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ABSTRACT 

Salmonella infection, also known as Salmonellosis, is one of the most common food-borne 

illnesses. Salmonella infection can trigger host defensive functions, including an inflammatory 

response. The provoked-host inflammatory response has a significant impact on the bacterial 

population in the gut. In addition, Salmonella competes with other gut microorganisms for survival 

and growth within the host. Compositional and functional alterations in gut bacteria occur because 

of the host immunological response and competition between Salmonella and the gut microbiome. 

Host variation and the inherent complexity of the gut microbial community make understanding 

commensal and pathogen interactions particularly difficult during a Salmonella infection. Here we 

present metabolomics and lipidomics analyses along with 16s rRNA sequence analysis, revealing 

a comprehensive view of the metabolic interactions between the host and the gut microbiota during 

Salmonella infection in a CBA/J mouse model. We found that different metabolic pathways were 

altered over the four investigated time points of Salmonella infection (days -2, +2, +6, and +13). 

Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis 

facilitated an understanding of the heterogeneous response of mice depending on the degree of 

dysbiosis. 

 

Introduction 

Salmonellosis, caused by Salmonella infection, is regarded as one of the most widely 

spread bacterial diseases and it usually induces inflammation in the gut resulting in diarrhea, fever, 

and nausea.1 One of the notable impacts of Salmonella infection on the host is an alteration of the 

gut microbiota composition. Several studies have demonstrated that the host is dependent on gut 
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microbes for maintaining health and homeostasis. The gut bacteria contribute to the host in 

multiple ways, including nutrient metabolism, xenobiotic metabolism, immune system 

development/function, and protection from pathogens.  

The symbiotic relationship between the gut microbiome and the host can be disrupted as a 

result of Salmonella infection. 2,3 The Salmonella-induced inflammatory response has the potential 

to disturb the balance of the gastrointestinal ecosystem, perhaps resulting in changes to the 

structure and abundance of microbial communities.2–4 The gut microbiome has the capacity to 

exert an impact on Salmonella colonization through resource competition and the synthesis of 

antibiotic compounds. 5–8  Moreover, the immune response triggered by the invasion of Salmonella 

in hosts may potentially have detrimental consequences on the normal microbial communities, 

leading to elevation and/or depletion of the gut microbiota. The observed effects are attributed to 

the production of antibacterial compounds and the activation of the immune system. 9,10  

This study employed a non-targeted multi-omics approach (metabolomics, lipidomics, 

metagenomics, metatranscriptomics) to examine the fecal samples of CBA/J mice at multiple 

points of Salmonella infection. The objective of this study was to examine the functional 

consequences of Salmonella infection on both the composition of the intestinal microbiota and the 

metabolic processes occurring in the host's intestines. First, we performed untargeted 

metabolomics and lipidomics using liquid chromatography coupled with high resolution mass 

spectrometry to study differential abundance of the metabolome and lipidome at multiple time 

points of Salmonella infection. We also investigated gut microbial composition shifts in the gut 

induced by Salmonella infection by 16S rRNA sequencing. A correlation study was performed to 

investigate the causal association between the composition of gut microbiota and metabolism by 

comparing 16s rRNA sequencing with untargeted metabolomics and lipidomics. Furthermore, we 
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used meta-transcriptomics to assess the functional activity of the gut microbiome during 

Salmonella infection. The utilization of metatranscriptomics enables the discernment of alterations 

in functional profiles in relation to the level of Salmonella infection. The utilization of an 

integrative approach involving metagenomics, metatranscriptomics, metabolomics, and lipidomics 

enabled a more thorough understanding of the diverse regulatory mechanisms that govern different 

molecular phenotypes. This approach specifically illuminated the intricate relationship between 

the gut microbiome and Salmonella, particularly in terms of their interaction with carbon and 

energy sources. 

 

Materials and methods 

Chemicals and reagents 

Acetonitrile, formic acid, methanol, and isopropanol were obtained from Fisher Scientific 

(MA, USA). All the other chemicals (dichloromethane and ammonium formate) were obtained 

from Sigma Aldrich (MI, USA). 

   

Sample collection 

 CBA/J mice were obtained from The Jackson Laboratory (ME, USA), fed on normal chow 

(fat (5.8%), fiber (18.3%), formula 7012) from Teklad Diets (WI, USA), and inoculated with 109 

colony-forming units of Salmonella on Day 0. Fecal samples were collected from 40 mice for 17 

days, including 3 days pre-infection. Eleven mice consisting of 4 high responder mice (high 

inflammation, Salmonella relative abundance of at least 25% for two days) and 7 low responder 

mice (less than 25%) at 4 timepoints were selected for this study: Day-2 (pre-infection) is the 

control group, and Day+2 (early), Day+6 (mid), and Day+13 (late) are the post-infection groups. 
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Details about the high responders and low responders are described below. After fecal sample 

collection, the fresh fecal pellets were flash-frozen in liquid nitrogen within a minute. Mouse 

experiments in this study were performed according to protocols approved by The Ohio State 

University Institutional Animal Care and Use Committee (IACUC). (IACUC protocol: 

2009A0035-R4) 

 

Sample preparation for metabolomics and lipidomics 

Individual fecal samples were used for the metabolomics and lipidomics study, and 1 mL of a 

solution composed of three different solvents (water/methanol/dichloromethane, 1/2/3, v/v/v) was 

used for biphasic extraction of metabolites and lipids, followed by physical disruption with a 

sonicator (Bioruptor®, Diagenode, Belgium). The disrupted fecal suspension was vortexed and 

incubated at room temperature.  The two phases were separated, the organic layer was transferred 

for lipidome analysis, and the aqueous layer was used for metabolome analysis. A quality control 

(QC) sample was prepared by mixing an equal volume of each of the 11 samples (one per mouse).  

Both the organic layer and aqueous layers were analyzed with an Ultimate 3000 liquid 

chromatograph coupled to a Thermo Q-Exactive Plus mass spectrometer (Thermo Fisher 

Scientific, CA, USA) For lipidome analysis, reverse phase separation with a C18 column 

(ACQUITY UPLC® HSS T3 1.8 µm, 2.1 x 100 mm, Waters Corporation, MA, USA) was applied 

for liquid chromatography separation. The mobile phase consisted of water/acetonitrile (6/4, v/v) 

for solvent A and water/acetonitrile/isopropanol (2/2/6, v/v/v) for solvent B, both of which 

contained 0.1 % (v/v) formic acid and 10 mM ammonium formate. A flow rate of 0.270 mL/min 

was used with a gradient as follows: 32% B for 0–1.5 min, from 32% B at 1.5 min to 45% B for 

2.5 min, to 52% B for 1 min, to 55% B for 1 min, to 60% B for 3 min, to 70% B for 3 min, and 
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98% B at 19 min, then returning to the initial gradient conditions (32% B) followed by re-

equilibration for 10 min. A top 8 data-dependent acquisition (DDA) method with collision-induced 

dissociation was applied to scan precursor and product ions in positive and negative modes. For 

metabolome analysis, 2 different separation methods, reverse phase liquid chromatography and 

hydrophilic interaction liquid chromatography (HILIC), were applied. The mobile phases for 

reverse phase separation consisted of water with 0.1% (v/v) formic acid (solvent A) and 

acetonitrile with 0.1% (v/v) formic acid (solvent B). The flow rate was set at 0.3 mL/min with the 

gradient as follows: 2% B for 0-2 min, from 2% B to 30% B for 4 min, to 50% B for 8 min, and 

98% B for 1.5 min and held at 98% B for 1min, then returning into initial gradient for equilibrium 

for 1.5 min. For HILIC separation, an ACQUITY UPLC® BEH HILIC 1.7 µm (2.1 X 150 mm) 

column was used. Water/acetonitrile (95/5, v/v) with 0.1% formic acid and 10 mM ammonium 

formate and water/acetonitrile (5/95, v/v) with 0.1% formic acid and 10 mM ammonium formate 

were prepared as solvent A and solvent B respectively. For gradient elution, 99% B was held for 

2 min, gradually reduced to 75% B for 7 min and reduced again to 45% B for 5 min. And the 

gradient was held at 45% B for 2 min, returned to the initial gradient and re-equilibrated for 5min. 

The flow rate was set at 0.3 mL/min. The QC sample was analyzed after every 6 samples. 

 

Data processing for metabolomics and lipidomics 

For data processing including peak detection, adduct identification () and metabolome/lipidome 

annotation, the collected MS data were processed with MS-Dial (v.4.90).11 Any features with more 

than 25% relative standard deviation in QC samples were excluded to remove features with low 

reproducibility. The nomenclature rules for lipid species and lipid classification were applied 
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following MS-Dial and LIPID MAPS nomenclature.11,12 All statistical results for each compound 

and abbreviation of the lipids are illustrated in Supporting information 1 & 2. 

 

Metabolomics/lipidomics driven pathway analysis 

The pathway analysis with identified metabolites/lipids was performed using the web-based tool 

Metaboanalyst 5.0 (metaboanalyst.ca).13 Metabolic pathways consisting of less than 2 metabolites 

or an impact score of less than 0.1 were excluded.14 

 

16s rRNA amplicon sequencing  

Total nucleic acids were extracted from feces of each single mouse using the Quick-DNA 

Fecal/Soil Microbe Microprep Kit (Zymo Research, CA, USA) and stored at −20 °C until 

sequencing. DNA was submitted for amplicon sequencing at the Argonne National Lab Next 

Generation Sequencing facility using Illumina MiSeq with 2 × 251 bp paired end reads following 

established HMP protocols.15 Briefly, universal primers 515F and 806R were used for PCR 

amplification of the V4 hypervariable region of  the 16S rRNA gene using 30 cycles. The 515F 

primer contained a unique sequence tag to barcode each sample. Both primers contained sequencer 

adapter regions. Data was processed using Qiime2 2021.4.0 with specific steps described here.16 

In short, raw data fastq files were demultiplexed and amplicon sequence variants (ASVs) were 

chosen using DADA2 and assigning taxonomy via SILVA release 138 SSU Ref NR 9917.  

 

Integration of 16s rRNA and metabolomics/lipidomics 

To explore the compositional relationship between fecal metabolites/lipids with gut microbes 

during Salmonella infection, we calculated the statistical correlation between the gut microbial 
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abundance from 16S rRNA sequencing and the chromatographic area of metabolites/lipids. The 

gut microbes identified in less than 20% of the samples were excluded, and 46 gut microbes were 

selected for further analysis. Pseudo count (1E-9) was added before centered log-ratio 

transformation (CLRT). CLRT was also applied to the LC-MS data to reduce the effect of the 

different response magnitudes from the two acquisition modes. Pearson coefficient was calculated 

with two centered log-ratio transformed data.18 

 

Metatranscriptomics analysis  

Total RNA was extracted using the ZymoBIOMICS DNA/RNA Miniprep Kit (Zymo Research, 

CA, USA) and stored at −80 °C until sequencing. RNA for meta-transcriptomics was submitted to 

a facility at the University of Colorado-Denver and the sequencing library was prepared using the 

Zymo-Seq RiboFree Total RNA Library Kit (Zymo Research, CA, USA). Libraries were 

quantified and then sequenced on the NovaSeq 6000 using paired-end 150-bp reads (2x150) on an 

S4 flow cell (v1.5 chemistry). Reads were trimmed and had adapters removed using bbduk 

(v38.89) and mapped to a custom genome database including the dereplicated set from the CBAJ-

DB and additional metagenome assembled genomes (MAGs) from additional metagenomic 

sequencing of CBA/J mice fed high-fat diet or chow per methods previously described (total of 

141 MAGs) using bowtie2 (v2.4.5).19,20 Counts were then generated using htseq (v21.0.1) and 

normalized using DESeq2 or geTMM in R.21–23 Groups for DESeq2 normalization were selected 

based on high or low responder status as determined by Salmonella relative abundance.  

 

Results and discussion 

Investigation of the temporal dynamics of Salmonella abundance 
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The abundance of Salmonella was measured using 16S rRNA analysis for samples collected 

over a period of 18 days, encompassing 3 days prior to the inoculation of Salmonella and 15 days 

following the inoculation (Figure S1).  We divided the mice into two groups based on the 

prevalence of Salmonella over time: high responder (HR) mice and low responder (LR) mice. HR 

mice are classified as mice with Salmonella relative abundance ≥ 25%, detected in at least 2 time 

points in a minimum of two time periods, while all other mice were categorized as LR mice. There 

were 6 high responder mice and 34 low responder mice. To examine the effects of Salmonella 

infection on gut metabolisms across an infection time course, we selected 4 HR mice (out of 6 HR 

mice, because there were insufficient fecal samples for 2 of the HR mice) and 7 LR mice (out of 

34 LR mice) at three post-infection time points (Day+2: "Early", Day+6: "Mid", and Day+13: 

"Late") and one pre-infection time point (Day-2) for metabolomics/lipidomics analysis. The four 

HR mice (M1, M2, M3, and M4) exhibited a steady increase in Salmonella abundance over time, 

but the seven LR mice (M5, M6, M7, M8, M9, M10, and M11) did not (Figure 1). 
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Figure 1. The relative abundance changes of the family of Enterobacteriaceae (indicating 

Salmonella) in 11 CBA/J mice. The red dotted line indicates a Salmonella abundance of 25%, the 

definition of high responder in this study. 

 

Overview of the gut metabolome/lipidome analysis and the gut microbe abundance analysis 

Principal component analysis (PCA) was performed to see whether Salmonella infection 

traits could be discriminated at different time points in the metabolomics and/or lipidomics data. 

Figures 2A through 2F display PCA score plots for lipidomics and metabolomics.  For the 

lipidomics data, we did not find any distinct separation between the pre-infection and early post-

infection groups but there was a clear separation by mid and late infection. In metabolomics 

analysis, the distinction between the mid and late time points vs. pre- and early time points was 

less apparent, except for the HR mice at the late time point. At the late time point, both 

metabolomics and lipidomics analyses revealed that all HR mice were distinguishable from LR 

mice. A non-metric multidimensional scaling (NMDS) study depicting the variance in gut 

microbial abundance after Salmonella infection also revealed the considerable differences between 

the HR and LR groups at the late time point and these results suggest that the variation in gut 

microbial composition during Salmonella infection may have a major impact on metabolite and 

lipid alterations (Figure 2G). As depicted in Figure 2H, Clostridia and Bacteroidia classes account 
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for more than 90 percent of the composition of gut microbes prior to Salmonella invasion. These 

classes remained the predominant gut microorganisms in LR mice infected with Salmonella. The 

HR group, on the other hand, had a drastically higher abundance of Gammaproteobacteria, the 

family of bacteria associated with Salmonella. In the LR group, the change in the 

Gammaproteobacteria class was insignificant. 
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Figure 2. Principal component analysis of LC-MS-based lipidomics and metabolomics. 

Lipidomics analysis with positive (A) and negative (B) modes, metabolomics analysis with 

reverse-phase separation ((C): positive mode and (D): negative mode)) and HILIC separation ((E): 

positive mode and (F): negative mode)) are illustrated. The NMDS analysis from 16s rRNA 

analysis is shown in (G). In (G), the circles denote low responders while the diamonds denote high 

responders. The red, blue, black, and green colors, respectively, stand for the pre, early, mid, and 

late time points. The alterations of the gut microbiome in all mice are illustrated in (H) and the 

samples within the dashed-lined box represent the high responders in the late time point. 
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Exploration of altered metabolites/lipids at multiple time points after Salmonella inoculation  

With LC-MS-based metabolomics and lipidomics analyses, a total of 1135 compounds 

were identified. There are 58 lipid ontologies and 19 lipid subclasses for the identified lipids. 

Triacylglycerol (TG, n = 105), diacylglycerol (DG, n = 68), glycerophosphatidyl choline (PC, n = 

42), and ether-linked PC (n = 36) were the most identified classes of lipids. Included within the 

annotated metabolites are amino acids, polyphenols, and dipeptides. Figure 3 illustrates significant 

alterations in metabolites and lipids following Salmonella infection compared to the pre-infection 

group. At the early infection timepoint (relative to pre-infection), six and twelve compounds were 

significantly elevated in LR and HR mice, respectively and 11 and 30 compounds, respectively, 

were decreased in LR and HR mice. Comparing the pre-infection group to the mid time point, 47 

compounds showed lower abundance and 164 compounds showed higher abundance in LR mice, 

while 118 compounds were decreased and 241 compounds were increased in HR mice. Twenty-

two and 125 compounds decreased and increased respectively, in both LR and HR mice.  At the 

late time point of Salmonella infection, the number of compounds decreased in LR mice was 71, 

while in HR mice it was 207, compared to the pre infection time point. On the other hand, 241 and 

342 compounds were elevated in both LR and HR mice.  

Compounds that decreased at mid and late time points compared to pre infection group 

include esterified deoxycholic acid (DCAEs), sulfonolipids (SLs) and N-acyl glycines (NAGlys). 

The abundance of DCAEs decreased at both mid- and late time points of Salmonella infection in 

LR and HR groups (Fold change: 0.079 and 0.238 in HR and LR groups, respectively, at the mid 

time point, and 0.040 and 0.307 in HR and LR groups, respectively, at the late time point). The 

decrease in DCAEs with Salmonella infection is interesting in the context of prior studies indicated 

that dysregulation of secondary bile acid metabolism occurs in cases of intestinal microbiota 
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imbalances associated with diseases such as ulcerative colitis and colorectal cancer.24,25  It is well 

known that gut microorganisms produce the esterified form of bile acids. The major bile acids 

secreted by the host liver are susceptible to transformation by bacteria in the gastrointestinal 

system. Gut microbes are capable of esterification, deconjugation, epimerization, and oxidation of 

bile acids.26,27 We also observed that the levels of three secondary bile acids (taurodeoxycholic 

acid, deoxycholic acid, and hyodeoxycholic acid) exhibit a significant reduction in all mice, with 

a more pronounced decrease observed in the HR mice at the late time point of Salmonella infection. 

The observed alterations in bile acid metabolism can be attributed to two potential factors. First, 

during infection, the microbial community undergoes a shift, resulting in a decrease in the 

abundance of bacteria that produce secondary bile acids. Second, it is possible that the bacteria 

alter their behavior during infection, leading to a reduced production of secondary bile acids.  

SLs are also significantly decreased in both LR and HR groups, especially at the late time 

point (Fold change: 0.213 in HR group and 0.348 in LR group at the late time point). SLs are 

known to be produced by intestinal bacteria,28,29 including the Alistipes genre, and our 16s rRNA 

result indicating a decrease in the abundance of Alistipes, supporting a decrease in the 

concentration of SLs following Salmonella infection.29  NAGlys are examples of compounds 

lowered in the mid-time and late-timepoint group, especially in HR mice (Fold-change: 0.128 at 

mid time point and 0.179 at late time point in HR group). NAGlys are also known as the microbial 

metabolites that contribute to cholesterol metabolism. 30  

 Cholesteryl esters (CEs) are a class of compounds substantially elevated at the mid and 

late time points of Salmonella infection (Fold-change: 6.86 in HR group and 2.59 in LR group, 

respectively, at the mid time point; 12.3 and 5.77 in HR group and LR group, respectively, at the 

late time point). Esterification of cholesterol is a common biological process used to store, 
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transport, and reduce the toxicity of excess cellular cholesterol. A recent study has also indicated 

that dysbiosis has the potential to trigger cholesterol esterification.31 The presence of significant 

amounts of ceramides has the potential to disrupt the microbial composition, leading to dysbiosis 

and this dysbiosis, in turn, triggers the activation of the cholesterol esterification pathway.32 In our 

study, an increase in ceramide concentrations was observed after Salmonella infection. Hence, 

ceramides induced dysbiosis, has the potential to enhance the process of cholesterol esterification. 

Also, compounds such as glycerophosphatidylcholines (PCs) and 

lysoglycerophosphatidylcholines (LPCs) were significantly elevated at the late-time point group 

especially in HR mice (Fold change of PCs: 2.66 and LPCs: 5.14) compared to the pre-infection 

group. PCs and LPCs are a critical component of the membranes of epithelial cells, thus it is 

probable that inflammation caused by Salmonella infection harmed the mucosal epithelium and 

led to epithelial cell necrosis, which may explain the elevated PC levels. 33–36 

Glycerophospholipids are also involved in the structural components of the cellular membrane and 

play a key role in many cellular processes.33 PCs and LPCs also serve as cofactors required for 

pathogenicity of infectious organisms such as Salmonella.35,37 Biliverdin, involved in the heme 

catabolic pathways, including production of urobilinogen, was also elevated at the mid and late 

time point of Salmonella infection in both HR (Fold-change: 4.69 at mid time point, 4.58 at the 

late time point) and LR (Fold-change: 2.93 at mid time point and 4.94 at the late time point) groups. 

Gut microbes are expected to participate in the urobilinogen synthesis pathway; however, bilirubin 

accumulated with Salmonella infection, suggesting that biliverdin was not converted into 

urobilinogen due to a disturbed gut microbial composition.38 A similar result was observed in a 

gut-related disease, ulcerative colitis.24 
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Figure 3. The metabolites/lipids altered compared to the pre-infection group. (Early time point: 

(A) LR and (B) HR; Mid time point: (C) LR and (D) HR; late time point: (E) LR and (F) HR.  (G) 

Examples of significantly altered metabolites of Salmonella infection. (*: p-value <0.05, **: p-

value < 0.01, ***: p-value <0.001) 

 

Metabolomics/Lipidomics driven pathway analysis 

We performed pathway analysis to determine the host metabolic pathways altered by Salmonella 

infection at multiple time points compared to the pre-infection group. A total of 281 (lipids with 

different carbon length were considered as one compound) of our 1135 compounds were found in 
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the Kyoto Encyclopedia of Genes and Genomes (KEGG) compound database and pathway 

analysis was performed. As might be predicted, during early Salmonella infection, only one 

metabolic pathway change was seen in HR (ether lipid metabolism) and LR (pentose and 

glucuronate interconversions) groups. At the midpoint of Salmonella infection, seven metabolic 

pathways were significantly altered in both HR and LR groups, including sphingolipid 

metabolism, alanine, aspartate, and glutamate metabolism, glycerophospholipid metabolism, and 

ether lipid metabolism. At the late time point of Salmonella infection, 14 metabolic pathways were 

significantly altered in both the HR and LR groups, and 6 of these metabolic routes (sphingolipid 

metabolism, alanine, aspartate, and glutamate metabolism, glycerophospholipid metabolism, 

arachidonic acid metabolism, ether lipid metabolism, and arginine biosynthesis) were identified as 

significant pathways at both the mid and late time points. Tryptophan metabolism, arginine and 

proline metabolism, cysteine and methionine metabolism, galactose metabolism, amino sugar and 

nucleotide sugar metabolism, purine metabolism, glyoxylate and dicarboxylate metabolism, and 

primary bile acid biosynthesis were identified as significant metabolic pathways at the late time 

point. Additionally, a total of 22 metabolic pathways were identified to exhibit statistically 

significant variations between the HR and LR groups at the late time point. One of interesting 

pathways significantly different between the HR and LR groups is tryptophan metabolism (p-value 

< 0.0001) as the tryptophan metabolism is highly affected by the metabolism of gut microbiome.  

And the high variation of gut microbiome composition/function led to influence on the host’s 

tryptophan metabolism. More detailed information is described below.  (Table S2, Figure 4)  
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Figure 4. The significant host metabolic pathways at each time point Salmonella infection. (Early 

time point: (A) LR and (B) HR, Mid time point: (C) LR and (D) HR, late time point: (E) LR and 

(F) HR. The significantly altered metabolites at mid time point (G) and late time point (H) of 

Salmonella infection. 

 

Correlation of 16s rRNA analysis and metabolomics/lipidomics 

Correlation of metabolomics/lipidomics and microbiota 16S rRNA amplicon sequencing 

relative abundance revealed a strong relationship between metabolites/lipids and community 

composition following Salmonella infection. We found 157 pairs of positively linked 

metabolites/lipids and gut bacteria (correlation coefficient > 0.7, p-value < 0.05) and 596 pairs of 

negatively correlated metabolites/lipids and gut microbes (correlation coefficient < -0.7, p-value 

< 0.05).  Positively correlated pairs (lipids/metabolites and microorganisms) include a correlation 

between glycerolipids and the class of Clostridia.  In detail, metabolites/lipids such as 

monogalactosyldiacylglycerol (MGDG) and oxidized MGDG were positively correlated with the 
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Lachnospiraceae and Roseburia genera. MGDG and oxidized MGDG were positively correlated 

with the Bacteroidia class including the Muribaculaceae genus. The observed connections suggest 

a potential involvement of gut bacteria in the metabolic pathways of the linked metabolites/lipids, 

or a possible source of the substances. According to reports, MGDGs are widely dispersed in the 

Clostridia class 39,40 (Figure S2). In addition, correlation analysis was performed at each time point 

of Salmonella infection. Only 25 correlation pairs (7 positive correlation pairs and 18 negative 

correlation pairs) were observed at the early time point of Salmonella infection, but 682 correlation 

pairs (273 positive correlation pairs and 409 negative correlation pairs) and 3864 correlation pairs 

(755 positive correlation pairs and 3109 negative correlation pairs), respectively, were observed at 

the mid and late time points of Salmonella infection (Figure S2). More correlation was observed 

at the late time point of Salmonella infection, as there were more dramatic changes in gut microbial 

composition and in abundances of metabolites/lipids. Figure 5 illustrates a network analysis of the 

fifteen metabolites/lipids most highly correlated with Salmonella. Esterified deoxycholic acids, 

such as sterol ester (SE) 24:1;O4/18:0;O and SE 24:1;O4/16:0;O, were negatively correlated with 

Salmonella, but many glycerophospholipids, including glycerophosphatidylethanolamines, were 

positively correlated. As discussed previously, dysbiosis caused by Salmonella infection reduced 

or deactivated the microbial bile acid metabolism. The negative connection between esterified 

deoxycholic acids and Salmonella provides evidence for a decreased amount of esterified 

deoxycholic acids as result of Salmonella infection.  
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Figure 5. Top 15 metabolites/lipids correlated to Salmonella bacteria were extracted from Figure 

S2.  

 

Integration of meta-transcriptomics and metabolomics/lipidomics to investigate the impact 

of dysbiosis induced by Salmonella infection at the late time point 

As indicated in the above paragraph, significant metabolome/lipidome changes were identified 

between HR and LR mice. Changes in the composition of intestinal microbes as determined by 

16s rRNA indicated that HR mice had a more severe dysbiosis. We conducted a meta-

transcriptomics analysis that provides the expression profiles of microbial communities and 

Salmonella to examine the effect of gut microbial alteration on metabolic pathways that are 

significantly distinct between HR and LR groups. Figure 6 illustrates the relationship between 

metabolomics/lipidomics driven metabolic pathways and the expressed microbial metabolic 

pathways that are involved in those metabolic pathways. ((A): amino acids, (B): lipids, (C) energy 

and carbohydrate, and (D) other metabolisms) These global perspectives on metabolic pathways 
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assisted the identification of the key contributing taxa of metabolic pathways in each group. For 

instance, Bacteroidia contribute the most to amino acid metabolism, including cysteine and 

methionine metabolism, histidine metabolism, and lysine degradation, in the LR group, whereas 

Gammaproteobacteria are the most important contributors in the HR group. Bacilli belonging to 

the HR group are actively involved in lysine degradation and tryptophan metabolism, whilst Bacilli 

belonging to the LR group are also strongly involved in arginine biosynthesis and arginine and 

proline metabolism. Bacilli class encompasses five distinct families: Anaeroplasmataceae, 

Erysipelatoclostridiaceae, Enterococcaceae, Lactobacillaceae, and Erysipelotrichaceae. Highly 

expressed Bacilli class genes in the HR mice were from the family Enterococcoace which co-

enriched with Salmonella, but highly expressed Bacilli class genes in the LR mice were from 

families other than Enterococcoace. Based on the results of metabolomics/lipidomics, four lipid 

metabolisms (glycerolipid metabolism, glycerophospholipid metabolism, ether lipid metabolism, 

and primary bile acid metabolism) were significantly different between HR and LR mice, and gut 

bacteria participated in those metabolic pathways. As shown, the Gammaproteobacteria genes 

involved in glycerophospholipid metabolism, glycerolipid metabolism, and ether lipid metabolism 

are substantially expressed in HR mice relative to LR mice. Clostridia and Bacilli classes have 

been found to be associated with primary bile acid metabolism, however the level of correlation 

seen here was not substantial. We concluded that the direct influence of the gut microbiota on 

primary bile acid metabolism is modest as mice are predominantly in charge of primary bile acid 

metabolism.41 On the other hand, secondary bile acid metabolism is strongly associated with six 

gut microbes (families Lachnospiraceae, Ruminococcaceae, Erysipelatoclostridiaceae, 

Oscillospiraceae, Acutalibacteraceae, and Lactobacillaceae) and can influence the enterohepatic 

cycling of bile acids, thereby influencing the primary bile acid metabolism of the host.26 
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Metabolism of secondary bile acids is disturbed in HR mice, as evidenced by the lower quantity 

of secondary bile acids detected by metabolomics/lipidomics. The interruption of the secondary 

bile acid metabolism can impair the primary bile acid metabolism of the host. 

In Figure 7, we illustrate Salmonella functional profile differences between HR and LR mice at 

the late time point of infection. We discovered distinctive active Salmonella metabolisms in the 

HR group, which include sulfur metabolism and reductases and an electron transport chain 

component, and the genes involved in these two metabolic pathways were only expressed in 

Salmonella. Salmonella bacteria utilize sulfur metabolism for their multiplication and competition 

with other intestinal microorganisms.42 The reactive oxygen species created during inflammation 

can react with luminal sulfur compounds such as thiosulfate, and as a result, they can be 

transformed into tetrathionate, which serves as a Salmonella respiratory electron acceptor.42 

Salmonella can utilize carbon sources from the host, such as ethanolamine, via tetrathionate 

respiration during anaerobic respiration.42–44  
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Figure 6. Relationships between gut microbial taxa and metabolomics/lipidomics driven 

metabolic pathways ((A): amino acids, (B): lipids, (C) energy and carbohydrate, and (D) other 

metabolisms). The line color represents the log2(fold change = abundance in HR/abundance in 

LR) 
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Figure  7.  Transcriptome based Salmonella metabolism. Fold change was calculated by 

abundance in HR group divided by abundance in LR group.   

 

We studied further the effect of gut microbes and Salmonella infection on the key pathways 

identified by metabolomics/lipidomics data. There are a total of 19 KEGG orthologies (KOs) 

involved in glycerophospholipid metabolism, as shown in Figure 8A. Thirty-three species of 

microorganisms belonging to 9 families expressed the genes involved in KOs. In LR mice, twelve 

KOs, including K06142 and K01058, were highly active. In HR mice, K06132 (cardiolipin 

synthase C) and K01058 (Phospholipase A1/A2) were exclusively expressed from Salmonella; in 

LR mice, however, they were also expressed by the Muribaculaceae family and Salmonella. 

Compared to HR mice, the total number of expressed genes was significantly lower in LR mice. 

Seven KOs exhibited decreased abundance in HR mice, including K08744 (cardiolipin synthase 

(CMP-forming)). K01048 (lysophospholipase), an enzyme that releases fatty acids from 

lysophospholipids, had an insignificant FC difference for HR vs. LR mice. However, the gut 

microorganisms that expressed K01048 were dissimilar. Salmonella dominated the release of 

K01048 in the HR group, whereas the Lachnospiraceae family was a significant contributor in the 

LR group. Mapping the identified metabolites/lipids offers a better understanding of changed 
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pathways; hence, we mapped 196 unique lipids and metabolites classified into the eight KEGG 

IDs implicated in glycerophospholipid metabolism (Figure 8B). The significantly stimulated 

metabolic flux of PC and PE in HR mice is one of the most intriguing aspects of this figure. Due 

to the increased number of dead epithelial cells caused by the host inflammatory response, PC and 

PE levels are elevated in an inflamed gut environment. In LR mice, the gut microbial functions 

implicated in the glycerophospholipid production pathway, such as K00570 

(phosphatidylethanolamine/phosphatidyl-N-methylethanolamine N-methyltransferase) and 

K00968 (choline-phosphate cytidylyltransferase), were significantly active. However, lipidomics 

demonstrated that over 66 percent of identified PCs (28/42, numbers of significant PCs / numbers 

of identified PCs) had a considerably higher abundance in the HR group, but none of them were 

significantly more abundant in the LR group. This suggests that the greater abundance of PCs in 

the HR group is a result of the host immune response and not the gut microbiome. The majority of 

LPCs (16/20) were likewise greater in the HR groups, however no LPCs of significance were 

identified in the LR group. Salmonella bacteria can use these increased glycerophospholipids. In 

HR mice, Salmonella phospholipases A1/A2 (K01058 and K05939) that convert PCs (or PEs) into 

LPCs (or LPEs) were expressed at a higher level. Salmonella’s active PC digesting 

metabolism results in the buildup of glycerophosphocholine and choline. Ethanolamine, which is 

produced after PE digestion and utilized by bacterial pathogens such as Salmonella, was not 

identified in this study; however, we observed a greater abundance of genes involved in 

ethanolamine consumption by Salmonella, including K03735 (ethanolamine ammonia-lyase large 

subunit) and K03736 (ethanolamine ammonia-lyase small subunit). Choline and ethanolamine are 

both carbon and energy sources for Salmonella development in the intestine. 45  
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Figure 8. (A) The significantly different KEGG orthologies participating in the 

glycerophospholipid metabolism between HR mice and LR mice. Fold-change = the abundance in 

HR mice / the abundance in LR mice. *: Zero abundance was observed in HR mice. **: Zero 

abundance was observed in LR mice. (B) KEGG glycerophospholipid metabolism mapped with 

the meta-transcriptomics and metabolomics/lipidomics results (see legend). 
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Another example of a key pathway that revealed the difference between the HR and LR groups 

at the late time point is the tryptophan metabolism pathway. (Figure 9) Tryptophan is a precursor 

molecule of indole, and indole is metabolized by gut microorganisms.  One of the metabolic 

pathways that we observed was tryptophan transformation, where tryptophan is converted into 

indole derivatives such as indole-acetate and 2-oxoindole-3-acetate in the LR mice. Indole-acetate 

can bind to the aryl hydrocarbon receptor (AhR), which lowers pro-inflammatory cytokine 

expression and regulates the formation of intraepithelial lymphocytes, which play a crucial role in 

pathogen invasion defense.46,47 Presumably, the increased quantity of indole-acetate in the LR 

mice inhibits Salmonella development, promotes gut microbial balance, and prevents dysbiosis 

from occurring. However, further study is needed to prove this. In contrast, we detected a 

significantly elevated level of tryptophan in the HR group. We concluded that the tryptophan was 

deposited due to the gut microbial community of HR mice lacking the capacity to generate anti-

inflammatory indole derivatives. Salmonella increased expression of K01825 (3-hydroxyacyl-

CoA dehydrogenase / enoyl-CoA hydratase / 3-hydroxybutyryl-CoA epimerase / enoyl-CoA 

isomerase), K01782 (3-hydroxyacyl-CoA dehydrogenase / enoyl-CoA hydratase / 3-

hydroxybutyryl-CoA epimerase/ enoyl-CoA isomerase) and K01782 (3-hydroxyacyl-CoA 

dehydrogenase / enoyl-CoA hydratase / 3-hydroxybutyryl-CoA epimerase). Expression in these 

pathways by Salmonella implies that the accumulated tryptophan in the HR group is catabolized 

and converted to acetyl-CoA to be used for glycolysis. 
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Figure 9. KEGG tryptophan metabolism mapped with the meta-transcriptomics and 

metabolomics/results. 

 

Conclusions 

In summary, this work highlights the different metabolic changes of Salmonella infected mice 

according to infection phase. Multiple metabolic pathways were affected at each investigated time 

point. Integrated multi-omics analysis with 16S rRNA sequencing and metatranscriptomics 

implied that many host metabolism changes after Salmonella infections were induced by dysbiosis. 

Some of the altered metabolic pathways, such as bile acid metabolism, tryptophan metabolism, 

and glycerophospholipid metabolism, demonstrated congruence with results reported in other 

studies, where gut microbiome composition was altered for various reasons. 32,48–50 Although 

cholesterol esterification was not extensively researched in previous Salmonella studies, our 

findings indicate that cholesterol esterification levels rose during Salmonella infection, likely 

because of ceramide accumulation. At the late time point, there were distinctive metabolite and 
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lipid patterns between high and low responders, indicating the influence of Salmonella abundance 

on the gut environment and host metabolism. For example, the gut microbiota can metabolize 

tryptophan to produce indole-acetate and 2-oxoindole-3-acetate when the Salmonella abundance 

is low. Salmonella can, however, accumulate and use tryptophan for glycolysis in an intestinal 

environment where they are the dominant bacteria. In Salmonella-dominant environments, 

Salmonella utilizes glycerophosphocholines and glycerophosphoethanolamines, produced by the 

host's inflammatory response, as carbon and energy sources for growth. Based on our findings, 

further investigation can be undertaken to examine the roles of various lipids and metabolites, 

especially microbial driven metabolites such as indole derivatives against various pathogenic 

invasion. These findings hold promise for the contribution to the development of therapeutic 

treatments and the discovery and advancement of drugs.   
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