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SUMMARY 

We present a modular, high-throughput (HT) automation platform for screening Liquid-Liquid Extraction (LLE) 
workup processes. Our automated hardware platform simultaneously screens up to 12 vials, and is coupled 
with a computer vision (CV) system for real-time monitoring of macroscopic visual cues. Our CV system, 
named HeinSight3.0, leverages machine learning and image analysis to classify and quantify multivariate 
visual cues such as liquid level, phase split clarity, turbidity, homogeneity, volume, and color. These cues, 
combined with process parameters like stir rate and temperature, enable real-time analysis of key workup 
processes (e.g., separation time, phase split quality, volume ratio of layers, color, and emulsion presence) to 
aid in the optimization of separation parameters. We demonstrate our system on three case-studies: impurity 
recovery, excess reagent removal, and Grignard workup. Our application of HeinSight3.0 on literature data 
also suggests high potential for generalizability and adaptability across different platforms and contexts. 
Overall, our work represents a significant step towards achieving end-to-end autonomous LLE screening 
guided by visual cues, contributing to the realization of a self-driving lab for workup processes.  
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INTRODUCTION 

The ability to separate different chemicals from reaction mixtures is crucial to successfully access synthetic products. Liquid-liquid 

extraction (LLE)1,2 leverages the immiscibility of two liquids and the differing solubilities of reaction components in each liquid 

phase to achieve separation. LLE is applied in both laboratory and pilot-scale settings due to its simplicity, low cost, suitability for 

compounds that are sensitive to heat or have high boiling points, and easy scalability. The key to successful LLE with clean 

separation and a maximal product recovery is in the selection of appropriate parameters including discrete (e.g., solvent choice, 

additive selection), and continuous variables (e.g., volume ratio, pH, and extraction temperature, concentration). However, this 

multi-dimensional parameter space is challenging to predict and to systematically optimize. The physical realities of LLEs that can 
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form emulsions, rag layers, or solid dispersions further complicate the process optimization for this separation method. While 

computational methods like UNIFAC,3 linear free-energy relationship (LFER) models,4 and COSMO-RS5 can replace experimental 

investigation when the mixture components are known, optimizing the extraction of unidentified substances still heavily relies on 

trial and error through experimentation.6 

 

Given the challenge in predicting LLE behavior and outcomes, it is essential to carry out small-scale screening processes. However, 

manually screening LLEs is labour-intensive and often prohibitively time-consuming.7 Typically, a scientist prepares LLE samples 

by hand, measures phase volumes with a ruler, and collects samples for liquid chromatography (LC) analysis. This process primarily 

focuses on the quality of the separation endpoint, disregarding real-time information such as separation time and mechanism, as 

well as detailed data on distribution coefficients, volumetric determinations, and phase densities, which greatly affect the 

scalability of a manufacturing process. The properties of liquids, including density, viscosity, interfacial tension, and relative phase 

volume, affect the droplet size, suspension, and interfacial properties. These, in turn, influence LLE mechanisms such as 

sedimentation, creaming, flocculation, coalescence, and Ostwald ripening.8 Moreover, “green” LLE processes designed for 

manufacturing also consider factors such as waste reduction, Process Mass Intensity (PMI), energy consumption, and cycle time.9,10 

Manually tracking, analyzing, and interpreting this data for process optimization is simply not feasible. 

 

Automation technologies have the potential to alleviate the labor-intensive screening of workup processes. High-throughput (HT) 

techniques are particularly well-suited to combinatorial screenings, and have found wide application in reaction optimization as 

well as isolation via crystallization.11 However, remarkably few examples of HT for LLE screening and optimization have been 

reported, and efforts are generally limited to the pharmaceutical industry. Bristol-Myers Squibb (BMS), for example, utilized a 

commercially available liquid handler to simultaneously screen 24 samples in 8 mL vials, with a focus on vision-guided screening.12 

Videos were captured to determine the settling time and quality of phase separation, although this analysis was done manually. 

Glaxo-Smith Kline (GSK) used a commercially available liquid handler and developed a custom algorithm in MATLAB to determine 

the phase volume via image analysis.13 Merck developed an end-to-end optimization platform for LLE.14 They integrated a 

commercial liquid handler with commercial software for image analysis, enabling both visual qualification and quantitative 

identification of phase boundaries. AstraZeneca collaborated with scientists at the University of Leeds to develop a real-time image 

analysis system using edge detection algorithms to determine the separation time for biphasic LLE samples.15  

 

While these efforts have been developed independently, it would be advantageous to establish a single computer vision system 

that can analyze multiple vials simultaneously in real time, using quantitative and qualitative analysis of multiple visual cues. Visual 

analysis is non-invasive, and sidesteps the complications of destructive Process Analytical Technologies (PATs) that can cause 

ambiguity about exact sampling timing and location.16–20 Moreover, visual data plays a crucial role in understanding the LLE process 

effectively, such as discerning distinct color phases and interface qualities.  

 

The target HT LLE screening system should also be easily adaptable to different hardware platforms, enabling the optimization of 

LLE screening across diverse settings. It is worth noting that the platforms outlined above currently rely on commercially available 

hardware systems, which can be costly for academic labs. Flexible automation also facilitates the development of Self-driving 

laboratories (SDLs), which integrate robotics and artificial intelligence (AI) to plan, execute, and analyzing experiments 

autonomously.21 Through autonomous closed-loop decision-making processes guided by feedback data, SDLs demonstrate 

adaptability across various chemical systems, eliminating the need for frequent expert intervention. As such, they prove valuable 

for combinatorial experiments and multidimensional relationship problems that can be challenging for humans to solve manually, 

as demonstrated by numerous examples in chemical synthesis22,23 and materials discovery24,25.  It is our aim to develop an 

automated, HT screening platform for LLE that can ultimately be incorporated into a full SDL for workup optimization. 

 

Towards this goal, our group has integrated flexible hardware, data-rich monitoring techniques, and computer vision to facilitate 

the automated monitoring and control of chemical processes through vision-guided feedback. In the initial version of our model, 

named HeinSight, we utilized image analysis (edge detection) to achieve real-time monitoring and control of a single visual cue—

the liquid level—within a defined region of interest (ROI) in the EasyMax reactors.26 In our second iteration, HeinSight2.0, we 

combined image analysis with machine learning, ML, ( Region-based Convolutional Neural Networks; R-CNN) to achieve real-time 

monitoring of various visual cues such as solids, homogeneity, volume, color, and turbidity, across the entire reactor’s view ing 

window.27 This system enabled automated control of solvent exchange distillation, antisolvent crystallization, evaporative 

crystallization, cooling crystallization, solid–liquid mixing, and liquid–liquid extraction. Now, we introduce HeinSight3.0, where we 

combine image analysis with ML, You Only Look Once (YOLO)28  to achieve real-time monitoring of multi-visual cues across 

multitude of vessels, enabling high-throughput CV analysis, as shown in Figure1. We can classify and locate the region of interest 
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for each vessel, adapting to various vessel types, configurations, and numbers, enabling HT analysis that was not achieved by 

previous versions. We have fine-tuned our model to detect visual cues related to optimizing LLE including liquid levels, 

homogeneity, color, and turbidity within each vessel. Furthermore, we have developed an in-house hardware platform designed to 

provide effective lighting conditions for collecting high-quality images suitable for CV analysis. This platform is cost-effective, 

marking a significant step towards bridging the gap in the utilization of LLE platforms in academic settings. 

 

In each case study, multiple visual cues from parallel vessels were analyzed over time. Initially, we applied our model to distinct 

color phases for aniline impurity recovery, investigating the effect of changes in base concentration, a continuous variable, on 

separation efficiency. Then, we tested the model's capacity to manage turbid phase mixtures through discrete screening of solvents 

for excess reagent removal (aldehyde). Next, we assessed HeinSight3.0's ability to handle colorless liquid-liquid interfaces and the 

presence of emulsions by screening the continuous variable of acid concentration in Grignard workup. Finally, to evaluate our 

model's flexibility in diverse lighting, vessel, and chemical environments, we applied it to literature data and assessed its 

performance. 

 

Figure 1. The evolution of HeinSight computer vision model.  

 
 

 

 

HARDWARE DEVELOPMENT  

Commercial stirrer/heater blocks 

We used a commercial magnetic vertical tumble stirrer (VP 710C5-7A-CC) from V&P Scientific, which provides vertical end-to-end 

stirring for uniform mixing, and compatibility with different vial holders. For heating we selected a deep chamber heating block (VP 

741D) from V&P Scientific. Both the stirrer and the heat block can be operable via a serial port interface, enabling automated stirring 

and heating control through a Python script. This setup lays the groundwork for autonomous feedback control that is guided by 

visual cues (e.g., “stir until well-mixed” or “keep monitor settling time until plateau in layer volumes is reached”). 

 

Vial holder design for computer vision applications 

In our study, we used 2 mL liquid chromatography (LC) vials as they are commonly used in high-throughput experiments and 

analytical methods. To create a viewing window, we cut the front and end sides of the heating block. We then attached a webcam 

(Logitech C922 Pro Stream Webcam 1080P) to the vial holder to record videos. The vial holder was directly mounted on top of the 

heating block, with the camera positioned centrally at a fixed distance to simultaneously monitor all 6 vials in the heating block 

row. We replicated this setup on the back side of the heat block, resulting in a system with two cameras and 12 vials. Our in-house 

designed vial holder and cost-effective cameras offer an affordable solution for high-throughput experimentation guided by 

computer vision, compared to expensive systems limited to industrial research teams. It took only two weeks to develop this 

platform, including three iterations. The detailed design and .stl files of the vial holder can be found in the SI. 

 

Platform light design 

Lighting consistency is critical for computer vision systems. To suppress any fluctuations in light conditions, we integrated 

electroluminescent (EL) materials for both bottom and backlight illumination. EL materials are flexible, offer low wattage, 

longevity, and water resistance. Their flexibility allows a single film to bend and fit into the vial holder, providing bottom and 
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backlight illumination. Additionally, we designed a dimmable circuit (0-12V) which provides the modulation of the EL intensity. 

Although the EL panels provided a visual blue light intensity, they remained suitable, as solutions of organic compounds are usually 

yellow or orange. The use of EL materials imposed a temperature limitation of 60°C on the heat block, which defines the operational 

temperature ceiling for screening. All our case studies were conducted at room temperature without the use of the heat block; 

however, we have implemented this option for potential use by others. The final platform design is shown in Figure 2. 

 

Figure 2. Side and top view setup of the HTE platform. 

 
 

 

 
SOFTWARE DEVELOPMENT 

Model architecture 

YOLO is a computer vision model for object detection.28 Unlike traditional systems that involve a two-step process - first identifying 

regions of interest and then classifying objects within these regions - YOLO does both simultaneously, earning it the name “single-

shot detector.”29 This unified approach allows for fast inference speed while maintaining accuracy, making it well-suited for real-

time applications. The YOLO architecture involves first extracting features from input images, which are then passed through a 

prediction system to draw bounding boxes (BBs) around objects. We chose to fine-tune a pre-trained YOLO model30 from the COCO 

dataset,31 which contains millions of annotated images in diverse scenarios (see Supplemental Information (SI) for further details 

on model selection).  

 

Hierarchical detection  

Most detection models assume that target classes are disjointed and should be predicted separately at the pixel level. However, 

this fails to capture the complex nature of real-world scenes, where objects can be nested within each other (e.g., liquid layer inside 

a vial). Detecting multiple elements (e.g., multiple vials) and nested object recognition (e.g., liquids inside vials) in a single step is a 

challenge. To address this, we use a hierarchical detection approach where the output of one model becomes the input for the other 

model. We first identify vials as the region of interest and then detect the liquid levels within each vial. This allows for independent 

models’ fine-tuning, reducing classification errors and improving model robustness. With this approach, each pixel and instance 

can have multiple classes, and instances can overlap (e.g., a homogenous liquid class overlapping with a vial class).  

 

The overall workflow proceeded as follows: (1) using YOLO trained on vial detection to locate the general region, number, and 

shape of all vials; (2) cropping and resizing individual vial instances from the identified regions; and (3) detecting liquid levels within 

each vial instance using a YOLO model fine-tuned for liquid detection, as shown in Figure 3. Concurrently with Step 3, we added 

turbidity analysis along the height axis to each vial instance. This workflow was applied to images, videos, and real-time analysis, 

producing outputs such as average turbidity, volume, and color per unit time (see SI). 

 

The code resizes a raw image to 640x640 to ensure consistency in all input image analyses. A YOLO model is then used to detect 

vessels in the image. The model is trained on the Vector-LabPics dataset,32 which contains 6362 images of transparent containers 

in a chemistry lab. We combined all the containers into one class called 'vessels'. This enables the model to recognize vessels of 

varying shapes, sizes, numbers, and spatial locations, making it applicable across different HT platforms. However, the model didn't 

perform well when detecting vials with EL lighting compared to natural lighting conditions. To enhance performance, we added 

around 30 images of vials with EL lighting to the training dataset. 
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The vial instances are cropped from the image and resized to 640x640. Cropping removes the background from analysis and focuses 

solely on the vials, while resizing ensures consistent dimensions for all vials being analyzed. These cropped instances are then 

analyzed in parallel using a YOLO model trained to detect air-liquid and liquid-liquid phase separation, featuring three classes: 

empty, homogeneous, and heterogeneous. The empty class signifies the air level, while homogeneous and heterogeneous classes 

denote uniform and non-uniform liquid layers, respectively. Our dataset contained 6800 images, manually annotated via online 

tool SuperAnnotate,33 includes data from our EL light platform and other various vial shapes, lighting, and backgrounds. We 

augmented the dataset with diverse lighting conditions, rotations, crops, and mosaics to enhance its variability. The model was 

trained on cropped vials to ensure consistent inference conditions with testing, focusing solely on content chemistry and ignoring 

environmental factors, mirroring real-world inference scenarios. 

 

Concurrently with YOLO determination of phase separation, image analysis (turbidity) serves for cross-validation and as a fallback 

mechanism for phase boundary identification. By horizontally averaging pixel turbidity and plotting it against vial height, a 2D 

turbidity graph aids in pinpointing the air-liquid and liquid-liquid phase boundaries. These boundaries are discerned by observing 

significant changes in turbidity intensity along the height axis, signifying alterations in dispersity throughout the height, which 

emphasize the edge of the phase boundary. This turbidimetric analysis spans time, facilitating a 3D turbidity visualization across 

height and time, a substantial improvement over summing and averaging turbidity as a one value over the vial's entire height in 

traditional methods. 

 

All datasets and pretrained models are in the SI, allowing the model to be utilized either as is or fine-tuned with fewer initial 

datapoints for similar applications. Additionally, detailed instructions for utilizing the code in real-time inference (including multiple 

camera streams, if needed) or inference with stored videos and images are available in the SI. 

 

Figure 3. Steps for HeinSight3.0 image detection and analysis. 
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EXPERIMENTAL PROCEDURE 

The intuitive approach to answering this question is to fit a linear calibration curve that maps the measured torque to the actual 

mass of the objects. To evaluate the relationship between the torque data from the arm's joint and the mass of objects held by the 

arm, we conducted an experiment in which the arm was held in a fixed position and pure element density cube (Figure 1a) with 

masses ranging from 3 to 20 grams were loaded onto the arm. These objects are made of pure elemental samples with a uniform 1 

cm3 volume and thus vary in weight due to different elemental density. The torque values were recorded using the arm's torque 

sensors, and the corresponding masses of the objects were measured using an analytical balance (Figure 1b). We used the data 

from fifteen mass-torque pairs to develop a calibration curve using linear regression, and the curve's accuracy was validated using 

data from three additional test objects. 
 
 

Figure 4. Experimental procedure for analyzing liquid-liquid separation. 

 

 

 
CASE STUDIES 

impurity recovery (aniline) 

Aniline is required for the production of industrial products including dyes, pesticides, pharmaceuticals, cosmetics, rubber, textiles, 
and agrochemicals.34 However, aniline is carcinogenic,35 highly water-soluble at lower pH, and has a high boiling point (183°C), 
raising concerns about pollution and chemical waste streams. LLE under high pH conditions offers a low-temperature, scalable 
pretreatment technique36 that can be highly efficient, provided an appropriate concentration of an aqueous base is applied. In this 
case study, we investigate the effect of NaOH concentration on the separation time and phase split clarity of aniline LLE. We 
screened six conditions; in each vial, the organic phase consisted of 0.5 mL of 9.2M aniline in ethyl acetate (EtOAc), while the 
aqueous phase consisted of 0.5 mL of NaOH in water. Starting at 1.0 M, the NaOH concentration decreased by half for each 
subsequent vial, (see Table 1). The HTE platform was scripted to screen-record the experiments for 5 s before stirring, then stirring 
at 1500 rpm for 5 min, and finally stopping stirring to monitor phase separation. 

 
Table 1. Separation time of liquid-liquid phases. 

 

Vial number NaOH concentration 
(M) 

Separation time 
ML-derivation 

(min) 

Separation time 
turbidity-derivation 

(min) 

1 1.00 1.87 1.82  

2 0.50 no separation no separation 

3 0.25 0.98  1.0 

4 0.12 0.98  1.0 

5 0.06 0.98 1.0 

6 0.03 NA 
(misclassification) 

0.81 

1 1.00 1.87 1.82  

 

 
The vials’ positions were correctly identified by the YOLO vessel model, see SI for details. Before mixing, the phase separation of all vials was 
correctly identified by both ML and turbidity analysis, as shown in Figure 5. During mixing, all vials reach effective agitation, highlighted by 
the one liquid BB detected that is 'heterogeneous,' indicating that all phases are mixed well. The turbidity value further supports that by having 
a clear phase in intensity across the height axis.  After 5 minutes of settling, the endpoint images reveal a phase split in all vials except for vial 
2. In the ML analysis, vial 2 is identified with one heterogeneous layer. However, the turbidity values exhibit uneven turbidity across the height 
axis at 5 minutes, suggesting that the aniline (colored material) is gradually ascending. Therefore, prolonging the wait may eventually result 
in phase separation. As such, insights derived from turbidity analysis, which cannot be obtained solely from binary ML 
homogeneity/heterogeneity delineation, underscore the significance of integrating image analysis with ML for comprehensive information 
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depth. While the ML model successfully detected the phase boundaries of all vials except for vial number 6, which failed and displayed all 
liquid levels as one 'homogeneous' phase, turbidity served as a fallback mechanism, clearly delineating the height of the separation boundary. 

 

Figure 5. aniline's biphasic mixture behaviour before, during, and after mixing.  

 

Images show the BB outputted from the ML model. 2D-turbidity graphs across height axis are drawn per vial. A star shows where the ML false classify the BB 

and turbidity act as fall-back mechanism.  

 
The separation times corresponding to different base concentrations are outlined in Table 1. The separation time was determined using both 
the plateau in volume detection from BB (ML derivation) and the plateau in turbidity (image analysis) overtime. Both methods yield 
comparable results, and in cases of failure of one method, the other serves as a fallback mechanism (vial 6). Lower NaOH concentrations (vial 
3, 4, 5, 6) exhibit faster separation compared to those with higher NaOH concentrations (vial 1, 2). Initially, this seems counterintuitive, as an 
increase in base concentration enhances ionization and solubility of aniline in water and might enable faster extraction. However, an elevated 
base concentration may also trigger a saponification reaction between ethyl acetate and NaOH, resulting in the formation of sodium acetate 
and ethanol. These by-products are water-miscible, contributing to an increase in separation time. Other factors such as reaction rates, 
equilibrium constants, and interactions between different chemical species also come into play, influencing the overall efficiency of 
separation. This may explain the intriguing observation where vial 1, despite containing more base and the expected increase in by-products, 
exhibits a shorter separation time than vial 2. The absence of a clear trend in separation time with changes in base concentration underscores 
the multitude of factors at play and highlights the importance of experimental trail-and-error investigation.  

 

The initial volume of both the aqueous and organic phases in all vials was approximately 0.5 ml per layer. However, the final volume obtained 
from ML differs from one vial to another (Figure 6). This demonstrates the variability and complexity of LLE and emphasizes the importance 
of automatically detecting volumes when optimizing the screening process. Although ML is effective in determining phase separation at the 
endpoint, turbidity analysis performs better in capturing real-time separation behavior. In cases where the phase separation is not clearly 
visible over time, ML fails to identify a distinct phase boundary. This is evident in the early separation of vial 1 and 5, (Figure 6, image2), where 
turbidity analysis outlines the change in settling while ML only shows one phase that is not clearly separated yet. This difference becomes 
even more evident in the settling behavior of vial 3, as shown in the SI. Furthermore, vial 1 exhibits instability in detection during stirring, as 
seen in the fluctuation in volume. Currently, our model analyzes each keyframe independently, leading to instability and flickering in dynamic 
detection when stir rate is high. Our goal is to integrate an attention mechanism to improve the stability of detection over time, which uses 
previously seen data to handle next time frame data. 

 

In summary, the multivariate vision analysis output from HeinSight3.0, which includes settling time, volume ratio, and phase split clarity, offers 
a holistic understanding of how variations in NaOH concentration influence the separation process. This facilitates a quicker and more 
thorough optimization of aniline recovery based on vision-guided analysis. 

 

Figure 6. Real-time volume detection of vial 1 and 5. 
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excess reagent removal (aldehyde) 

Aldehydes are widely used in chemical synthesis, and are often added to reactions in excess that must then be managed or 
removed. One method of removing aldehydes from mixtures, by reacting them with bisulfite ions (Scheme 1), was reported by 
Brindle et al.37 This method forms aldehyde bisulfide adducts in a water-miscible solvent by shaking the mixture for 30 seconds to 
increase contact between the bisulfite ions and the aldehyde. Upon adding a second, immiscible solvent, the uncharged organic 
components can be extracted from the bisulfite adduct using liquid-liquid extraction. 

 

Scheme 1. Reacting of aldehyde with bisulfite ions to form bisulfite adducts. 

 

 

 

Based on Brindle et al.'s protocol, we conducted a separation test to investigate how different water-miscible solvents affect the 
efficiency of separation. We used vision-guided analysis to examine if computer vision (CV) can help optimize the selection of 
solvents by analyzing the macroscopic visual attributes. We tested six different solvents in separate vials. Each vial contained 
approximately 0.5 M benzaldehyde in 0.2 mL of the respective miscible solvent: MeOH, DMF, 1,4-dioxane, THF, i-PrOH, and MeCN. 
To each vial, we added 0.2 mL of saturated NaHSO3 in water. After shaking the vials for 30 seconds to allow for the formation of 
charged bisulfite adducts, we added 0.8 mL of a mixture containing 10:90 ethyl acetate /hexane mixture to each vial. The system 
was programmed to record the vials' appearance before stirring, then to stir at 1500 rpm for 10 min, and finally, to stop stirring in 
order to monitor the settling. 

 

The model correctly detected the phase separation before mixing (Figure 7). During agitation, liquid BB counts varied between 
keyframes, with some showing one liquid and others showing multiple. These differences suggest inadequate agitation, likely due 
to insufficient water in the vials hindering proper mixing of the bisulfite adduct in the large organic phase volume. When agitation 
ceased, rapid phase separation was observed in vials 1, 3, 5, and 6, occurring within 1.8 seconds, while vials 2 and 4 continued to 
exhibit persistent emulsion. Whereas vial 2 and 4 did not separate as displayed by one hetero layer. This observation emphasizes 
the presence of emulsion and indicates a lack of anticipated separation even with extended waiting periods.  
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This screening process provided visual feedback to optimize solvent selection. Methanol (MeOH), 1,4-dioxane, isopropanol (i-
PrOH), and acetonitrile (MeCN) exhibited rapid phase separation, while dimethylformamide (DMF) and tetrahydrofuran (THF) 
caused persistent emulsion. Overall, the CV system was able to identify effective agitation of mixture, separation time, phase split 
clarity, and turbidity which has enabled fast optimization of solvent screening for liquid-liquid extraction (LLE). 

 

Figure 7. Analysis of bisulfites adduct mixture before, during, and after mixing with machine learning. 

 

 

 

Grignard workup  

Grignard reagents play a crucial role in the formation of carbon-carbon bonds and were the subject of the 1912 Nobel Prize in Chemistry.38 In 
the workup of Grignard reactions, the initial quenching with water results in the formation of magnesium hydroxide (Mg(OH)2), which is poorly 
soluble and prone to forming oligomeric inorganic mixtures, complicating extraction and potentially leading to emulsions that trap the 
product. To mitigate these issues, the addition of strong acids (HX) is employed to convert magnesium hydroxide into water-soluble 
magnesium salts (MgX2), as shown in Scheme 2, thus facilitating the efficient removal of inorganic materials. This step is critical for purifying 
the reaction mixture. To ensure the process's effectiveness while minimizing potential side reactions and the consumption of reagents, it is 
essential to screen conditions carefully to determine the minimum amount of acid required for optimal liquid-liquid extraction, thereby 
achieving the desired purification with the least impact on the environment and material costs. 

 

Scheme 2. Quenching of Mg(OH)2 with HCl acid.  

 

 

 

As a model system to a Grignard reaction workup, we examine how changes in acid concentration affect the efficiency phase separation. We 
chose to focus on this aspect because the formation of Mg(OH)2 during Grignard workups creates a turbid suspension in water. We recreated 
this suspension to provide a visual cue for our CV system to monitor the presence and location of Mg(OH)2, if any. Once the Mg(OH)2 is fully 
neutralized with acid, the resulting solution becomes colorless, adding another challenge to see if our CV system can detect phase separation 
in two colorless solutions. 

 

We conducted tests using six vials. In each vial, we added 0.3 mL of 0.5M Mg(OH)2 solution to 0.3 mL of HCl acid. The acid equivalents were 
systematically increased from 0.3, 0.68, 1.0, 1.3, 1.68, to 2.0, moving from vial 1 to vial 6. These quantities were chosen based on the 
stoichiometry, as Mg(OH)2 requires two equivalents of HCl for complete neutralization into MgCl2 and water. Our objective was to investigate 
how decreasing the acid concentration affects phase split quality, emulsion formation, and separation time. An equal volume (0.6 mL) of 
dichloromethane (DCM) was added to each vial as the organic phase. We automated the system to capture pre-mixing conditions, followed 
by mixing at 1500 rpm for a 5 min and then halt stirring to monitor settling.  

 

Before, during and after mixing, our model successfully identified all phase boundaries using BB detection, as shown in Figure 9. The turbid 
Mg(OH)2 mixture appeared at the phase boundary between the two immiscible liquids, but despite forming a different visual attribute that 
was not part of training data, the model was able to correctly determine the phase separation. Turbidity plots were effective in highlighting 
the region of the turbid mixture, as seen in vials 1, 2, and 3, where an extremum in turbidity values was observed. However, it was not possible 
to extract the presence of phase separation boundary from the turbidity in vials with two colorless liquids that had similar turbidity, such as 
vial 6. This demonstrates the advantage of using ML over turbidity analysis when dealing with colorless solutions, as ML can learn to recognize 
the phase boundary regardless of color or solution's turbidity.  
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As stirring was halted, all vials underwent a quick phase separation. Vial 6 showed two colorless liquids, indicating the abs ence of Mg(OH)2, 
as its stoichiometry requires double the equivalence of acid compared to Mg(OH)2. Vials 1 to 5 exhibited a turbid mixture in the organic phase, 
with decreasing turbidity from vial 1 to vial 5, as observed in the images and turbidity values of the organic layer. This decline suggests a 
decrease in the amount of left over Mg(OH)2 from vial 1 to vial 5. This shows how CV was used as a qualitative measure to determine the 
presence of Mg(OH)2 based on visual attributes in macroscopic analysis, as shown in Figure 9. We can envision coupling this with HPLC analysis 
to get complementary compositional analysis of mixture.  

 

In conclusion, the CV model successfully determined the liquid separation of two colorless solutions and monitored the behavior of the turbid 
mixture, thereby accelerating screening conditions for a suitable minimum acid concetration needed for Mg(OH)2 neutralization. 

 

 

Figure 8. model workup of a Grignard reaction before, during, and after mixing.  

 

Images show results outputted from the ML model. 2D graph of turbidity across height axis is shown per vial. The highlighted pink areas show the location of 

emulsion due to intense turbidity peaks. The extraction of emulsion presence occurred manually from the turbidity analysis.   

 

Figure 9. real-time monitoring of volume of vial 3.  
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After a 10 min settling time, the remaining Mg(OH)2 settled down in the organic phase, accumulating at the liquid-liquid boundary. This settlement did not affect 

the BB determination of the phase separation by the ML model. Furthermore, the turbidity analysis effectively monitored the motion of the turbid mixture as it 

settled at the bottom of the organic phase whereas BB showed the distinct phase boundary layer. 

 

 

LITERATURE DATA 

We tested our model on literature data to determine its robustness towards different cameras, vials, lighting conditions, and chemical 
compositions. The model effectively detects all vials, even those with different shapes and sizes from those in the training set. It accurately 
identifies the interfaces between the air and liquid, as well as between different liquid layers. Out of the 17 vials analyzed, the model failed to 
detect the liquid phase separation in only two cases: vial 10 and 12 in Figure 11b. However, we can rely on measuring turbidity as a fallback 
mechanism to identify the correct liquid separation (see SI for details). Interestingly, we observed that the model sometimes incorrectly 
classifies the top liquid layer as empty when the vial is completely filled (vial 5 and 7 Figure 10a). Since the training data mostly consisted of 
empty layers, which may have influenced the model to learn that the topmost layer should be empty. Therefore, we recommend not filling 
the vial completely when using this model. Despite this misclassification, the model's bounding box accuracy closely matches the ground 
truth values. Furthermore, the model performs well in detecting mixtures with three distinct liquid layers, as demonstrated in Figure 10b (vials 
7 and 11).  

 

In Figure 10c, we observed correct detection boundaries, but misclassifications (e.g., a homogeneous layer labelled as empty). This can be 
attributed to the lighting environment of these pictures, which our model, trained mostly on images with El lighting, was not  able to adjust 
to. However, since the early layers of the model serve as feature extractors and the later layers function as classifiers, we can infer the correct 
bounding box accuracy from the early layers. Therefore, the model can be easily fine-tuned to adjust to new lighting environment.  

 

We also observed that the model only works well when the camera is looking directly at the vials, as our dataset primarily consists of such 
images. Parallax, which introduces depth perception, feature mismatching, and geographic distortion, can lead to incorrect detection and 
classification, see SI for details. Therefore, we recommend using our model only when the cameras are positioned directly in front of the vials. 
Overall, HeinSight3.0 demonstrated good performance across various settings, indicating its potential for generalization with further 
enhancements to the dataset and post-processing techniques. 

 

Figure 10. Results obtained from HeinSight3.0 applied to literature data.  

 

This dataset consists of unprocessed images of LLE screening extracted from previous manuscripts. We analyzed these images using our model. Figures (a) and 

(b) are reprinted from Selekman et al.,12 while Figure (c) is from Charpentier et al.39 

 

CONCLUSIONS 

Our hardware platform facilitated the simultaneous screening of 12 vials, analyzed by the HeinSight3.0 system, which integrates 

ML with image analysis to provide real-time, multivariate visual cues for Liquid-Liquid Extraction (LLE) screening. By combining 

visual cues with process parameters, such as stir rate, we extracted essential parameters for LLE, including separation time, phase 

split clarity, volume ratio, and emulsion presence. This approach enhances the throughput of vision-based data, allowing for 

comprehensive optimization of LLE processes at early stages prior to manufacturing processes. Due to hardware space constraints, 
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our platform can analyze a maximum of 12 vials, offering medium throughput. However, the software is flexible, capable of 

detecting an unlimited number of vessels per image, making it suitable for high-throughput experiments.  We validated our system 

through three case studies involving varied visual cues to optimize discrete and continuous variables for LLE screening, including 

impurity recovery with aniline, excess reagent removal of aldehyde, and workup of Grignard reactions. The application of our model 

to literature data demonstrated promising generalizability and potential for use across different platforms. Looking ahead, we aim 

to enhance the hierarchical detection model by incorporating a solid class atop liquid, thereby extending the model's 

generalizability to other workup processes such as crystallization and solid-liquid mixing. Additionally, we seek to automate the 

tabulation of vision-based parameters by combining computer vision with large language models (e.g., ChatGPT), thereby reducing 

human intervention in result contextualization. In terms of hardware improvement, we plan to replace the existing EL light source 

with ambient-based lighting to generate data more suitable for generalization purposes and to build a liquid handler to facilitate 

end-to-end autonomous process. In summary, our work represents a significant advancement towards the realization of a Self-

Driving Laboratory (SDL) for workup processes, laying the groundwork for future innovations in this field.  
 

EXPERIMENTAL PROCEDURES 

Resource availability 

Lead contact 
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Jason Hein (jhein@chem.ubc.ca), 
Kourosh Darvish (kdarvish@cs.toronto.edu), and Alán Aspuru-Guzik (alan@aspuru.com). 
 
Materials availability 
This study did not generate new materials. 
 
Data and code availability 
The availability of code and models can be found in https://github.com/ac-rad/Segment-Anything-U-Specify/tree/master, and dataset and 
.stl files can be found in https://drive.google.com/drive/folders/1f8HvWEu8w_TgFS9ntEG5K_eLOKkZ0xC_. 
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