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ABSTRACT 

Directed evolution (DE) mimics natural selection to improve the functions of a target protein. 

Machine learning (ML) has significantly streamlined DE by aiding in several steps, which 

includes identifying starting variants, generating diverse libraries and modeling sequence-fitness 

relationships. To date, the majority of ML-assisted DE (MLDE) approaches has relied 

predominantly on sequence information due to the challenges and cost of obtaining protein 

structure information. Here, we introduce a structure-augmented MLDE (saMLDE) approach for 

selecting high fitness variants from a library of Protein G B1 domain. We adopted and applied a 

zero-shot sequence-based prediction method (offering the potential to discover new insights 

without extensive training data) to select an initial training library of 96 variants for the saMLDE 

campaign. To leverage protein structure information, we used protein structure prediction with 

AlphaFold2 and molecular docking simulations performed with Rosetta FlexPepDock, resulting 

in structure-based features derived with an induced fit model. After three rounds of the saMLDE 

campaign, we demonstrated that saMLDE incorporating structural information gradually 

improves the average fitness scores and the precision of predicted binders. In addition, we 

found that the initial library selection with zero-shot subset selection methods significantly 

impacted the average fitness scores and precision, consequently influencing the overall directed 

evolutionary trajectories. 
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AUTHOR SUMMARY 

Changes in protein sequences, driven by the powerful engine of natural selection, allow 

organisms to adapt and thrive in diverse environments. Inspired by this slow but essential 

process, scientists have developed directed evolution, a technique that rapidly enhances protein 

function through targeted mutations. However, predicting which mutations will be most impactful 

remains a major challenge. While traditional models primarily rely on protein sequence data, our 

new scheme incorporates valuable structure-guided information from predicted protein 

structures and molecular docking simulations. This structure-augmented model demonstrated 

the improvement of laboratory evolution metrics for Protein G B1 domain, achieving substantial 

gains even with limited data. Unlike other approaches requiring large datasets, we mimicked 

real-world or wet laboratory experiments by using only 96 samples per round. Our findings not 

only emphasize the importance of data quality but also demonstrate the practicality and 

effectiveness of our approach in tackling the complexities of directed evolution with structure-

guided information. 
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INTRODUCTION 

Directed evolution (DE) is an optimization process to create protein variants with high fitness by 

performing iterative rounds of mutagenesis followed by screening (1). Each round of 

mutagenesis and screening searches through the fitness landscape, and the measured trait 

should improve with the assumption that each mutation is complementary to previous 

mutations. This is often thought to be associated with exploration-exploitation tradeoff, a core 

principle of diverse computational approaches including DE (2). This underscores the 

importance of the balance between exploration that tries to search with uncertainty for 

unexplored regions of the sequence space and exploitation that tries to maximize available 

information. In reality, the fitness landscape is discrete and high-dimensional with many of the 

dimensions being quite rugged (2-5). This ruggedness is due to epistasis, where the mutational 

effects are dependent on higher order interactions rather than the individual contributions (6). 

Epistatic interactions, where mutations interact in complex ways affecting protein function, pose 

a major hurdle for traditional DE. These methods typically involve either sequential single 

mutations or simultaneous recombination of beneficial mutations in the best variants. However, 

both approaches frequently suffer from these intricate dependencies (7, 8). To navigate the 

challenge of finding an optimal DE trajectory, machine learning (ML) has emerged as a powerful 

tool, optimizing sequence-function models and enabling a more efficient approach: Machine 

Learning-assisted DE (MLDE) (9-13). By leveraging ML models, MLDE takes a leap forward in 

exploring the vast protein sequence space. It analyzes data from a large, random library to build 

predictive models, then uses these models to curate a smaller, targeted library of promising 

mutations. This allows MLDE to focus on the most likely candidates for success, significantly 

accelerating the DE process compared to traditional methods. 

 Multiple attempts of DE of Protein G, B1 domain (GB1) binders are reported to date (11, 

14-16). More recently, a new strategy termed focused-training MLDE (ftMLDE) was proposed 

(17). This approach demonstrated that high fitness variants can be identified by utilizing a form 
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of unsupervised ML, termed zero-shot, prior to any experimental screening (17). A common 

challenge for MLDE approaches is identifying appropriate training data for the ML model when 

only a handful of variants for the protein of interest have been experimentally investigated. 

Thus, utilizing a zero-shot prediction prior to beginning an MLDE scheme has the potential to 

provide a more enriched training dataset while avoiding holes (zero or extremely low fitness 

variants) in the fitness landscape.   

Aside from identifying an appropriate training dataset, selecting appropriate input 

features to train the ML model is important. Historically, input features were predominantly 

generated using protein sequence information while the use of information derived from 3D 

protein structure had limited application in DE or MLDE schemes. Other groups have 

investigated integrating structure information into DE by introducing Bayesian Optimization (BO) 

into DE approaches (BODE) (14, 18). BODE provides the advantage of considering factors not 

included in the input features, such as foldability, solubility or thermostability which can indirectly 

influence the trait of interest, even though they may not directly affect it. In application, BODE 

with a structure-based regularization term improved performance in most cases while 

sequence-based and evolution-based regularization terms were less effective (14). While limited 

protein structure information could train these ML models, BODE models notably did not directly 

harness the 3D structures of individual variants. 

The introduction of AlphaFold2 (AF2) makes the prediction of 3D protein structures 

accessible with drastically improved accuracy and without the need for experimentally 

determined 3D structures by X-ray diffraction or nuclear magnetic resonance (19-21). Having an 

accurately predicted structure of a protein without experimental determination opens the 

possibility for 3D protein structure to be used as input for MLDE approaches. Although docking 

and screening results for AF2 structures are readily available, the potential for these structures 

to contribute to MLDE schemes has not been investigated to date (22-24), to our knowledge. 

Here, we investigated the impact of integrating in silico-generated structure information into a 
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MLDE campaign. While AF2 predicted structures alone did not achieve sufficient discrimination 

between high and low fitness sequences of GB1 variants, incorporating these structures into 

Rosetta FlexPepDock (FPD) and enabling induced-fit modeling significantly improved the 

identification of subtle ligand-binding pocket structures (25-27). As demonstrated with this work, 

structure-derived input features, in addition to sequence-based features, in MLDE can facilitate 

the achievement of desired DE outcomes. 

 

RESULTS/DISCUSSION 

Overview of structure-augmented MLDE (saMLDE)  

We present the overall workflow of the structure-augmented MLDE (saMLDE) in Fig 1. The 

saMLDE begins with the zero-shot prediction for finding an initial library of 96 variants, followed 

by multiple rounds of the main DE campaign. Each DE round comprises three consecutive 

phases.  

Phase 1: The SEQ (sequence-based) ML model is trained with available training data 

including the 96 variants suggested from the previous round. To mimic a real experiment 

setting, true fitness scores from the GB1 library are looked up for a training dataset that 

comprises these 96 variants and any from previous rounds. This dataset size (96 variants) 

reflects a typical 96-well plate format, chosen to minimize cost and effort while remaining 

relevant to practical applications. Finally, the ML model is used to predict the fitness of the 

remaining variants. 

Phase 2: A subset of up to 1,098 variants is selected from the Phase 1 predictions. We 

use these selected variants as input data to generate target data for Phase 3 prediction. These 

data incorporate both sequence features through sequence embedding and structure-derived 

features. The number of these variants reflects the set used for generating structure-derived 

features, which is subject to the prediction in Phase 3. The number was chosen to balance the 

expected computational complexity associated with structure prediction and docking simulation 
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(See Table 1). We also tested 20 random GB1 sequences with the recently released ColabFold 

(28) and ESMFold (29) to compare their computation time to AF2. When exceeding 1,098 

candidates, a random subset is chosen. Our simulations indicate that 1,098 is sufficiently large 

for two out of three rounds, based on saMLDE results. 

Figure 1. Overall workflow of the saMLDE campaign leveraging structure information. 
Initial training datasets are selected from zero-shot predictions. In Phase 1, ML (sequence-
based) models are trained using MSA Transformer-generated sequence embeddings, while in 
Phase 3, ML models are trained with both sequence embeddings and FPD-generated structural 
features. 
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Table 1. Estimated computation time per variant (mean±SD, N=20). 
Computation (per variant) Approximate computation time (h) 

AlphaFold2 0.77 ± 0.12 
ColabFold 0.093 ± 0.043 
ESMFold 0.015 ± 0.00072 

FPD docking ~10 
 

Phase 3: The SEQ-STR ML model, which combines sequence and structure information, 

is trained using the same variants of the training data in Phase 1 and used to predict fitness 

scores for the selected variants from Phase 2. Structure features come from predicted protein 

structures (generated using AF2) and docking simulations (conducted with FPD), reflecting the 

link between fitness and the bound-state protein structure. After Phase 3, a random selection of 

96 variants predicted from the current round moves to the next round. 

The input for the SEQ-ML model of Phase 1 relies on features derived from the protein 

sequence alone. In Phase 3, the SEQ-STR ML model combines those features with additional 

information about the protein structure. Notably, for sequence-based feature representation, we 

found the multiple sequence alignment (MSA) transformer (30), a powerful deep learning model 

trained on extensive MSA, to be more effective than other sequence encoding options. This 

model utilizes the evolutionary relationships embedded in these alignments to understand the 

link between protein sequences and their structures.  

The SEQ-STR ML model in Phase 3 leverages structure-based information from two 

sources: 1) Predicted protein structures generated using AF2 and 2) Molecular docking 

simulations conducted with FPD. These simulations refine the AF2 models by considering 

protein flexibility and ligand interactions, reflecting the "induced-fit" concept where both protein 

and ligand adapt to each other upon binding. This aligns with our rationale that a variant's 

fitness is closely linked to the structure of the bound protein-ligand complex. FPD simulates this 

binding process, providing valuable information for the ML model. 

Our chosen ML model is Random Forest (RF) classification. We classify each variant as 
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a "binder" or "non-binder" based on a fitness score threshold of 1. This threshold reflects the 

fitness score of the wild-type (WT) sequence. The saMLDE aims to identify variants with higher 

fitness scores than the WT sequence, enriching for binders within a DE campaign's evolutionary 

trajectory. 

This three-phase process—comprising Phase 1, Phase 2 and Phase 3—is repeated 

over multiple rounds until variants with the desired high fitness scores are identified and 

experimentally verified. We will discuss the overall saMLDE campaign in detail, focusing on its 

unique features and potential benefits. All sequences and data related to the saMLDE campaign 

are available in File S1. To gain a deeper understanding of the underlying mechanisms and key 

features of saMLDE, we will also present results from various analyses and comparison studies. 

 

saMLDE effectively increased DE metrics across the MLDE campaign 

The primary objective of any MLDE campaign is to improve a particular trait of interest in a 

protein of interest. We assessed its ability to enhance the fitness scores of selected GB1 

variants by examining the average and median fitness scores of predicted binders across three 

rounds of the MLDE campaign (Fig 2A). Also, we analyzed corresponding datasets obtained 

from Phase 1, 2 and 3 of each round (Fig 2B and Fig S1). Their distributions reveal the patterns 

in the evolutionary trajectory, both within and between rounds. The changes between 

consecutive phases within each round suggest a synergistic interplay between Phase 1’s SEQ 

ML and Phase 3’s SEQ-STR ML, highlighting the potential benefits of incorporating structure-

derived information. The progressive changes across rounds, on the other hand, offer insights 

into the success of the entire DE campaign as an optimal evolutionary process, often described 

by the concept of exploration-exploitation tradeoff (2). In this context, predictive modeling with 

ML within the MLDE framework operates as an exploitation strategy, while the overall DE 

campaign needs to balance exploitation and exploration. 
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Figure 2. Fitness scores tracked across three rounds of the saMLDE campaign. In (A), the 
saMLDE scheme demonstrated a gradual increase in the average and median fitness scores of 
predicted binders. In (B), a histogram analysis of variant distribution revealed a reduction in the 
number of predicted binders over three phases of each round. Max, Maximum fitness score of 
predicted binders. 
 

Both the average and median fitness scores of predicted binders increase as iterations 

progress, even leading to improved performance of Phase 1 of Round 3 compared to the same 

phases in earlier rounds (Fig 2A). This suggests that the first two rounds contribute positively 

for the predictive power of SEQ ML in Round 3 by introducing more informative and high-

scoring variants. In contrast, each Phase 1 in Rounds 1 and 2 shows diminished performances 

and larger fluctuation in changes in their distributions, indicating higher variability in the early 

rounds (Fig 2B). In fact, a successful DE campaign should escape this burning period quickly, 

and the saMLDE campaign demonstrates this ability. This improvement could be attributed to 

the growing size and quality of training datasets, which enriches the pool of high fitness variants 

over time. This also suggests the positive contributions of Phase 3 and SEQ-STR ML. 

The argument that a successful MLDE campaign requires an optimal strategy for finding 

appropriate training data across rounds can be supported by our observations on a different 

type of evolutionary scheme. In this case, MLDE campaigns were simulated separately and 
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expected to have additional randomness which could lead to increased difficulty in achieving an 

optimal trajectory. For this scheme, we employed another subset selection method for the initial 

library, referred to as “Subset Selection 2” (Fig 3B and Fig S2). This scheme differs from the 

saMLDE in that the initial library of 96 variants from the zero-shot prediction is randomly 

selected from the top 3,200 variants. This alternative scheme was introduced in the ftMLDE 

framework as a strategy for MLDE. After this subset selection method, the workflow for the main 

DE rounds remains the same. Considering the uncertainty involved in selecting the initial library, 

we repeated the DE campaigns with three replicates. As a stark difference, unlike the saMLDE 

(Fig 3A, Subset Selection 1), the pronounced changes from Phase 3 to the next Phase 1 in the 

consecutive round was consistently observed in average fitness and median fitness scores (Fig 

S2), indicating the difficulty of achieving a synergistic gradual improvement across rounds in the 

MLDE metrics. This clearly underscores the need for a robust strategy to find optimal training 

data in MLDE. A more comprehensive discussion of these simulation results and their broader 

implications will be presented later. 

Figure 3. Metrics across three rounds of the saMLDE campaign. In (A), the number of 
predicted biners and the precision of predicted binders were assessed over the three rounds of 
Subset Selection 1. In (B), the same metrics are demonstrated with Subset Selection 2 with 
three replicates. 

 

 We additionally examined the maximum fitness scores of predicted binders at each 

phase, as another indicator for MLDE performance (Fig 2B and Fig S1). Notably, the variant 

https://doi.org/10.26434/chemrxiv-2023-llpnk-v3 ORCID: https://orcid.org/0000-0001-5783-4549 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-llpnk-v3
https://orcid.org/0000-0001-5783-4549
https://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

with the maximum score cannot be identified until the experimental verification under a real DE 

run but is suggested here as secondary information for the evaluation of a trajectory. Analyzing 

the distributions across phases and rounds, providing critical evaluation measures, reveals the 

following observations: 1) Low fitness variants are gradually removed, with significant 

improvement occurring after Phase 3 of Round 2 (Fig 2B), specifically, a relatively flat 

distribution around zero is observed at Phase 3 of Round 2, and this pattern persists thereafter, 

regardless of the phases within Round 3, 2) The number of binders falls below 1,098 after 

Round 2, suggesting that our configuration of 1,098 variants for SEQ-STR ML might be 

sufficient to prevent any significant loss of potential variants due to the random selection 

associated with Phase 2 and 3) While a random selection of the 96 samples required after 

Phase 3 still needs a careful analysis on its impact, we see no strong indication that this 

uncertainty dramatically disrupts the evolutionary campaign. Introducing a ranking mechanism 

or regression-based MLDE could potentially help mitigate the issue, similar to the zero-shot 

prediction-based selection in the saMLDE. This direction represents a promising avenue for 

future MLDE schemes.    

Through our saMLDE runs, we observed a consistent enrichment of variants with higher 

fitness scores. This achievement is likely driven by the MLDE configuration, which is designed 

for broad applicability in various wet-lab DE studies. Furthermore, including structure-based 

features derived from in silico structure prediction (AF2) and docking simulations (FPD) further 

enhances MLDE's ability to identify variants with even high fitness scores.  

 

saMLDE effectively screened out variants of low-fitness scores throughout the MLDE campaign 

Avoiding holes (zero or extremely low fitness variants) within the fitness landscape is crucial for 

effective MLDE campaigns. This concept underpins the ftMLDE’s “focused training” approach 

(17). To investigate how the saMLDE guides the evolutionary trajectory toward the goal, we 

analyzed the total number of predicted binders and their precision (fraction of true binders to 
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predicted binders) over three rounds in four different MLDE campaigns: saMLDE/Subset 

Selection 1 (Fig 3A) and Subset Selection 2 with three replicates (Fig 3B). Across all subsect 

selection methods, including saMLDE/Subset Selection and three replicates of Subset Selection 

2, we observed a reduction in the number of predicted variants from the SEQ ML model (Phase 

1) to the SEQ-STR ML model (Phase 3) (as shown in the upper panels of Fig 3). This reduction 

was accompanied by increased precision, as seen in the lower panels of Fig 3). Our proposed 

workflow appears to effectively filter out low fitness variants across all rounds. This, combined 

with additional structural information used by the SEQ-STR ML model (Phase 3), likely reinforce 

the DE path initially directed by the SEQ ML model (Phase 1). These consistent improvements 

suggest that the richer data patterns identified by the SEQ-STR ML model contribute to better 

ML performance in subsequent rounds. 

 As summarized in Table 2, saMLDE (Subset Selection 1) led to consistent improvement 

in ML performance for both binders and non-binders at Phase 1 and Phase 3. This further 

supports the observed pattern of progress over repeated rounds and reveal insights into the 

positive interplay between the SEQ ML and SEQ-STR ML models within each round. On the 

contrary, replicates using Subset Selection 2 (Table 3) did not exhibit similar progress, 

suggesting its inherent uncertainty makes it less effective than the saMLDE for searching a 

desirable trajectory. We compared predicted binders from Round 3 of all DE runs (n=4) to 

investigate contrasting MLDE schemes. As show in the lower panels of Fig 3B, we observed 

only marginal increases in precision between Phase 1 and Phase 3 for replicates with Subset 

Selection 2, compared to a more noticeable improvement with saMLDE. While various factors 

could contribute, the limited amino acid diversity in the training data emerged as a potential key 

culprit based on our analysis of intriguing pattern. Interestingly, over 50% of high fitness variants 

used to train for both Phase 1 and Phase 3 ML models contained either methionine (Replicate 

1), alanine (Replicate 2) or both (Replicate 3) at residue 54 (Fig S3). This overrepresentation of 

specific amino acids (methionine appearing in 7% and alanine in 26% of GB1 library binders) 
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likely restricted the ability of the ML models in Subset Selection 2 to learn from a wider range of 

high fitness sequences. This could explain both the underwhelming performance gain and the 

ineffective navigation towards a desirable DE path with the augmented structure information 

observed in these specific runs. Notably, saMLDE in general avoided such significant anomaly 

in the amino acid distribution bias (Fig S3). This suggests that saMLDE potentially avoided the 

limitation by selecting a better path based on the training data.  

Table 2. ML model metrics at Phase 1 and Phase 3 with the saMLDE scheme. N and B denote 
non-binder and binder, respectively. CV denotes cross validation.  

saMLDE (Subset Selection 1) 
 Round 1 Round 2 Round 3 
 Phase 1 Phase 3 Phase 1 Phase 3 Phase 1 Phase 3 

F1-Score (N/B) 0.80/0.67 0.77/0.59 0.88/0.53 0.94/0.83 0.91/0.79 0.89/0.74 
Precision (N/B) 0.75/0.75 0.71/0.71 0.85/0.62 0.97/0.77 0.89/0.83 0.87/0.78 

Recall (N/B) 0.86/0.60 0.86/0.50 0.92/0.45 0.92/0.91 0.93/0.75 0.91/0.70 
AUC 0.81 0.76 0.73 0.92 0.89 0.88 

5-Fold CV 0.83 ± 0.06 0.83 ± 0.04 0.82 ± 0.02 0.79 ± 0.03 0.77 ± 0.05 0.78 ± 0.03 
 

Table 3. ML model metrics at Phase 1 and Phase 3 with Subset Selection 2. N and B denote 
non-binder and binder, respectively. CV denotes cross validation.  

Subset Selection 2 – Replicate 1 
 Round 1 Round 2 Round 3 
 Phase 1 Phase 3 Phase 1 Phase 3 Phase 1 Phase 3 

F1-Score (N/B) 0.93/0.40 0.91/0.00 0.89/0.67 0.90/0.62 0.90/0.83 0.90/0.83 
Precision (N/B) 0.87/1.00 0.83/0.00 0.84/0.83 0.81/1.00 1.00/0.71 1.00/0.71 

Recall (N/B) 1.00/0.25 1.00/0.00 0.95/0.56 1.00/0.44 0.82/1.00 0.82/1.00 
AUC 0.78 0.74 0.81 0.84 0.96 0.94 

5-Fold CV 0.85 ± 0.03 0.86 ± 0.04 0.94 ± 0.02 0.90 ± 0.03 0.87 ± 0.04 0.87 ± 0.03 
 

Subset Selection 2 – Replicate 2 
 Round 1 Round 2 Round 3 
 Phase 1 Phase 3 Phase 1 Phase 3 Phase 1 Phase 3 

F1-Score (N/B) 0.90/0.50 0.87/0.44 0.89/0.40 0.88/0.29 0.82/0.75 0.82/0.75 
Precision (N/B) 0.82/1.00 0.81/0.67 0.82/0.75 0.80/0.67 0.78/0.81 0.78/0.81 

Recall (N/B) 1.00/0.33 0.94/0.33 0.97/0.27 0.97/0.18 0.88/0.69 0.88/0.69 
AUC 0.93 0.93 0.81 0.84 0.90 0.90 

5-Fold CV 0.80 ± 0.04 0.82 ± 0.02 0.83 ± 0.01 0.83 ± 0.02 0.88 ± 0.01 0.89 ± 0.02 
 

Subset Selection 2 – Replicate 3 
 Round 1 Round 2 Round 3 
 Phase 1 Phase 3 Phase 1 Phase 3 Phase 1 Phase 3 

F1-Score (N/B) 0.91/0.00 0.91/0.00 0.91/0.33 0.91/0.33 0.84/0.78 0.87/0.84 
Precision (N/B) 0.83/0.00 0.83/0.00 0.83/1.00 0.83/1.00 0.89/0.73 1.00/0.73 

Recall (N/B) 1.00/0.00 1.00/0.00 1.00/0.20 1.00/0.20 0.80/0.84 0.77/1.00 
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AUC 0.85 0.86 0.89 0.83 0.95 0.95 
5-Fold CV 0.77 ± 0.06 0.83 ± 0.02 0.87 ± 0.05 0.86 ± 0.05 0.81 ± 0.02 0.79 ± 0.02 

 

The MSA Transformer embedding was selected as sequence-based input features 

For sequence-based features, we compared multiple encoding/embedding methods before 

selecting the highest performer for our saMLDE approach. One-hot, the most basic protein 

encoding method, encodes protein sequences in a binary system that designates the amino 

acid residues and their location in the sequence (31, 32). Georgiev (AA-index) encoding is more 

complex and encodes the residue and its location in the sequence as a series of 

physiochemical characteristics (33, 34). The MSA Transformer is a deep-learning architecture 

for protein language model using the MSA of a query sequence to embed physiochemical 

characteristics of each amino acid, its location in the sequence and information about 

evolutionary conservation (30, 35). Using the MSA Transformer as a method to embed protein 

sequence is distinct from using the MSA Transformer zero-shot predictor but utilizes the same 

MSA Transformer architecture for the two tasks. 

To examine the ideal encoding/embedding method for our saMLDE approach, we 

generated four unique training sets from different combinations of the two zero-shot predictors 

and two subset selection methods (Subset Selection 1 and 2) from zero-shot prediction 

presented in Fig 4. This allowed us to assess the robustness of each encoding/embedding 

method across different zero-shot sampling methods. The three encoding/embedding methods 

with the four training sets resulted in twelve unique ML models. The metrics of each ML model 

were then compared (Fig 4 and Table 4). Our ML models trained with the MSA Transformer 

embedding consistently demonstrated higher averages of accuracy and AUC (area under the 

receiver operating characteristic curve) (Fig 4) and higher averages of F1-score, precision and 

recall (Table 4), across all four training sets compared to models trained with One-hot and 

Georgiev encodings. As a result, we chose the MSA Transformer embedding as the primary 

and only sequence-based input feature for our saMLDE campaigns. 
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Figure 4. Assessment of sequence-based input features. Comparison of sequence-based 
input features from the four different types of ML models (two zero-shot predictors and two 
subset selection methods) with either accuracy from 5-fold cross validation (A) or AUC (B). 
Accuracy = (True Positive + True Negative)/(Positive + Negative) from 5-Fold Cross Validation; 
AUC, area under the receiver operating characteristic curve; MSA Trans, MSA Transformer. 
 
 
Table 4. Metrics for the ML models trained using One-hot encodings, Georgiev encodings or 
MSA Transformer embeddings. Values are averages of all four cases (two zero-shot predictors 
and two subset selection methods) from Figure 4; N and B denote non-binder and binder, 
respectively.  
 

 One-hot Georgiev MSA Transformer 
F1-Score (N/B) 0.84/0.39 0.85/0.42 0.88/0.42 
Precision (N/B) 0.80/0.54 0.84/0.56 0.83/0.61 

Recall (N/B) 0.86/0.36 0.88/0.39 0.94/0.36 
 

Initial libraries were prepared using the zero-shot predictors 

In the library of GB1 variants, only 2.4% of the 149,361 empirically tested sequences have 

higher fitness scores than WT GB1, so selecting an initial training library to properly represent a 

range of fitness sequences a priori can be challenging (5). In previous reports (9-11, 36), 

researchers selected variants of a specific protein and experimentally tested them to examine 

the fitness landscape. The data obtained from these experiments was then used to create an 

initial library of data for training a ML model. However, these approaches introduce an additional 

set of costly experiments to the MLDE scheme that do not confidently verify a proper 

representation of the fitness landscape. The zero-shot methods for MLDE by Wittmann et al. 
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(17) work under the assumption that training a ML model for DE on a known fitness landscape 

allows the ML model to learn information about residue functionality and biophysical limitations 

for a broad range of fitness landscapes. This information can then be leveraged to provide a 

prediction on a protein fitness landscape that has not been examined before without the need of 

additional costly experiments.  

For the decision on the type of zero-shot predictor, the MSA Transformer zero-shot 

predictor (17) was examined, which had a reported Spearman’s rank correlation coefficient 

(Spearman’s ρ) of 0.20. When used as a zero-shot predictor, the MSA Transformer, with the 

ability to learn phylogenetic relations between proteins, functional constraints of proteins and 

structural constraints of proteins from the MSA, demonstrated a high Spearman’s ρ compared to 

other reported zero-shot predictors (17, 30, 35). We considered another zero-shot predictor, 

EVmutation that utilizes evolutionary information in its training (37). When used as a zero-shot 

predictor, EVmutation was reported as having a Spearman’s ρ of 0.21 (17). EVmutation served 

as an alternative zero-shot predictor during ML model engineering to assess the impact of 

different training data sources on model performance. 

To assess the suitability of the MSA Transformer zero-shot predictor for saMLDE, we 

compared the binder-to-non-binder ratios and average fitness scores of variants generated by 

two subset selection methods (Subset Selection 1 and 2). This comparison used both the MSA 

Transformer and the EVmutation zero-shot predictors. In both subset selection methods, the 

MSA Transformer zero-shot predictor resulted in a higher ratio of binders (Fig 5A and Fig 5B). 

Further, we evaluated the average fitness scores of all potentially sampled variants and the 

average fitness scores of all potentially sampled binders using the two subset selection methods 

and the two zero-shot predictors. In Fig 5C through 5E, the MSA Transformer zero-shot 

predictor consistently predicted higher average fitness scores for binders compared to the 

EVmutation zero-shot predictor in both subset selection methods. Therefore, we decided to 

utilize the MSA Transformer zero-shot predictor for our saMLDE campaigns. 
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Figure 5: Assessment of two zero-shot predictors with the two subset selection methods. 
Ratios of binders to non-binders for the initial 96 sampled variants using either zero-shot 
predictor are shown with Subset Selection 1 (A) (n=1) and Subset Selection 2 (B) (n=3 for 
statistical variation). Fitness scores are ranked in the top 96 (C), the top 3200 (D) and binders 
from the top 3200 (E) predicted variants using both zero-shot predictors. The predicted library of 
binders in (E) is from the 3200 predicted sequences in (D). Dashed line indicates threshold 
between binders (fitness score ≥1) and non-binders (fitness score <1). 
 

Structure-based input features showed differences between binders and non-binders 

To correctly classify a GB1 variant using AF2 generated structures, an ML model requires them 

to be discernable between high (greater than 1) and low (less than 1) fitness scores. Towards 

this goal, two libraries were created: one containing 500 variants of binders and the other 

containing 500 variants of non-binders. The 3D protein structures of all 1,000 variants were then 

predicted using AF2. Each variant's predicted unrelaxed structure with the highest pLDDT 

(predicted Local Distance Difference Test) score was compared to the WT structure 

(PDB:2GI9). While root-mean-squared-deviation (RMSD) values of binders spanned a range of 

0.2 - 0.6 Å, values for non-binders extended to 0.8 Å, as shown in Fig 6A. Despite the statistical 

difference (p<0.0001), the limited variation in RMSD values and their substantial overlap 

suggested that RMSD alone would not be sufficient for accurately distinguishing high and low 

fitness variants, possibly due to the known limitation of AF2 structure prediction (38). 

https://doi.org/10.26434/chemrxiv-2023-llpnk-v3 ORCID: https://orcid.org/0000-0001-5783-4549 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-llpnk-v3
https://orcid.org/0000-0001-5783-4549
https://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Our heuristic but systematic feature engineering approach for the main ML model 

involved initially utilizing existing variables related to energy and 3D structure from FPD output. 

Subsequently, only features identified as statistically significant predictors through RF feature 

importance analysis were retained in the final model. We incorporated structural information 

from the FPD output, underscoring our key idea of adopting the induced-fit model. In addition to 

the energy and 3D structure-related features from FPD output, we also considered features 

associated with variations of each variable. We generated these features by performing 200 

iterative Monte Carlo minimization attempts for each variable. We hypothesized that distinctive 

patterns exist between binders and non-binders due to topological differences, particularly those 

arising from the stability of a bound state with binders in the conformational energy landscape 

(39). Analyzing the distribution of complex structures obtained from multiple Monte Carlo 

minimization tasks is expected to reveal such an energy landscape environment. We found that 

structure-based features associated with RMSD changes were more significant than energetic 

variables as predictors. Therefore, features based on these RMSD changes and their dispersion 

were primarily used in our model. We found that the physics-based scores generated by the 

Rosetta energy functions in FPD were not as effective at distinguishing between binders and 

non-binders as the structure-based features. The only exception is Interface Score (Fig 6B), 

which displayed discriminative power for binding prediction and was therefore included in our 

structure-based ML models. All other utilized features are listed in Table 5.    

Our use of FPD for feature selection stands in contrast to previous efforts that employed 

predicted structures and rigid body docking, yielding disappointing results. This observation 

resonates with studies highlighting the lack of predictive power in docking scores generated 

from AF2-predicted structures and AutoDock Vina for antibiotic discovery (40, 41). Notably, 

these studies used approaches similar to those employed in the unsuccessful attempts 

mentioned earlier.   
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Figure 6. Structural differences between binders and non-binders of GB1 variants. (A) 
RMSD values of 500 binders and 500 non-binders with respect to fitness scores (linear plot). 
RMSD values of binders and non-binders when compared to PDB:2GI9 (WT GB1, scatter plot 
with mean). (B) Distribution of structure-based input features for 500 binders and 500 non-
binders from the library presented in (A). The color and symbol of each structural feature 
correspond to the same structure-feature in (C). (C) Coefficients of variation calculated from 
structure-based inputs for the variants used in (A). Scatter plot with mean. Unpaired t-test in (A) 
and (C) with *p<0.05 and ****p<0.0001. 100, Derived from the library of 100th percentile data from 
the mean; 90, Derived from the library of 90th percentile data from the mean; 50, Derived from the 
library of 50th percentile data from the mean. 
 
Table 5: List of structure-based features derived from FlexPepDock. 

Structure-based Features 
Interface Score (I_sc): Variance50, Standard Deviation100 

RMSD of all atoms (rmsALL): Variance90,50 

RMSD of interface atoms (rmsALL_if): Variance90,50, Standard Deviation90, Minimum Predicted Value50 

RMSD of backbone atoms (rmsBB): Standard Deviation50, Minimum Predicted Value50 

100Derived from the library of 100th percentile data from the mean  
90Derived from the library of 90th percentile data from the mean 
50Derived from the library of 50th percentile data from the mean 
 

To investigate the orthogonal evidence supporting the association between the selected 

structure-based features and fitness score, we performed the linear regression analysis on all 

selected features using libraries of 500 binders and 500 non-binders (Fig 6B and Table 6). This 

analysis revealed that several features, such as the variance derived from the 50th percentile 

library's Interface Score, showed significant correlations with fitness. Interestingly, features 

exhibiting low correlations with fitness score (Table 6) remained impactful on the predictive 

capabilities of the ML models. Removal of these features resulted in a statistically significant, 
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albeit modest, decrease in performance metrics outlined in Table S1 and Table S2. The 

relatively higher correlation between RMSD of Backbone Atoms, Standard Deviation50 and 

fitness score might be explained by the accuracy of AF2 predictions for backbone atoms, a 

known strength when analyzing single conformations (21, 38). The results presented in Fig 6C 

align with our prediction, demonstrating that features derived from multiple simulations and 

reflecting the variability of molecular dispersion, measured by the coefficient of variation, exhibit 

distinct distributions between binders and non-binders. Thus, this study demonstrates that 

combining AF2-predictied structures with simulated docking in FPD effectively generates 

dispersion measurements that serve as good features for the saMLDE. 

Table 6. R2 values from linear regression (Fig 6B) for each structure-based input feature.  
Structure-based Input Feature R2  p-value 

Interface Score, Variance50 0.061 **** 
Interface Score, Standard Deviation100 3.5´10-6 **** 
RMSD of All Atoms, Variance50 0.062 **** 
RMSD of All Atoms, Variance90 0.036 **** 
RMSD of Interface Atoms, Variance50 0.014 **** 
RMSD of Interface Atoms, Variance90 2.9´10-5 0.63 
RMSD of Interface Atoms, Standard Deviation90 3.8´10-5 0.63 
RMSD of Interface Atoms, Minimum50 0.059 **** 
RMSD of Backbone Atoms, Standard Deviation50 0.29 **** 
RMSD of Backbone Atoms, Minimum50 0.0024 **** 

100Derived from the library of 100th percentile data from the mean  
90Derived from the library of 90th percentile data from the mean 
50Derived from the library of 50th percentile data from the mean 
**** <0.0001 

 

Sequence-structure ML models synergistically overcame the limitation of structure-only ML 

models 

To assess how incorporating structure-based features (STR) improves sequence-based 

predictions (SEQ), we evaluated the performance of ML models trained on three data 

combinations: SEQ, STR and combined SEQ-STR. The training data included 96 variants 

selected using our zero-shot prediction results. To evaluate the three ML models, we used the 

same four training libraries as those employed in Fig 4 to compare sequence 

encoding/embedding methods. All models used sequence embeddings generated by MSA 
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Transformer. The STR ML model shows lower averages of 5-fold cross validation accuracy (Fig 

7A) and AUC (Fig 7B) compared to both the SEQ and the SEQ-STR ML models. The STR ML 

predicted binders with lower values of metrics (precision, recall and F1-score in Table 7). The 

STR ML model's weak performance likely stems primarily from the challenge of identifying 

reliable structure-based features, although a limited amount of training data might have also 

played a role. The SEQ-STR ML models, on the other hand, did not exhibit large deviations in 

average values of 5-fold cross validation accuracy, AUC, precision, recall and F1-score 

compared to SEQ ML models (Fig 7 and Table 7). This implicates that the SEQ-STR ML 

models were able to overcome the limitations of the STR ML model, which is potentially 

attributed to the sequence-based information synergistically augmented to the structure-based 

information. As discussed before with results of saMLDE, the incorporation of structure-based 

information demonstrates an effective screening out of low-fitness variants. Given that SEQ ML 

lacks structure-based information crucial for an induced fit model, we believe incorporating the 

underlying mechanism of SEQ-STR ML represents a sound choice for the novel saMLDE 

framework. 

Figure 7. ML models utilizing different input features. Assessment of SEQ ML, STR ML and 
SEQ-STR ML models using two zero-shot predictors with two subset selection methods. Data 
were plotted using either accuracy from 5-fold cross validation (A) or AUC (B). Accuracy = (True 
Positive + True Negative)/(Positive + Negative) from 5-Fold Cross Validation; AUC, area under 
the ROC; SEQ, ML models with sequence-based input features alone; STR, ML models with 
structure-based input features alone; SEQ-STR, ML models with structure- and sequence-
based input features together. 
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Table 7. Metrics for ML model trained with either SEQ, STR or SEQ-STR features. Values are 
averages of all four instances using the two zero-shot predictors and two subset selection 
methods from Fig 7; N and B denote non-binder and binder, respectively.  

 SEQ STR SEQ-STR 
F1-Score (N/B) 0.88/0.42 0.83/0.00 0.87/0.40 
Precision (N/B) 0.83/0.61 0.76/0.00 0.82/0.47 

Recall (N/B) 0.94/0.36 0.99/0.00 0.92/0.35 
 

To conclude, the saMLDE campaign demonstrates the potential of leveraging structural 

information to enhance sequence-based MLDE approaches, consistently maintaining model 

performance across rounds. This suggest that enriching sequence data with structure 

information does not compromise model accuracy, further supported by saMLDE’s gradual 

improvement in attaining variants with high fitness scores and reduction of low fitness score 

variants. This is evident in saMLDE metrics such as average and median fitness scores steadily 

improved throughout the DE campaign while the number of predicted binders is decreased with 

increased precision. In contrast, Subset Selection 2 demonstrated variation in performance 

between Round 1 and Round 2 in different replicates. Our findings show that selecting the 

highest ranked variants (Subset Selection 1) from the MSA Transformer zero-shot prediction, as 

demonstrated with saMLDE, improves MLDE outcomes compared to a subset selection with 

inherent randomness (Subset Selection 2). 

This study demonstrated a clear milestone in improving the MLDE approach, but 

multiple challenges remain for achieving optimality in the DE campaign. First, we need to find a 

more robust ML approach capable of predictions with regression, even with relatively small 

sample sizes. Then, we can incorporate the regression model to guide the DE campaign in 

selecting subsets, for example, after Phase 3. Secondly, we plan to pursue deep learning-based 

representation learning for structure-derived features. Shifting from expert-driven feature 

engineering to a data-driven approach would enhance the robustness and generalizability of the 

required task. Recent studies have explored various methods, including residue-level Graph 

Attention Network (42) and methods for finding secondary structure features (43, 44), 
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demonstrating the potential of data-driven approaches. Further advancements in integrating 

structure alongside deep reinforced learning (45, 46) hold promise for even greater benefits 

beyond MLDE. We will further enhance MLDE by tunning hyperparameters using BO. This 

optimization will involve finding the ideal sample size per round, balancing overall experimental 

cost with increasing the likelihood of finding the optimal evolutionary trajectory. Finally, we will 

apply this framework to a sizable protein, demonstrating its broader applicability and potential to 

leverage future advancements in computation and algorithms for a wider range of protein 

engineering problems. 

 

METHODS 

Selection of dataset 

Since the library of GB1 variants and their fitness scores are readily available (5) and widely 

applied to test DE approaches (11, 12, 14, 16, 17, 47, 48), we also used the same library of WT 

GB1 and its variants. This four-site combinatorial library at residues 39, 40, 41 and 54 

(204=160,000 possible variants) contains 149,361 empirically examined variants. The fitness of 

protein GB1 variants, as previously determined by both stability (i.e. the fraction of folded 

proteins) and function (i.e. binding affinity to IgG-Fc), was measured in a high-throughput 

manner by coupling mRNA display with Illumina sequencing (5). The fitness scores for the 

remaining 10,639 variants were imputed and were excluded from our experiments. The fitness 

of a variant was reported as a non-negative continuous value, with WT GB1 (PDB:2GI9) having 

a fitness score of 1. Sequences with improved fitness as compared to WT GB1 were scored 

above 1, and sequences with reduced fitness as compared to WT were scored below 1. In our 

work, we adopted a binary classification scheme, where a fitness score of ≥1 was classified as a 

binder (binary value of 1) and a score of <1 was classified as a non-binder (binary value of 0). 

We opted for this approach instead of regression primarily due to the potential for 

underperformance in early rounds due to limited training data (see Fig S4). 

https://doi.org/10.26434/chemrxiv-2023-llpnk-v3 ORCID: https://orcid.org/0000-0001-5783-4549 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-llpnk-v3
https://orcid.org/0000-0001-5783-4549
https://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Initial library selection with zero-shot predictors 

To avoid holes (zero or extremely low fitness variants) in the fitness landscape for building the 

initial library of our saMLDE, we adopted the zero-shot sequence prediction strategy proposed 

by Wittmann et al. (17). First, we compared two zero-shot predictors for our analysis; 

EVmutation, an alignment-based model learning distributions from position pairs (37), and a 

language model trained on large quantities of MSAs (File S1), the MSA transformer (30). We 

also examined two different subset selection methods, 1) Subset Selection 1 (top 96 

predictions) and 2) Subset Selection 2 (96 randomly selected variants from the top 3,200 

predictions). The dataset size of 96 variants reflects the practical limitation of using 96-well 

plates in wet-lab experiments. While this limited size may affect the interpretability of our results, 

it represents the realistic constraints of generating large training datasets without significant 

resource investments (49). 

The saMLDE campaign (Subset Selection 1) assumes that as zero-shot methods 

become more accurate, utilizing the highest ranked predictions will increasingly yield high 

fitness sequences. Since the proposed zero-shot methods from Wittmann et al. (17) are weak 

predictors of fitness, exploiting the top 96 predicted variants is likely to possess a significant 

proportion of low or zero fitness sequences rather than high fitness sequences. We also 

evaluated Subset Selection 2 based on findings by Wittmann et al. (17) suggesting its optimal 

sampling strategy for training ML model with 384 variants selected from the top 3,200 zero-shot 

predictions.   

 

Sequence encoding methods and random forest (RF) classification for SEQ ML 

We used One-hot (31) and Georgiev (33) sequence encoding and MSA Transformer embedding 

(30) for the sequence feature representation. The MSA Transformer learned embedding for 

GB1 variants was taken directly from Wittmann et al. (17) and is distinct from the MSA 

Transformer predictor used to generate zero-shot predictions. Once 96 sequences were 
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selected based on the zero-shot predictions (Subset Selection 1), these sequences were then 

used to train supervised RF classification ML models, utilizing both sequence 

encoding/embedding and a binary classification of the 96 sequences. The choice of binary 

classification in the saMLDE aims to enrich for high fitness variants throughout the DE 

campaign, driven by two motivations: 1) more stable prediction performance as opposed to 

regression (Fig S4) and 2) avoiding potential drawbacks of training on small early-round 

samples, such as extended burning times and retention of irrelevant information (50). Files used 

to generate sequence encodings can be found in File S2. We evaluated the trained ML models 

using 5-fold cross validation (80% for training and 20% for testing). We calculated various 

performance metrics, including AUC, F1-score, precision and recall to assess the interplay 

between ML prediction and the optimality of the overall DE trajectory. 

 

Generation of AF2 structures 

Sequences of GB1 variants were provided to AF2 for structure prediction. AF2 (version 2.1) (20) 

was installed and run on the LSU HPC Open OnDemand (OOD) portal. Open OnDemand is an 

open-source and easy-to-use HPC portal, which grants users full system-level access to an 

HPC cluster through a web browser (51). ODD also provides a simple but powerful sandbox 

environment, which is leveraged by the LSU HPC staff to develop the OOD AlphaFold web 

application (https://ondemand.smic.hpc.lsu.edu/pun/sys/Alphafold). With the web application, a 

user first uploads FASTA files and specifies the AF2 job parameters by filling out a simple web 

form. Once the form is submitted, the web application uses a template to generate a script then 

submit it to the HPC cluster as a batch job. When the job completes, an email notification is sent 

to the user. The results can be downloaded from the portal either individually or as one single 

compressed file for all sequences. In this study, we used the unrelaxed AF2 structure with the 

highest pLDDT score (this structure also had the lowest rank among the predicted structures). 
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LDDT, a confidence measure for protein structure prediction, estimates the expected LDDT-Cα 

score, a metric of local accuracy. Higher pLDDT scores indicate better model quality.  

 

Docking simulation between GB1 variants and IgG-Fc fragments 

PDB:1FCC was used as the docking receptor and was used to align each variant ligand prior to 

docking simulation. 1FCC is an X-ray diffraction structure of the C2 fragment of streptococcal 

GB1 in complex with the Fc domain of human IgG. The crystal structure has 4 protein chains (A 

through D, resolution of 3.20 Å) that depict two Fc domains bound to two GB1 domains. Chains 

A and C were removed for the purpose of our experiments. Structures of GB1 variants 

generated by AF2 were aligned to the position of the remaining GB1 structure, chain D, in the 

1FCC complex. Afterwards, chain D was removed leaving only the AF2-predicted GB1 structure 

and the Fc structure. This PDB file was saved and provided as input for molecular docking. An 

example of this editing and alignment can be found in File S3 and File S6. 

 To analyze the difference between binders and non-binders, we created two libraries of 

500 each: one containing binders and another containing non-binders. Then, we compared the 

RMSD between WT GB1 (PDB:2GI9) and GB1 variants. Files used for RMSD calculations are 

provided in File S3. Subsequently, we performed docking simulations on the GB1 variants from 

both libraries. Rosetta FlexPepDock (Rosetta ver 3.13) was run on LSU HPC (SuperMIC 

containing a total of 382 nodes, each with two 10-core 2.8 GHz Intel Ivy Bridge-EP processors) 

using default refinement docking settings (26). FPD is a Monte Carlo-based refinement protocol 

used to create high-resolution peptide-protein docking simulations (26). Each variant sequence 

underwent fixed-backbone docking with 200 iterations. All files used for FPD simulations can be 

found in File S4 

 

Selection of structure-based input features  
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The final features for the SEQ-STR ML model were identified with two-step procedure, initially 

heuristic selection of informative output values from FPD outputs, and then, systematic feature 

selection via the analysis of feature importance with the tree-based RF. We further analyzed the 

selected features using the regression analysis between a feature and fitness as outcome, to 

understand statistically meaningful association if exists.    

Data analysis for FPD outputs (File S5) involved calculation of standard statistical values 

for a selected list of FPD output values. We consider the distribution of sampled 200 structures 

by the Monte Carlo scheme of FPD and stored in output. This allowed us to engineer 

additionally features associated with the potential distinctive distributions of sampled structures 

between binders and nonbinders. Standard statistical values that could represent such 

distributions of the metrics of interest included standard deviation, variance, minimum value, 

maximum value, median value and average value for each selected output. To model a 

potential non-normality of distributions from the sampled complexes, we additionally included 

the abovementioned standard statistical values for 50th and 90th percentile datasets from each 

mean in which ±25 percentile or ±5 percentile of values was excluded, respectively. We used 

the same metrics with the 50th and 90th percentile datasets from each mean, assuming the ML 

model may be capable of identifying unique patterns within these datasets. The four types of 

values provided in FPD outputs were Interface Score (I_sc), RMSD of interface atoms 

(rmsALL_if), RMSD of all atoms (rmsALL) and RMSD of backbone atoms (rmsBB). The final 

features, mostly related to distributions of these types, are listed in Table 5.  

Then, we identified significantly contributing structure-based features, informed by the 

best achievable accuracy obtained with 5-fold cross validation (training and test datasets were 

split into 80% and 20%, respectively) in the training of the tree-based RF model. For preliminary 

screening, the curated 200 variant sequences (93 sequences with fitness scores >1, 84 

sequences with fitness scores <0 and 23 sequences with fitness scores between 0 and 1) were 

used for assessing the effectiveness of structural data in establishing a ML model (File S7). 
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Selected features were additionally analyzed using linear regression (the FPD-derived features 

as a function of fitness score) with the 1,000 variants (a library of 500 binders and another 

library of 500 non-binders) used for RMSD calculations. Table 6 shows the R2 and p-values of 

the linear regression. All data generated from FPD and analyzed in this manner can be found in 

File S7. 

 

Augmentation of structure-based input features to the sequence-based input features for SEQ-

STR ML 

Following the initial round guided by zero-shot predictions, three main rounds (Rounds 1, 2 and 

3, all associated files in File S8) utilized available training data provided in the beginning of each 

round. In both Phase 1 and Phase 3, two separate RF classifiers were trained to predict fitness 

scores: 1) SEQ, based solely on the MSA Transformer embeddings, and 2) SEQ-STR, which 

combined SEQ input features with FPD-derived structure features. Before prediction, exhaustive 

grid search optimized hyperparameters such as tree depth, number of features per split, 

bootstrapping usage and splitting criteria. To understand the impact of each ML model (SEQ vs. 

SEQ-STR) on finding the optimal navigation path, their performance was assessed across all 

combinations of zero-shot predictors and two subset selection methods. This assessment was 

based on the average values of 5-fold cross validation metrics (accuracy, AUC, F1-score, 

precision and recall). These metrics were calculated using 80% training and 20% testing splits. 
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Supporting Information 

S1 Fig. The distribution of predicted binders at each phase over three rounds of the 

saMLDE campaign. The dotted line represents the fitness score of 1 for the wild type (WT). 

Max, Maximum fitness score of predicted binders. 

 

S2 Fig. Average and median fitness scores of predicted binders at each phase over three 

rounds of the saMLDE campaign with Subset Selection 2. 

 

S3 Fig. Heatmaps (A) and frequency maps (B) to visualize the frequency of each amino 

acid at positions 39, 40, 41, and 54 within the binders of the training dataset or the 

predicted binders from Phase 1 and Phase 3. Additionally, the frequency of amino acids 

found in all binders from the GB1 library at the same positions was visualized for comparison. 

 

S4 Fig. RF Classification and Regression. In (A), the 5-fold cross-validation accuracy was 

evaluated along with RF metrics of classification, including Area Under the ROC, Mean 

Accuracy, Precision, Recall and F1-score. These assessments were performed using SEQ ML, 

STR ML and SEQ-STR ML for both predicted binders and non-binders. In (B), R2 was assessed 

using RF metrics of regression such as Mean Squared Error, Mean Absolute Error, and 

Explained Variance for predicted binders with SEQ ML, STR ML and SEQ-STR ML via an RF 

regressor. Mean±SD 

 

S1 Table. The SEQ-STR ML model metrics were evaluated using the 200 variants 

employed in screening.  
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S2 Table. The SEQ-STR ML model metrics were evaluated using the 200 variants 

employed in Table S1, with an individual structural feature removed from the training 

data.  

 

S1 File. Zero-Shot Predictor Outputs 

 

S2 File. Sequence Feature Selection - Libraries 

 

S3 File. Scripts for running and submitting RMSD calculations on LSU HPC. 

 

S4 File. Scripts for submitting and running Rosetta FlexPepDock on LSU HPC. 

 

S5 File. FlexPepDock Output Data with Analysis 

 

S6 File. Modified PDB:1FCC for FlexPepDock Simulation 

 

S7 File. List of 200 Variants Used in Screening 

 

S8 File. All MLDE Associated Files 

https://doi.org/10.26434/chemrxiv-2023-llpnk-v3 ORCID: https://orcid.org/0000-0001-5783-4549 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-llpnk-v3
https://orcid.org/0000-0001-5783-4549
https://creativecommons.org/licenses/by-nc-nd/4.0/

