

are devoid of such limitations, they pose a considerable challenge to generate en masse. We believe 

that one of the most desirable ways to generate large libraries of 3D structures is by correctly 

interpreting their 2D chemical depictions. Existing CDXML conversion methods offer limited 

support for a number of desirable features such as atom labeling, stereochemical hint perceptions, 

isotopic notations, etc. (Figure 1A). We report our implementation of an improved parser in molli.  

One of the important contributions to the parser was the realization of stereochemical hint 

perception. For all acyclic stereobonds22 leading from an atom, the connected fragment 

(determined by the breadth-first graph traversal) was rotated by ±60° or ±90° depending on the 

number of adjacent atoms (See the Supporting Information p. S5 for more details). Endocyclic 

stereobonds are subjected to simple out-of-plane displacement of the participating atoms (Figure 

1B). This way of interpreting the structures results in better starting geometries for subsequent 

minimization because of fewer atom overlaps and nudging of the z-coordinate toward the basin of 

geometric convergence.  
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This parsing reduced the number of unanticipated consequences, such as configurational 

inversion upon a forcefield minimization. It proved useful in the context of axial and planar 

chirality interpretation into 3D representation wherein no simple designators can typically be 

assigned and enforced by ChemDraw™ or related packages (Figure 1B).  Parsing CDXML files 

to serialized objects can be executed directly from the command line with the molli parse 

command, or by using the CDXMLFile interface (Figure 1C). 

  

Figure 1. Molli CDXML parsing capabilities. (A) commonly recognized and parsed elements: atom labels, 

attachment points, abbreviations and stereobonds. The panel represents a valid input file for molli parsing. 

(B) Recognition of stereochemical hints by out-of-plane displacements and rotations for recognition of 

stereochemical information. (C) Jupyter notebook interface with inline molecule display.  

2.2 Combinatorial Library Expansion from CDXML Files 

Combinatorial library expansion can be performed programmatically in Python or directly 

from the command line with the molli combine command. Starting from CDXML files with 

the relevant fragment structures, labels, and attachment points denoted with native CDXML 

attachment point markup (Figure S2A, see the Supporting Information) molli joins the fragments 

on the basis of user-specified expansion rules (Figure S2B). Molli assigns new labels to the 

expanded combinatorial library members derived from the composite fragment labels and outputs 

a serializable MoleculeLibrary object (Figure S2B). We have previously reported the 

generation of a bis(oxazoline) (BOX) combinatorial library (Figure S2C) comprising a total 96,120 

parse optimize

C
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members, with 267 options for 4,4’-oxazoline substitution, nine options for 5,5’-oxazoline 

substitution including stereochemical analogues relative to the 4,4’-positions, and 40 options for 

substitution at the methylene group bridging the two oxazoline rings.23 With the streamlined 

workflow described in Figure S2, we successfully obviated manual creation of the full expanded 

.CDXML file shown in Figure S2C. 

2.3 Molecular Object Collections 

Modern cheminformatics tools offer a multitude of ways of storing chemical information for 

singular molecules or small collections. We identified a need to access molecules or conformer 

ensembles from large collections without the necessity to create a full-fledged database. While this 

is possible to store many standard molecular files (.mol2, .sdf or .xyz), this leads to significantly 

inflated disk footprint, poor portability, and an additional requirement for parsing the human-

readable chemical formats. To address this weakness, various solutions to compress multiple 

molecular files into commonly used archives, such as ZIP files, were explored. While this 

addresses the footprint and portability problems, it does not obviate the need for parsing of the 

textual information into the program data structures. An alternative solution to this problem was 

inspired by the structure of the GDBM (GNU Database Manager) database format.24 The data is 

stored in a binary form where the offsets of the data keys and records are easy to calculate, allowing 

access to any data record in constant time. This structure is referred to as a uKV (micro key-value 

storage file). Molli implements this structure such as the maximum length of the key of 255 bytes, 

and the maximum length of the value of 4.29 GB. The default way of serializing molecular objects 

was chosen to be MessagePack25 owing to its fast read/write performance. The ability to store 

molecules in a format that does not require and thus stores data in binary data structures gives the 

advantage of considerable space saving as well as a significant improvement in reading/writing 

performance (Table 1). Repeated atom and bond data storage for conformer ensembles is avoided 

and only the coordinates are stored in a contiguous float array.  

Owing to significant improvements (Table 1) in read times (150×), storage size (6.5×), and 

random data access, the uKV file format is preferred and therefore molli features two dedicated 

Collection subclasses, ConformerLibrary and MoleculeLibrary that were made using 

uKV file as the default storage backend. Although compressed ZIP files represent a viable 

alternative in terms of size, the reading/writing speeds are significantly inferior. This process reads 

1300 conformer ensembles per second on average, which effectively eliminates the input/output 

bottleneck for most applications. 
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Table 1. Comparison of Data Storage and Reading Efficiency.a 

Backend  Size [MB] Read time (1 core) [s] Write time (1 core) [s] 

Directory[.mol2] 924.9 101.5 89.5 

Zip[.mol2] (uncompressed) 925.0 100.6  89.5 

Zip[.mol2] (compressed) 126.9 145.7 n/a 

uKV-file (.clib) 139.2 0.6 0.4 
a Obtained with the BPA dataset. Compressed ZIPFile was obtained with Deflate level 5 algorithm. 

Reported timings are average of 3 repetitions. Read time represents the time to construct the object from its 

serialized version. Tests performed on System 3 (see the SI for details).  

To demonstrate the broader implications of the proposed molecular storage, an example that is 

relevant to storing conformers for medicinally relevant molecules is provided. The data from the 

MoleculeNet26 subset of the GEOM27 dataset was reimported as a molli .uKV file (see the 

Supporting Information) The chosen storage format was, once again, efficient and user-friendly. 

A 2.1 GB compressed .tar.gz archive was seamlessly converted into a 2.8 GB uKV file (1.8 times 

smaller than the uncompressed pickle files and properties stored in a separate file) but more 

importantly featuring the data annotations directly embedded as attributes in the 

ConformerEnsemble instances.  

3 PARALLEL CALCULATION PIPELINE 

In a typical workflow, tasks such as geometry optimizations, conformer generations, and 

property calculations are done in parallel. Typically, these calculations are carried out with external 

software28 by a unified process in which: (1) a set of input files is prepared, (2) a worker process 

receives said input files and shell commands to execute, (3) the commands are run, and the output 

is captured, and (4) the necessary files are subsequently transferred to permanent storage and are 

analyzed. Molli implements a parallel job pipeline that allows computation of molecular properties 

with external software such as XTB, CREST, NWChem and ORCA, and it can be easily extended 

to any other package (see Supporting Information section 6.1 for more details). Here, we illustrate 

two workflows to demonstrate the flexibility that molli API may offer. 

3.1 KRAS inhibitor rotational barrier estimation. 

Hindered rotation around single bonds, which results in axial chirality, is an important motif in 

catalysts and pharmaceuticals.29,30 The barrier height may not always be straightforward to 

estimate experimentally and doing so in a high throughput sense with minimal involvement may 

significantly facilitate pre-screening of synthetic candidates before their experimental evaluation. 

Herein we demonstrate how this workflow could be setup with the aid of molli parsing and 
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combinatorial creation. The workflow started with the CDXML file which was deliberately 

constructed to mimic the original figure31 as closely as possible (Figure 2). Parsing the CDXML 

files with the help of molli results in the MoleculeCollection files that were subsequently 

subjected to the combinatorial expansion protocol. Coarse structure minimization with MMFF94, 

as implemented in OpenBabel 3.1.0 yielded the initial guess structures. An XTB relaxed surface 

scan was then used to scan the potential energy surface with respect to the rotation around the C–

N bond by constraining the appropriate dihedral atoms. It was crucial that the implementation of 

parsing in molli allowed the labelling of the corresponding atoms in the drawing that consequently 

enables facile input file generation. Analysis of the relaxed surface at the GFN2 method allowed 

the identification of good guess structures for the rotational transition states. An ORCA transition 

state search was partially successful; out of nine transition states, it was able to locate six of them 

correctly. The remaining three structures could be assembled in a more streamlined fashion; the 

core of successfully identified transition state was dissected along the C–N bond and the 

substituent was then replaced with the desired ones. Simple rotation to constrain the dihedral angle 

allowed the generation of more reasonable guess structures. The computed barriers closely 

matched the experimentally observed ones (Table 3).  

 

Figure 2. KRAS inhibitor rotational barrier estimation workflow. (A) Fragment of CDXML file that was 

used for parsing and library assembly. For a full list of structures see Supporting Information, section 6.3. 

(B) Obtained representative equilibrium geometries of R-isomers and transition states. Of note is the 

remarkable distortion of the 2-pyrimidinone ring from planarity in the transition state owing to severe strain. 
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Table 3. Summary of predicted vs. observed racemization barriers at B97-3c level of theory (in 

kJ mol–1). For a full list of structures see Supporting Information, section 6.3. 

Compound Exp.  Pred. 

18* 108.8 108.3 

22 104.6 103.2 

23 >125.5 141.0 

24 >125.5 150.0 

25 121.3 146.1 

26 98.3 92.6 

27 90.0 73.7 

28 73.2 69.9 

29 107.9 101.3 

3.2 GIAO-DFT NMR prediction workflow. 

Prediction of NMR spectra, particularly 13C NMR spectra is a common task encountered in 

structural elucidation and revision. Although modern computational tools allow fast GIAO-DFT 

NMR prediction, a complete cycle workflow that automates the task to start with a ChemDraw™ 

file and orchestrates the required computations, is not generally available using open-source tools. 

A major advance towards this goal is the CENSO program that enables this workflow starting from 

the 3D ensemble representations.32  

The workflow starts with parsing the 3D structures from the .CDXML file to yield a molecule 

collection (Figure 3A). Basic minimization with the MMFF9433 force field as implemented in 

OpenBabel followed by conformer generation with CREST v4 workflow34 created the desired 

conformer ensembles. These ensembles were subjected to geometry evaluation with the B97-3c 

method as implemented in ORCA. Upon conformer generation, the NMR isotropic shieldings were 

calculated with PBE0 / pcSseg-235 + CPCM(chloroform).36 Molli features simple syntax that is 

used to compute the NMR properties (Figure 3B). Molli implements a parser of output files, which 

was used to scrape thermochemical and magnetic properties and stores them within the molecule 

objects. Boltzmann weights were computed, and the resulting weighed averaged NMR chemical 

shifts were subsequently compared to the experimental data showing close correspondence (Tables 

S5-S12). We observe average errors in range [1.2, 2.0] ppm with maximum errors in range [3.1, 

4.0] ppm, consistent with the general expectations of DFT prediction methods. 

 
* The compound labels throughout the manuscript were chosen to be non-standard on purpose. This is to 

demonstrate that the source. CDXML files can be constructed with the compounds labeled arbitrarily. We chose to 

label ours the way they were labeled in the original publications. 
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Figure 3. (A) CDXML parsing and conformer generation workflow results for cladosporin. (B) minimal 

code example for GIAO NMR predictions. 

4 GRID-BASED DESCRIPTOR OPTIMIZATION 

A particular kind of the MIFs that is found use in our laboratory, is the grid-based conformer-

averaged indicator field (GBCA) descriptors, such aas the average steric occupancy descriptor 

(ASO) and average electronic indicator field (AEIF). A naïve implementation of the GBCA 

descriptors suffers from significant, unfavorable scaling dependencies with respect to the grid size. 

This step was very computationally expensive to carry out on libraries of tens of thousands of 

molecules, requiring high performance computational hardware. To eliminate the slow process of 

descriptor computation, we decided to perform an optimization of this process. Molli employs two 

levels of optimization of the computing process. The optimization of the GBCA descriptors began 

by outsourcing numerically intensive arrayed calculations to a more efficient C implementation of 

the numpy package (Table 2). A 25-40-fold acceleration was observed; however the processing 

time was still high for a large library. We employed an auxiliary C++ sublibrary (called 

molli_xt) that was created through the use of pybind11.37 Two functions were implemented that 

reproduced the behavior of SciPy’s38 cdist function that computes the distance matrix (and an 

analogous function was made that would compute a higher dimensional analog of the distance 

tensor). These functions calculated large arrays of distances between grid points and corresponding 

atomic positions with ~10-50% acceleration on the arrays of relevant size as compared to SciPy 

implementation. Up to two-fold acceleration was achieved when the computation was restricted to 

single precision floats that was sufficiently accurate for GBCA calculations. The final aspect of 

optimization came from the efficient partitioning of the grid points into proximal and distal prior 

to the calculation. To enable this process, the k-d tree39,40 data structure was used to optimize the 

problem of finding the closest atoms to given grid points, as well as eliminating remote grid points 

that fall far outside the van der Waals surface of the molecule. We are delighted to report that 

A
ml.pipeline.jobmap(

orca.giao_nmr_ens,
source=orca_conf_dft,
destination=orca_conf_nmr,
cache_dir="_04_dft_nmr",
kwargs={

"keywords": "rks pbe0 pcSseg-2 
verytightscf nmr cpcm(chloroform)",

"elements": ("C",),
},
n_workers=16,

)

B
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overall we were able to achieve a 1,700× acceleration of the process compared to a naïve python 

implementation, and a 50× acceleration as compared to naïve numpy approach.  

Table 2: Benchmarking Results of GBCA Descriptor Calculation.a  

Grid point spacing, Å 1.5  1.0 0.7 

Number of grid points 3510 11362 32832 

Descriptor vector sparsity (mean ± stdev) 92.0±4.4% 91.6±4.6% 91.5±4.7% 

Pruned grid sparsity (mean ± stdev) 86.7±6.5% 86.0±6.7% 85.9±6.8% 

Naïve python ASO, s 175.4 580.8 1686.5 

Naïve numpy ASO, s 5.0 14.3 67.1 

Scipy cdist optimized ASO, s 0.8 2.6 7.3 

molli cdist ASO, s 0.5 1.8 4.9 

KDTree & molli cdist optimized ASO, s 0.1 0.5 1.2 
a Timings are reported on the BPA catalyst 65_vi (88 atoms, 215 conformers). Benchmarks reported on 

System 3 (see the SI for details) 

With the optimized GBCA calculation protocol in hand, the benchmark calculations were 

performed on the full BPA dataset19 consisting of 806 entries and a total of 99,680 conformers, as 

well as on BOX dataset23 consisting of 72,542 entries and 4,662,551 conformers. The calculations 

on the BPA dataset could be performed on a laptop computer (system 3) within two minutes. 

Computing of the BOX dataset under identical conditions took ca 1.5 h, which could be sped up 

considerably by employing more parallel processes on a workstation. Using a 64-core 

computation, ASO computation for the BOX dataset was complete under five minutes. This result 

represents a marked enhancement in speed and enables the calculation of descriptors with chemical 

resolution (0.75 Å spacing or below). 

4.1 Molecule, Ensemble and Descriptor Visualization 

By virtue of being a pure Python library, molli can be easily interfaced with a few different 

visualization libraries. Molli uses two different engines for visualization purposes: 3DMol.js41 is 

used for simpler molecular renderings inside Jupyter notebooks (see Figures 1 and 2 for examples). 

This implementation allows a very simple in-place visualization that helps the end user understand 

the contents of their molecular or conformer libraries much better without the need to transfer the 

data to a third-party program for rendering (Figure 2).  

Highly dimensional grid-based descriptors are particularly hard to interpret by a chemist 

without relying on the visual representation. To enable the visualization of these descriptors, as 

well as to enable their chemical interpretation, we employ another visualization capability using 

the pyvista package, which is a convenient set of wrapping functions over the VTK (Visualization 

ToolKit) package.42,43 This engine can be employed for molecular rendering and it performs 
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particularly well for visualizing high-dimensional, grid-based descriptors in context of conformer 

ensembles. Figure 4 illustrates the directions of the maximal variance in the ASO and AEIF 

descriptors, corresponding to the locations of largest steric and charge distribution diversity in the 

BPA catalyst library (see also Figures S4-S18). 

 

Figure 4. Normalized PCA1 loadings of ASO (left) and AEIF (right) descriptors of the BPA dataset 

overlayed with the conformer ensemble visualization. A 1.0 Å spacing grid was chosen for the visualization.  

5 CONCLUSIONS 

Molli comprises a powerful chemoinformatics toolkit that specializes in the creation of large 

combinatorial libraries of small molecules and parallel computations. A pure pythonic interface 

enables a seamless transition between a plain chemical drawing to a large in silico molecular 

dataset with preservation of stereochemical integrity. Combinatorial library creation can be 

performed with ease through both the command line interface as well as by writing custom scripts. 

Optimized GBCA descriptor calculations one can now easily reproduce the existing ASO and 

AEIF calculations as well as visualize their corresponding results. Lastly, one can employ the 

parallelized computational pipeline to compute the properties of isolated molecules and their 

conformer ensembles with arbitrary external software, of which we provide examples of 

workflows for XTB, CREST, ORCA and NWChem.  
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7 SUPPLEMENTARY INFORMATION 

Source code for the project can be found at https://github.com/SEDenmarkLab/molli. The 

project is available for quick installation Python package index and conda channels. Up-to-date 

documentation detailing the installation procedure and  package usage examples can be found on 

the documentation portal, https://molli.readthedocs.io). Description of the hardware, additional 

information about implementation details, as well as the results from the computational pipeline 

workflows can be found in the attached pdf file. Datasets and the code for workflows discussed in 

the present manuscript can be downloaded from the Zenodo repository 

(https://zenodo.org/records/10719791, doi 10.5281/zenodo.10719790)  
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