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ABSTRACT: In modern pharmaceutical research, the demand for expedi-
tious development of synthetic routes to active pharmaceutical ingredients 
(APIs) has led to a paradigm shift towards data-rich process development. 
Conventional methodologies encompass prolonged timelines for reaction 
and analytical model developments. Both method developments are sepa-
rated into different departments and often require an iterative process to 
optimize the models. Addressing this issue, we introduce an innovative 
dual modeling approach, seamlessly integrating the development of a Pro-
cess Analytical Technology (PAT) strategy with reaction optimization. This 
integrated approach is exemplified in diverse amidation reactions and the 
synthesis of the API benznidazole. The platform, characterized by a high 
degree of automation and minimal operator involvement, achieves PAT cal-
ibration through a “standard addition” approach. Dynamic experiments are 
executed to screen a broad process space and gather data for fitting kinetic 
parameters. Employing a Julia-coded software program facilitates rapid kinetic parameter fitting and in-situ optimization 
within minutes. This highly automated workflow not only expedites the understanding and optimization of chemical pro-
cesses, but also holds significant promise for time and resource savings within the pharmaceutical industry.

INTRODUCTION 

The modern synthetic chemist has a wider range of 
techniques at their disposal than ever before for develop-
ing synthesis routes to complex molecules.1 These tech-
nologies drive innovation in advanced materials, agro-
chemicals and life-saving drugs, allowing products to 
reach the market in timelines that were previously 
thought to be unachievable.2–5 Developed manufacturing 
processes, particularly for the synthesis of active pharma-
ceutical ingredients (APIs), must consist of a scalable re-
action, but also control strategies and analytical methods 
to ensure suitable product quality. Modeling and simula-
tion play an increasingly important role in development 
workflows, granting a holistic and data-rich overview of 
the system in question. 

Digital and data-rich methods are becoming omni-
present in process development workflows. During pre-
liminary optimization efforts, synthetic route scouting is 
often augmented by computer-aided synthesis planning 
(CASP) tools, including machine learning (ML) 

algorithms.6 Reaction optimization within the chosen 
route can be performed using a myriad of data-driven ap-
proaches, including closed-loop optimization.7 Further de-
tailed reaction optimization and modeling then provides 
additional understanding toward a robust procedure. Fi-
nally, by combining reaction models with reactor models, 
the entire process stream can be simulated, resulting in a 
digital twin that can be used to track the state of the prod-
uct at any point in space and time.  

Due to this wide variety of data-driven tools, process 
development is an interdisciplinary exercise, requiring ex-
pertise from synthetic chemists, analytical chemists, data 
scientists, chemical engineers and more (Figure 1, top). 
The synthetic route, process models, and control strategy 
are typically developed individually, resulting in overlap-
ping tasks and a significant extent of repetition. Although 
continuous processing (flow chemistry) offers many ben-
efits, such as enhanced product quality, increased effi-
ciency, and cost savings,8–12 developing such processes re-
quires even more of a multidisciplinary team of scientists 
and engineers from various backgrounds. By unifying and  

https://doi.org/10.26434/chemrxiv-2024-mj3h8 ORCID: https://orcid.org/0000-0001-5449-5094 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-mj3h8
https://orcid.org/0000-0001-5449-5094
https://creativecommons.org/licenses/by/4.0/


 2 

 

Figure 1 Top: Example of a traditional optimization approach for process development. Typically, the reaction and the PAT models 
are developed separately by several team members with different background knowledge. Bottom: The dual modeling approach, 
utilizing a high degree of automation to combine PAT and reaction optimization, resulting in a full process model. 

 

automating the experimental and modeling steps in this 
workflow, we anticipate significant savings in time and ma-
terials, alongside enhanced control of the resulting pro-
cesses. 

Despite the range of advanced methods available, many 
reactions, particularly in flow, are still optimized by chang-
ing one variable at a time (OVAT) with offline analysis of the 
results.7 Automation, data-rich experiments and real-time 
process analytics can drastically accelerate development 
and collect process-relevant data quickly and efficiently.13–

15 Self-optimization and automated Design of Experiments 
(DoE) have been proven to be excellent methodologies for 
screening a broad process space and finding optimal pro-
cess conditions.16–21 The material consumption for these op-
timization methodologies can be drastically reduced by the 
implementation of droplet or slug flow platforms.22–25 

The aforementioned methods generally rely on single 
data points, which are measured once the reactor has 
reached steady state. Utilizing dynamic experiments can 
drastically accelerate the collection of dense datasets. In 
these experiments, ramps over time are executed to explore 
the design space. This dynamic change is followed with pro-
cess analytical technology (PAT) and the collected data 
must be corrected to match the corresponding input set-
points. Several approaches have been described in the liter-
ature in recent years, including ramps for a single process 
variable (often residence time)26–28 or multiple process var-
iables simultaneously.29–37 

The implementation of PAT and data processing mod-
els is still a substantial hurdle for non-specialist chemists.38–

40 This typically requires expert knowledge to develop and 
calibrate data processing (chemometric) models, in a time- 
and resource intensive procedure. Automating the work-
flow for collection, data processing and model generation 

from dynamic experiment data will drastically accelerate 
process development timeframes.  

The use of data-rich workflows also plays an important 
role in advancing sustainability and green practices across 
the pharmaceutical industry. There exists a large number of 
sustainable synthesis procedures that do not receive their 
warranted attention, often due to a lack of data and under-
standing around their operation and broader applicability. 
An excellent example of such a methodology is the 1,5,7-
triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed amidation of 
esters,41–44 which obviates an ester hydrolysis step and the 
use of a stoichiometric coupling agent.4546 To increase up-
take of such sustainable synthesis methodologies, data-rich 
experimentation facilitates rapid scoping, allowing chem-
ists to make informed, data-driven decisions. Real-time 
monitoring and advanced data analytics can then accelerate 
process optimization and the development of science-based 
control strategies, which secure medicine supplies and pre-
vent waste in manufacturing.  

To fulfill all of these requirements, we endeavored to 
establish a platform that calibrates process analytics, col-
lects optimization data in a dynamic flow regime, and pa-
rameterizes a process model for scale-up in less than a 
working day (<8 h, Figure 1, bottom). This optimization 
platform has a high degree of automation, but still includes 
the operator in the loop. The calibration of PAT is per-
formed using a standard addition approach47 in continuous 
flow. The standard addition data trains a partial least 
squares (PLS) regression model. This model is then applied 
to the collected dynamic data in a broad process space. The 
processed analytical data is fed with all process inputs into 
a software program which is coded in Julia. The program is 
capable of fitting kinetic parameters and creating a process 
model which can be used for in-silico optimization and 
scale-up. The developed workflow is showcased with a 
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broad scope of amidation reactions between esters and 
amines and the two-step synthesis of the API benznidazole 
(alkylation followed by amidation). 

 

RESULTS AND DISCUSSION 

Platform and Approach 

In traditional process development, reaction models 
are built mainly using data from offline analysis (Figure 1, 
top). This workflow includes the initial reaction screening 
and feasibility study, reaction optimization and the reaction 
model development. In parallel to (or even after) the reac-
tion development, a PAT and control strategy is often devel-
oped to control critical quality attributes (CQAs) in the final 
process. This encompasses the feasibility and implementa-
tion of PAT within the process, calibration of the process an-
alytics, and the real-time processing of raw data into mean-
ingful information (e.g., species concentrations and perfor-
mance metrics). Multiple scientists with individual exper-
tise will work on both workflows to combine them into a fi-
nal process model. The digitalization of chemical develop-
ment work provides opportunities to automate parts of the 
aforementioned workflows. This ultimately will save re-
sources and accelerate the development of processes.  

The proposed “dual modeling approach”, detailed in 
this manuscript, combines the development of a PAT strat-
egy and reaction optimization in one synergistic workflow. 
This highly digitalized workflow is separated into two parts, 
which are simultaneously executed on one platform (Fig-
ure 1, bottom). The platform can be comprised of any flow 
chemistry equipment and different process analytics. A de-
gree of automation is necessary to at least send new set-
points to the flow equipment over pre-determined time in-
tervals. To follow this precise workflow, two valves should 

be present in the setup, allowing the reactor to be bypassed, 
dosing the product to the reaction stream before or after the 
reactor. This allows for maximum flexibility in terms of 
quick PAT calibration and investigation of the reaction de-
sign space.  

A standard addition approach in continuous flow is uti-
lized to calibrate the PAT. Similar to a batch standard addi-
tion,47–49 different concentration levels are measured by 
varying the pump flow rates accordingly. Bypassing the re-
actor enables the rapid achievement of steady-state condi-
tions and fast acquisition of the concentration levels. Prod-
uct calibration is achieved by continuously spiking a known 
concentration of product to the reactor outlet.  

The standard addition is utilized to assign concentra-
tion values to each recorded spectrum. The labelled spectra 
with concentration values are then used to train and vali-
date a PLS regression model. The PLS model is generated 
within this workflow through either automated means us-
ing a Python program or by an operator using chemomet-
rics software (in our case PEAXACT software from S-PACT). 

Dynamic experiments are automatically executed after 
the calibration stage to explore the reaction design space. 
Different reaction conditions are explored with single pa-
rameter or multiple parameter ramps. Steady states be-
tween the dynamic ramps facilitate the data evaluation and 
act as points of validation in the results.  

Process models from the acquired dynamic experi-
ments are generated using software coded in the program-
ming language Julia. Julia focuses on scientific computing, 
data analysis and statistical programming.50 It is an open-
source programming language and utilizes precompiled 
code, which accelerates the execution of the code. The de-
veloped software fulfills the data handling, the definition of  

 

 

Figure 2 A) General reaction scheme of the investigated TBD-catalyzed amidation reaction. B) The optimization platform used to 
perform the dual modeling approach. C) The automated workflow of the dual modeling approach.   
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the chemical reactor, the identification of kinetic parame-
ters, and performs in-situ optimization with the generated 
process model within minutes. 

The input parameters from the reactor and measured 
concentration values from the dynamic experiments are 
read by the software. The operator has only to define the 
reaction network and the reactor configuration in the soft-
ware. The kinetic parameters are fitted by employing a cost 
function, which compares the measured results to the com-
puted results from the kinetic parameters and inputs. A 
global optimization algorithm (NLopt-BOBYQA)51 is em-
ployed to find the global best fit for the kinetic parameters. 
The global optimum is then refined using a simplex algo-
rithm (Nelder-Mead). The obtained kinetic parameters are 
combined into a process model, which can be used for in-
situ optimization, such as identifying the Pareto front of 
competing objectives or simulating any other point of inter-
est. 

Dual Modeling for Sustainable Amidation 

The formation of an amide bond is one of the most im-
portant reactions in the pharmaceutical industry.45,46,52 TBD 
has been shown to be an effective catalyst in facilitating the 

amidation of esters by primary and secondary amines (Fig-
ure 2A), including demonstration on >10 kg scale.41–44,53 De-
spite its tremendous potential in improving sustainability, 
TBD-catalyzed amidation has received surprisingly little at-
tention. Accordingly, this provides a perfect opportunity to 
incorporate a data-rich workflow for reaction optimization 
and understanding of substrate effects. Continuous flow 
processing can act as an enabling technology to apply high 
pressure and temperature and intensify the reaction. In our 
investigation, combinations of 5 esters (1a-e) and 3 amines 
(2a-c) have been examined with this dual modeling ap-
proach.  

The continuous flow setup was comprised of commer-
cially available flow equipment, automated and controlled 
with an orchestrating software (Figure 2B). In order to 
minimize the void volume of the transfer lines, polytetraflu-
oroethylene (PTFE) tubing with an inner diameter of 
0.3 mm was utilized. The feed solutions of ester, amine, 
TBD, solvent, and the amide product were prepared in 
MeTHF/MeCN (9+1 v/v) and introduced by HPLC pumps. 
The ester, amine, TBD and solvent feeds were mixed in a 7-
port mixing unit (with 2 blocked ports). An automatic 6-  

 

Figure 3. A) 6 different concentration levels for ester, amine, TBD to obtain data for training the PLS model. B) Representative graph 
for the amide product standard addition. C) Pre-determined process parameter ramps over time for the dynamic experiments.
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port valve (valve 1) was utilized to either (position A) direct 
the reaction mixture through a stainless steel reactor coil 
(5.67 mL, 0.8 mm i.d.) placed on a heating block or (position 
B) guide it directly to a Fourier transform infrared spec-
trometer (FTIR). Another automatic 6-port valve (valve 2) 
was used for calibration purposes, to dose the amide prod-
uct either directly before the reactor (position A) or after 
the reactor (position B) via a T-piece. The system was pres-
surized with a membrane-based back-pressure regulator 
(set to 19 bar). 

The experimental workflow for the calibration of the 
FTIR was automatically executed and a standard addition 
approach was used. First, 6 different levels of ester, amine, 
TBD and solvent were generated and directly analyzed by 
FTIR, without passing through the reactor (Figure 3A). The 
product standard addition was performed by allowing a 
certain reaction composition to pass through the reactor 
and dosing 6 different concentrations of product to the out-
coming reaction mixture of the reactor (Figure 3B). The as-
signment of the concentration values with the standard ad-
dition is outlined in detail in the supporting information.  

The amine pump was also turned off during the stand-
ard addition process to investigate if an intermediate spe-
cies between the ester and the TBD could be observed, with 
or without passing through the heated reactor coil (Valve 1 
in position A or B). In each case, no significant decrease in 
the ester concentration was observed, implying that the ac-
tive intermediate does not form (in appreciable quantities) 
in the absence of an amine nucleophile. This is in agreement 
with previous reports, whereby the formation of an acyl-
ated TBD intermediate is reversible54 and has only been iso-
lated in reaction with specific lactone substrates.55 

Two methods of building a PLS model were investi-
gated: (1) automated PLS model generation in Python and 
(2) manual PLS model generation in PEAXACT (by an oper-
ator). Typically, 12 different concentration levels from the 
standard addition were used as training data for the PLS 
model. Both approaches provide similar results, however 
the automated approach reduced the PLS model generation 
time from an hour (depending on experience of the user) to 
a few minutes. Applying a first derivative pretreatment to 
the raw spectra provided improved results compared to 
second derivative or no derivative. Multiple PLS models 
were generated for the different substrate combinations 
with both processing approaches. The obtained results 
(ranks for the PLS model, RMSEs and mass balances) from 
both approaches provided similar results and are explained 
in detail in the supporting information. 

The root mean square error of cross validation 
(RMSECV) for the different esters 1, amines 2, TBD and the 
formed amide products 3 were between 18 – 68 mM, 30 – 
214 mM, 9 – 50 mM, and 12 – 42 mM, respectively. In most 
dynamic flow experiments, the relative error for the mass 
balance of ester and amine was below 10%, which is within 
the uncertainty of the PLS model. In almost all experiments 
a higher error in mass balance was observed for TBD. Pre-
dictions for the amine typically had more noise compared to 
product and ester predictions. This might be explained by 
limited characteristic bands in the spectrum (only two 
bands observed in the fingerprint region below 800 cm-1) 
for the amine substrates.  

The dynamic experiments were executed as a set of 6 
different experimental points (Figure 3C) to explore a 
broad chemical space. Three different temperature levels 
(180 °C, 190 °C, and 200 °C) were investigated, with two dy-
namic ramp sets for each. The ester concentration was var-
ied between 0.3 M and 0.5 M. The equivalents of amide and 
TBD were varied between 1.0 – 2.0 and 0.25 – 0.50, respec-
tively. Product inhibition was investigated in the last exper-
iment by adding 0.15 M (0.3 equivalents) of product to the 
reaction mixture. At the beginning of the dynamic experi-
ment the system was equilibrated to steady state (for 5 min) 
with a residence time of 1 min. Then, a residence time ramp 
over 15 min was executed, from the shortest residence time 
of 1 min to the longest of 10 min. At the end of this ramp, the 
system was allowed to reach steady state again for 10 min. 
Then, a change for the next reaction conditions was 
achieved by dynamically changing all reaction parameters 
(residence time, temperature, equiv amine, equiv TBD, and 
concentration of ester) over 15 min. The resulting experi-
mental program consisted of 4.5 h, resulting in a total time 
of 6 h, when combined with the initial calibration/standard 
addition levels. 

The input data and processed FTIR data from the dy-
namic runs were passed on to the developed software in 
Julia (Figure 4). The timestamps of the process parameters 
and measurement points were automatically interpolated 
to a uniform time axis. The operator must simply define the 
reactor setup (volume) in the software. In our case the re-
actor setup was comprised of two different segments. The 
first segment was the heated reactor part and the second 
segment was the tubing to the measurement point. Another 
input for the software is the reaction network. The change 
of reaction component concentrations, as a function of the  

 

  

Figure 4. Schematic overview of the software developed in 
Julia. Data is automatically read in, interpolated and processed. 
Based on a process model (designed by an operator), the ki-
netic parameters are identified and a model parameterized. Us-
ing this model, in silico optimization can be performed. 
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transport and the kinetics, can be simulated with differen-
tial equations. Different global optimizers have been tested 
resulting the NLopt-BOBYQA algorithm as the most favored 
one in terms of performance and speed (see supporting in-
formation). Additionally, the refinement of the optimized 
parameters is achieved using a Nelder-Mead algorithm. The 
boundaries for the refinement are within +5% to -5% of the 
obtained global optimum.   

The reaction kinetic parameters were fitted with a sin-
gle- and two-step reaction network (Figure 5A). The devel-
oped Julia software is able to fit reaction orders, the Arrhe-
nius pre-exponential factor (A) and activation energy (Ea). 
For better comparison between each amidation reaction a 
two-step reaction network was used and the reaction or-
ders were fixed to 1 for ester, amine, TBD and intermediate. 
In first reaction the ester is activated by TBD to form an ac-
tive N-acyl intermediate. This intermediate then reacts with 
the amine to corresponding the amide product, regenerat-
ing TBD. In total 10 different amidation reactions were in-
vestigated, including a comparison of different benzoic 

esters: methyl vs ethyl vs isopropyl ester (Figure 5B). The 
activation energy (Ea1) and pre-exponential factor (A1) for 
the rate determining step (activation of ester) is displayed 
in Figure 5C.  

The activation energy for the reaction of pyridine-
based ester 1a with the different amines 2a, 2b and 2c is 
21.0 kJ/mol, 29.1 kJ/mol, and 24.6 kJ/mol, respectively. 
This reactivity follows a trend for amine nucleophiles: pri-
mary > cyclic secondary > acyclic secondary (2a > 2c > 2b). 
The same order of reactivity was also observed for carbocy-
clic ester 1b. Activation energies of 26.7 kJ/mol, 34.0 
kJ/mol, and 31.9 kJ/mol were fitted for its reaction with 2a, 
2b and 2c, respectively. Although the reactivity order of cy-
clic vs acyclic secondary amines follows known nucleo-
philicity scales, the primary amine would be expected to be 
less reactive.56 This implies that other factors, such as steric 
effects or hydrogen bonding capabilities, have an increased 
influence in this reaction.  

 

 

Figure 5 A) Reaction network and equations used to fit kinetic parameters for the amidation reactions. B) The formed amide prod-
ucts in the amidation reactions. C) Pre-exponential factors in blue and activation energies in red for the first step of the amidation 
reactions with different ester and amine starting materials. 
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The electron-deficient nature of heterocyclic ester 1a 
significantly enhances the reaction rate compared to carbo-
cyclic ester 1b. The increased reactivity was reflected in the 
lower activation energies for 1a in reactions with all three 
different amines. This is in agreement with the reported 
large positive Hammett substituent constant for a 3-pyridyl 
substituent (σ = +0.55).57  

A slightly lower activation energy of 26.7 kJ/mol was 
obtained for 1b compared to 1e (29.6 kJ/mol) in the reac-
tion with 2a, quantifying the difference in reactivity be-
tween aromatic and aliphatic esters. By means of comparing 
the influence of the alkoxy group on ester reactivity, the me-
thyl moiety (1b) has a lower activation energy than ethyl 
(1c), which is lower than the sterically bulky isopropyl 
group (1d). Although this trend would be expected (methyl 
> ethyl > isopropyl), we have quantified the relationship be-
tween these esters. Interestingly, this study has also demon-
strated that the reactivity of both the amine and ester part-
ners are of key importance to achieving successful reaction, 
which is not immediately intuitive, when considering the 
mechanism proceeding via a TBD N-acyl intermediate. 

Finally, we have also demonstrated that the kinetic pa-
rameter fitting is not restricted to a specific set of experi-
mental setpoints. This was evidenced by the fact that similar 
kinetic parameters were obtained for the reaction of 1a 
with 2a with a dynamic experiment using different (less 
forcing) experimental setpoints (see supporting infor-
mation). 

 

Application to API Synthesis 

To examine and demonstrate the dual modeling ap-
proach further, the two-step synthesis of an API was per-
formed. benznidazole (7) is used for the treatment of Cha-
gas disease (American trypanosomiasis) and is on the 
World Health Organization (WHO) list of essential medi-
cines.58 The API is synthesized by alkylation of 2-nitroimid-
azole (4) with ethyl bromoacetate (5) to form ethyl ester 6 
(Figure 6A), followed by TBD-catalyzed amidation with 
benzylamine (2a) (Figure 6C). Both transformations would 
benefit in terms of process intensification by developing a 
continuous flow protocol. The alkylation step also provides 
an opportunity to demonstrate the utility of the dual mod-
eling approach for a different reaction type. 

The alkylation step was carried out in a similar setup as 
described for the aforementioned amidation reactions. The 
feed solutions of 4, 5, triethylamine (TEA) and 6 were pre-
pared in ethanol. The solubility of 4 was increased by add-
ing 1.1 equiv TEA to the stock solution. The reactor coil was 
switched to a 2.79 mL perfluoroalkoxy alkane (PFA) coil 
and the BPR was set to 18 bar. During the dynamic experi-
ments for the alkylation step, the concentration of 4 was 
varied between 0.3 and 0.5 M and the temperature was var-
ied between 60 and 120 °C. The loading of 5 and TEA was 
varied between 1.0 – 2.0 and 1.35 – 2.0 equivalents, respec-
tively. The residence time ramps were between 1 and 10 
minutes.  

Using the same workflow described above, the FTIR 
calibration was performed by the standard addition  

 

Figure 6 A) Reaction scheme for the alkylation step yielding 
ethyl ester 6. B) NSGA-II optimization to determine the Pareto 
optimal front, balancing the trade-off between conversion and 
space-time yield. Pareto optimal front depicted by red points, 
contrasting with gray points (from random inputs). C) Reaction 
scheme for the amidation yielding benznidazole 7. D) Visuali-
zation of residence time vs. conversion. Pareto optimal front 
depicted by red points, contrasting with gray points (from ran-
dom inputs).  

approach, prior to performing dynamic experiments. The 
auto-generated PLS model had a RMSECV of 43 mM, 42 mM, 
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18 mM, and 46 mM for 4, 5, TEA, and 6, respectively. This 
PLS model was applied to the dynamic run, then the process 
parameters and FTIR results were fed into the Julia soft-
ware. The kinetic parameters were fitted as a trimolecular 
single step reaction, with fixed reaction orders of 1 for 4, 5 
and TEA. The fitted pre-exponential factor (A) was 1.986 × 
105 L2/mol2 with an activation energy (Ea) of 49.5 kJ/mol. 
The activation energy in this case was higher than that of all 
previously-examined amidation reactions, meaning that the 
rate of the alkylation has a comparatively higher tempera-
ture-dependence. 

Another advantage of building a process model, such as 
this, is the opportunity to perform further in silico optimi-
zation. As an example, optimization was performed using 
the NSGA-II algorithm to find a Pareto front of the two op-
posing objectives: conversion and space-time yield (Figure 
6B). Points in red show the Pareto front, which is a series of 
optimal points showing the trade-off between the two ob-
jectives. A large number of random results (gray points) 
were also generated to demonstrate that none of these 
would surpass the Pareto front. Following this optimal 
front, a maximum space-time yield of 3.2 kg L-1 h-1 of 6 can 
be achieved when ensuring conversion >95%. Should a 
higher conversion of >99% be required, a maximum space-
time yield of 1.9 kg L-1 h-1 of 6 would be attainable. It should 
be noted that this type of analysis can readily be carried out 
for any desired combination of objectives. The correspond-
ing process setpoints can be obtained and utilized in future 
experiments.  

In the amidation step the feed solutions of 6, 2a, TBD 
and 7, were prepared in DMSO, due to poor solubility in the 
previously-used MeTHF/MeCN solvent system. The same 
reactor setup was used as for the previous reaction step. 
The dynamic runs screened the following chemical space: 
0.3 – 0.5 M of 6, 1.0 – 2-.0 equiv 2a, 0.0 –0.5 equiv TBD, tem-
perature 50 –120°C, and residence time 1 – 8 min. In the last 
experimental point, the concentration of TBD was com-
pletely omitted to confirm that no reaction was observed.  

The PLS model for the FTIR measurements to follow 
the dynamic runs was developed with the previously de-
scribed methodology. The RMSECV for the compounds 6, 2a, 
TBD, and 7 were 24 mM, 33 mM, 11 mM, and 28mM, respec-
tively. The kinetics for the amidation step were fitted with 
the same reaction mechanism as described above (Figure 
5A). The following kinetic parameters for the first step (in-
termediate formation) were fitted: A1 = 7.524 L/mol and Ea1 
= 14.19 kJ/mol. In the second step (formation of product), 
the best-fitting parameters were: A2 = 6.659 L/mol and Ea2 
= 11.5 kJ/mol.  

The optimal operating area (Pareto front) was identi-
fied using an in-silico multi-objective optimization for resi-
dence time and conversion (Figure 6D). It can be observed 
that residence times of 4.25 min can still provide conversion 
>99% with a space-time yield of 1.8 kg L-1 h-1. Increasing the 
space-time yield to 2.8 kg L-1 h-1 results in a decrease of res-
idence time to 2.6 min at 95% conversion.  

CONCLUSION 

In summary, we have developed and demonstrated a 
holistic “dual modeling” approach to reaction optimization. 
This approach is capable of developing both an analytical 

model and reaction model within one experimental day. 
First, standard addition is utilized to collect calibration data 
for the FTIR and a python program automatically generates 
a PLS model to determine species concentrations. Dynamic 
flow experiments are then used to quickly cover a broad 
chemical space and collect high density data for reaction 
model development. The obtained data is fed into a soft-
ware program that fits kinetic parameters for different re-
action networks within minutes. Additionally, the software 
can use the fitted kinetic parameters and the reactor geom-
etries to generate a digital twin of the synthesis process. 
This process model is utilized for in-silico optimization of 
multiple objectives, such as conversion, space-time yield or 
measures of environmental impact. This drastically reduces 
optimization timescales and saves resources during process 
development.  

This dual modeling approach was applied to a rarely-
used protocol for sustainable amidation reactions. By exam-
ining a range of different substrate combinations, insights 
into the different kinetics for each substrate were gained. 
Accordingly, a better understanding of the compatible reac-
tion substrates can be inferred. We then expanded this ap-
proach to the two-step synthesis of the API benznidazole, 
where both alkylation and amidation reactions proved to be 
amenable to this approach. The developed reaction models 
were also utilized for in silico optimization, whereby differ-
ent objectives, and the trade-offs between them, can be rap-
idly explored without additional experimental effort. 

Following on from this initial dissemination, we expect 
the dual modeling approach to be utilized in a wide range of 
future studies. For example, the method can be used to rap-
idly determine the Hammett reaction constant, ρ, for new 
synthetic methodologies and sustainable alternatives, 
providing predictable applicability for different substrate 
classes. Furthermore, we anticipate exploration of addi-
tional PAT instruments, such as chromatographic analysis, 
to provide more insight into impurities and allow more pre-
cise quantification of reaction intermediates. 
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rithm; OVAT, one variable at a time; PAT, process analytical 
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