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Abstract 
Lateral flow assays (LFAs) are widely utilized for rapid point-of-care diagnostics in 
various fields; however, their quantitative image analysis is frequently hindered by 
repetitive manual processes and inconsistencies, typically involving the use of 
combinations of image processing and data analysis software tools. This protocol 
introduces a MATLAB live-script-based code for the integrated batch processing of 
LFA images and standard curve development. This code simplifies quantitative LFA 
analysis by automating image processing, peak detection, statistical analysis, and 
data fitting to a 4-parameter logistic curve for accurate Limit of Detection (LoD) 
determination. This approach significantly minimizes manual intervention and the 
potential for human error, thereby enhancing reproducibility. This addresses the critical 
need for efficient and reliable LFA data analysis in research laboratories. By offering a 
standardized method for LFA image processing and data analysis, this protocol 
facilitates faster and more consistent research outcomes. 
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Introduction 
Lateral Flow Assays (LFAs) have emerged as valuable paper-microfluidic tools for 
point-of-care (POC) diagnostics, offering a quick, economical, and user-friendly 
method to detect the presence of analytes in complex samples1–8. Primarily known for 
their application in medical diagnostics, environmental monitoring, and food safety, 
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LFAs have gained significant attention for their potential in point-of-care testing, 
especially in resource-limited settings2,4,7,9,10. Accurate and reproducible quantification 
and interpretation of the assay results is crucial for reliable diagnosis. However, visual 
qualitative interpretation of LFAs, which is subjective, can lead to variability in the 
interpretation of results. This underscores the critical need for standardising and 
automating image analysis techniques that can ensure the precise and consistent 
quantification of LFA results, thus enhancing the reliability of the assay. 

Various Image processing algorithms for the analysis of lateral flow assay images have 
been developed and reported in the literature11–21,most of which pertain to the 
development of smartphone applications for the accurate interpretation of the test 
results by the end-user. However, while the LFAs are being designed in the laboratory, 
the researchers need to ‘run the standards,’ i.e., perform the assay at several different 
analyte concentrations, in many replicates for each concentration to generate a 
standard calibration (signal-response) curve for the proposed assay. Only once the 
standard curve has been plotted can the limit of detection (LoD) of the assay be 
determined. This workflow typically involves the analysis of individual LFA images, one 
at a time, using standard image processing software like ImageJ22 .The image data of 
individual LFA images retrieved from ImageJ is then transferred to and analysed in 
spreadsheets like MS Excel or statistical analysis packages like Origin, R, SPSS, etc. 
This typically requires a significant number of manual steps to be performed by the 
researcher separately for every image in the batch23, making the process inefficient 
and prone to manual errors. Therefore, it is necessary to integrate and automate these 
image processing and statistical data analysis steps into a single code to improve the 
reproducibility and accuracy of the analysis process. 

In this article, we present a MATLAB® live script (.mlx) code to integrate and automate 
all the above-mentioned steps for the batch image analysis of sandwich LFAs into a 
single code. The user simply needs to enter the link to the directory containing the 
batch of LFA images to be analysed as the input, and the code automatically generates 
the standard curve for the assay, along with the limit of detection (LoD) as the final 
output. 

Protocol Overview 
This manuscript introduces a comprehensive MATLAB-based protocol designed to 
automate batch processing of Lateral Flow Assay (LFA) images in research 
laboratories. The protocol aims to streamline the analysis of LFA strips, transforming 
qualitative visual data into quantitative information that is essential for the development 
and optimization of LFA-based diagnostics. Here, we provide an overview of the 
protocol's functionality, methodology, and the types of output it generates. 

Features 
The protocol facilitates: 
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1. Automated Batch Processing: Enables the processing of multiple LFA image 
files in a single run, efficiently handling large datasets typical in LFA-related 
laboratory research. 

2. Standard Curve Development: Automatically generates standard curves 
based on the Test Line Intensity to Control Line Intensity (T/C) ratios calculated 
from the assay images, crucial for assessing assay sensitivity. 

3. Limit of Detection (LoD) Calculation: Employs a statistical approach to 
determine the LoD from the standard curve, providing a critical metric for assay 
performance. 

Methodology 
The code integrates and automates a sequence of image processing and analytical 
steps: 

1. Image Pre-processing: Images are loaded, and, if necessary, cropped to focus 
on the relevant assay area. This step ensures consistency in analysis across 
different batches. 

2. RGB Channel Segregation and Selection: Each image is split into its RGB 
components, and the channel that provides the best contrast for detecting test 
and control lines is selected. This step is essential for enhancing the accuracy 
of subsequent analysis. 

3. Peak Detection and Quantification: This code utilizes peak detection 
algorithms to identify and quantify the intensity of test and control lines. The 
protocol adjusts for baseline noise, ensuring that the intensities of the detected 
peaks corresponding to these lines are accurately quantified. 

4. Data Analysis and Standard Curve Fitting: Aggregates the quantified data 
from all images, calculates the T/C ratios, and fits these data points to a 4-
parameter logistic (4-PL) curve to create a standard curve. 

5. Statistical Processing: Computes the mean, standard deviation, and 
coefficient of variation for T/C ratios at each concentration for statistical analysis 
of the assay performance. 

6. Limit of Detection Calculations: Once a 4-PL curve has been fit to the data 
points, the limit of blank (LoB) and limit of detection (LoD) of the assay is 
calculated using the method described by Ambruster and Pry24 

𝐿𝑜𝐷 = 	𝜇!"#$% + 1.645𝜎!"#$% + 1.645𝜎&'(	*'$+,$-.#-/'$	0#12", 

Output 
The protocol generates the following key outputs: 

1. Quantitative Metrics:  
a. For individual images, the code provides values for the test and control 

line intensities, along with the calculated T/C ratio. 
b. The mean, standard deviation, and coefficient of variation of T/C ratios 

is reported for each tested concentration. 
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2. Standard Curve: A standard (or calibration or signal-response) curve is 
automatically generated, visualizing the relationship between analyte 
concentration and T/C ratio. The following curve-fitting data is displayed: 

a. Fitting parameters for the four-parameter logistic (4-PL) curve with 95% 
confidence interval bounds 

b. Goodness-of-fit (gof) statistics: 
i. Sum of squares due to error: sse 
ii. R-squared (coefficient of determination): rsquare 
iii. Degrees of freedom in the error: dfe 
iv. Degree-of-freedom adjusted coefficient of determination: 

adjrsquare. 
v. Root mean squared error (standard error): rmse. 

3. LoD Determination: The LoD is calculated based on the standard curve, 
providing a quantitative measure of the assay's sensitivity. 

4. Statistical Summary: A comprehensive summary of statistical metrics for 
assay performance across different concentrations is produced. 

Requirements and Setup 
Prerequisites: 

• Software Requirements: MATLAB R2018a or later (should support live scripts 
(.mlx) format) 

• Toolboxes: MATLAB® Image Processing Toolbox, MATLAB® Curve Fitting 
Toolbox, MATLAB® Signal Processing Toolbox 

Setup Instructions: 
1. Install MATLAB and required toolboxes using the MATLAB installer. 

2. Ensure images are placed in a single, accessible directory. 

3. Open MATLAB and set your current folder to the directory containing the code. 

Input Data Preparation  
Image Files: 

• Format images as .jpg files. The code can also be modified to accept other 
image formats as input. 

• Ensure images are clear, with uniform lighting and without obstructions. 

• Crop images to include only the relevant assay area if necessary. 

• The image should be oriented to have control line at the top and test line at the 
bottom of the strip (Figure 1). 
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Figure 1 Correct orientation of input LFA Images 

Naming Convention: 
• Name files in the format: concentration_ReplicateNumber_Label.jpg (e.g., 

0.5_II_AuNP.jpg represents an LFA image of the second replicate at 0.5 ng/mL 
concentration of the analyte employing AuNP as label). 

• Ensure consistency in naming for automated processing. 

Procedure:  
The users need to follow the following three steps: 

1. Load Images: Enter the link to the directory containing the image files to be 
analysed. The code loads all .jpg images from the specified directory. 

2. Specify relevant parameters: If required, change the values of the relevant 
peak detection, etc parameters from the default values. These parameters are 
discussed in detail in the next section. 

3. Run the live script. 

 
Figure 2 User Workflow for Using the Live Script 

Parameters and Customization 
• min_peak_prominence: This refers to the minimum threshold height of the 

peaks above the baseline for the peak to be detected. Adjust this parameter to 
improve peak detection accuracy and sensitivity. A higher threshold will result 
in smaller peaks (faint lines) remaining undetected, while a lower threshold will 
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result in random fluctuations in signal being falsely labelled as peaks. The 
default value is 1.5.  

• min_peak_distance: This refers to the minimum distance (in pixels) between 
the test and control lines. The default value is 200 pixels. This value can be 
modified as per requirements of the assay to ensure peak detection accuracy. 
Note that this value should be lower than the actual distance between the lines 
in the images in order to detect both the lines. 

• smooth_the_data: Toggle to apply data smoothing using a moving average 
filter. Adjust the smoothing factor as required. This step is optional and may 
increase the computational load. This option should be selected to improve the 
peak detection accuracy if the data is very noisy. The default value is ‘false.’ 

• Image Cropping Parameters: Modify based on the assay strip's position and 
dimensions. 

• Channel Selection: The code evaluates the RGB channels of the first image 
to automatically select the one providing the best contrast. This same selected 
channel is used for the analysis of all the other images in the same batch. The 
user can also opt for selection of the ‘best_channel’ based on the area under 
the curve of the three channels, to select the darkest among the R, G and B 
channels. Alternatively, the user can also manually select the channel for image 
analysis if required. For this, un-comment the relevant sections of the code 
under the heading “Determining the Best Channel for Analysis.” 

 

Customization for different types of LFA may involve adjusting the above 
parameters or the peak detection settings to accommodate variations in line 
intensity or spacing. However, it should be ensured that all the parameters 
specified remain the same for all the batches of images which have to be 
compared with each other. 

Troubleshooting Issues: 
• Suboptimal Curve Fitting: Review data for outliers. Other sigmoidal curves 

can also be explored from MATLAB® Curve Fitting Toolbox. 

• Inconsistent Peak Detection: Review the peak detection parameters: 
min_peak_prominence and min_peak_distance and image quality. Ensure 
consistent assay presentation across images. 

Conclusion 
This MATLAB-based protocol is a useful tool for researchers engaged in LFA 
development. By automating and integrating the time-consuming process of LFA 
image analysis in the laboratory, it enables more efficient, accurate, and reproducible 
quantification of assay results. The protocol supports a wide range of LFA applications, 
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from disease diagnostics to environmental monitoring, making it a versatile asset for 
research laboratories focused on rapid assay development and optimization. This 
code is compatible with LFAs employing a variety of optical labels (generating lines of 
different colours) because of its ability to automatically select the best channel (the 
one with the highest contrast) among red, green and blue channels for image analysis. 

Figure 3 outlines the complete image processing and data analysis workflow 
followed in the live script: 

 
Figure 3 Image Processing and Data Analysis Workflow followed in the Live Script 
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12. Signal-response curve: Plot the experimental data on a T/C vs 
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13. Fit a 4-parametric logistic curve through the data
14. Determine the Limit of Blank (LoB) and Limit of Detection (LoD) in 
the signal (T/C) domain
15. Calculate and report LoD in concentration units using the fitted 
curve.
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Code Availability 
The MATLAB® Live Script code (.mlx) is available on MATLAB® File Exchange. Click 
on the following link: 

Integrated Batch LFA Image Processing and Data Analysis: 

 Or copy/paste the following link in browser: 
https://in.mathworks.com/matlabcentral/fileexchange/160033-integrated-batch-lfa-
image-processing-and-data-analysis 
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