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Abstract

Molecules generated by Computer-Aided Drug Design often lack synthesizability
to be valuable because Computer-Aided Synthesis Planning (CASP) and CASP-
based approximated synthesizability scores have rarely been used as generation
objectives, despite facilitating the in-silico generation of synthesizable molecules.
Published scores approximate a general notion of CASP-based synthesizability
with nearly unlimited building block resources. However, this approach is dis-
connected from the reality of small laboratory drug design, where building block
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resources are limited, making a notion of in-house synthesizability that uses
already available resources highly desirable. In this work, we show a successful
de novo drug design workflow generating active and in-house synthesizable lig-
ands of monoglyceride lipase (MGLL). We demonstrate the successful transfer of
CASP from 17.4 million commercial building blocks to a small laboratory setting
of roughly 6,000 building blocks with only a decrease of –12% in CASP suc-
cess. Moreover, we present a rapidly retrainable in-house synthesizability score,
successfully capturing our in-house synthesizability without relying on external
building block resources. We show that including our in-house synthesizability
score in a multi-objective de novo drug design workflow, alongside a simple QSAR
model, provides thousands of potentially active and easily in-house synthesizable
molecules. Further, we highlight differences between general and in-house synthe-
sizability scores and demonstrate potential problems with the out-of-distribution
predictive performance of synthesizability scores on generated molecules. Finally,
we experimentally evaluate the synthesis and biochemical activity of three de
novo candidates using their CASP-suggested synthesis routes using only in-house
building blocks. We find one candidate with evident activity, suggesting poten-
tial new ligand ideas for MGLL inhibitors while showcasing the usefulness of our
in-house synthesizability score.

Keywords: computer-aided synthesis planning, casp, retrosynthesis, synthesizability,
synthesizability score, de novo drug design, virtual screening

1 Introduction

In drug discovery, the traditional Design-Make-Test-Analyze (DMTA) cycle is under-
going substantial changes, driven by the incorporation of novel artificial intelligence
approaches [1]. Within the “Design” phase of DMTA, de novo drug design meth-
ods have emerged that propose novel molecular structures, already demonstrating
effectiveness in identifying potential new drug candidates for desired protein targets
[2, 3]. In the search process for potential drug candidates, optimization-based de novo
approaches repeatedly generate a selection of candidate molecules using a chosen
method, evaluate these candidate molecules with an objective function, and optimize
the method toward generating molecules that satisfy the objective function. This
process continues until, hopefully, interesting molecular structures are found [4, 5].
Inherently, this search involves multi-objective optimization, as generated molecules
should satisfy various potentially contradicting and, therefore, non-combinable objec-
tives, such as selectivity for the desired protein target, pharmacokinetic properties,
or synthetic accessibility [6]. The underlying methods applied for the generation and
optimization of molecules include Generative Adversarial Networks, Autoencoders,
Genetic Algorithms, Generative Flows, Diffusion Models, and Reinforcement Learn-
ing [5], which can generate novel molecular structures in 2D [7–12] and, more recently,
3D [13].
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Simultaneously, the “Make” phase of DMTA has also undergone massive changes
with the emergence of artificial intelligence approaches, where computer-aided syn-
thesis planning (CASP) determines synthesis routes by deconstructing molecules
recursively into molecular precursors until a collection of commercially available
molecules, commonly termed “building blocks”, is identified [14, 15]. Rather than
manually searching for these synthesis routes, contemporary approaches employ neu-
ral networks to encapsulate the backward reaction logic and search algorithms to find
possible multi-step reaction pathways [16].

One of the existing challenges limiting the broader adoption of de novo tech-
niques in the Design phase is the generation of unrealistic, non-synthesizable molecular
structures. To combat this, different strategies have become available to include the
synthesizability aspect of the Make phase into the Design phase to ensure realistic
molecular structures [17]. The most straightforward approach is to directly use syn-
thesis planning, assessing if a synthesis route can be found using one of the available
approaches [14, 18–20]. Lately, this approach has been successfully investigated as an
objective in de novo drug design [21], but has high computational requirements and is
time-intensive [4, 17]. In this scenario, each molecule necessitates an entire synthesis
planning run, where the duration can range from minutes to several hours depending
on the selected retrosynthesis neural network [22, 23].

An alternative to running synthesis planning is the use of a heuristic or learned
synthesizability score that provides a computationally inexpensive and fast measure
of synthesizability, making them well suited as an objective function for post-hoc
virtual screening or as an objective function within de novo drug design [4, 17]. These
synthesizability heuristics calculated on the molecular structure can be as simple as the
length of the SMILES string [17] or the presence of fragments typical in synthesizable
molecules [24]. More advanced metrics, like the frequently used SAScore [25], combine
the presence of common structural features of synthesizable molecules with a penalty
for structural complexity like rings or stereo-centers. In practice, these heuristic scores
are occasionally used as objectives in de novo drug design to improve synthesizability
(e.g., [17]) or as post-generation filters to identify synthetic accessible molecules (e.g.,
[11, 24]).

In contrast to heuristic synthesizability scores, CASP-based synthesizability scores
approximate synthesis planning results and learn the relationship between a molecule’s
structure and the successful identification of a synthesis route via synthesis planning
[26]. This learning task is either formulated as a classification task of the synthesis
planning outcomes [26, 27] or a regression task relying on the resulting synthesis route
properties [21, 28]. However, these CASP-based scores are thus far rarely used as an
objective in de novo drug design and are missing in common de novo benchmark
frameworks (e.g., [29]). Yet the limited in-silico studies that use these scores show
two things: First, they improve synthesizability in terms of the used score itself [28],
but lack in-silico evaluation of potential synthesis routes. Second, they show improve-
ments in post-generation synthesis planning evaluations [21], but lack the experimental
evaluation of generated structures and synthesis routes.

All of the above ties into a common challenge of the field, where contemporary de
novo drug design and synthesizability approaches do not take the experimental reality
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of drug discovery into account, as most de novo approaches are evaluated against syn-
thesizability and activity heuristics (e.g., [29]) instead of synthesizing potential drug
candidates and measuring their activity experimentally [30]. This absence of exper-
imental evaluation and focus on computational benchmarking environments is also
present in de novo methods that explicitly include synthesizability scores to actively
enforce realistic and synthetically accessible molecular structures (e.g., [21, 28]), yield-
ing the question of whether suggested approaches also work experimentally regarding
the proposed drug candidates and the suggested synthesis routes.

In addition to the lack of experimental evaluation, these general CASP-based syn-
thesizability scores assume near-infinite building block availability. This assumption is,
however, far removed from a realistic laboratory setting, where resources are limited
regarding budget and lead times for building blocks. Repurposing already available
in-house building blocks reduces both costs and experiment lead times in the research
process while also reducing the amount of chemical waste at the same time. Nat-
urally, this consideration is especially relevant for universities with limited research
budgets, making a specific notion of in-house synthesizability tailored to available
resources more valuable than a general notion of synthesizability within the overall
drug discovery process.

The transfer of contemporary CASP methods, which rely on millions of commer-
cially available building blocks, to a resource-limited environment might be challenging
for two reasons: First, the CASP performance is limited by the quantity and nature
of available building blocks, where missing building blocks can lead to unsolvable
molecules [26]. Second, current CASP-based synthesizability scores are not build-
ing block agnostic as they create their training data to capture a general notion of
synthesizability with these millions of commercially available building blocks (e.g.,
[21, 26, 28]).

This work addresses such challenges in the field of computer-aided de novo drug
design (see Figure 1):

First, we demonstrate the successful transfer of synthesis planning to an environ-
ment with a limited in-house collection of building blocks, revealing that an extensive
commercial inventory is unnecessary for identifying potential synthesis routes. Specif-
ically, we show that using only 6,000 in-house building blocks results in merely -12%
loss in synthesis planning performance for a large drug-like chemical space, compared
to employing a > 1000 times larger library of commercially available building blocks
(”Zinc” [18]).
Second, we introduce an in-house CASP-based synthesizability score that can suc-

cessfully predict if molecules are synthesizable with our in-house building blocks. In
addition, we establish that a well-chosen dataset of 10,000 molecules suffices for train-
ing this score, allowing rapid retraining to accommodate changes in building blocks
through iterative synthesis planning and model training.
Third, we demonstrate the effectiveness and usefulness of both in-house and gen-

eral CASP-based synthesizability scores within de novo drug design. When combined
with a MGLL [31] protein target QSAR model as objectives, we show that the
in-house synthesizability score facilitates the generation of thousands of in-house,
easy-to-synthesize and potentially active drug candidate molecules. In the course of
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this, we highlight differences between resulting candidate spaces when using general
and in-house synthesizability scores and demonstrate potential problems with the
out-of-distribution predictive performance of synthesizability scores on the generated
candidate spaces in de novo drug design.
Finally, we experimentally evaluate and critically analyze three generated molecules

using an in-house synthesizability score after synthesis based on AI-suggested, in-house
CASP routes. In the process, we find one candidate with evident activity, suggest
potential novel ligand ideas for MGLL inhibitors, and examine differences between
our experimentally evaluated molecules, the generated in-house candidate space, and
known MGLL ligands.
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Fig. 1 Schematic overview of the main steps of our study. 1. In-house synthesis is evaluated
on a small building block subset from Leiden University for large chemical space. For this, synthesis
planning software is used to evaluate in-house synthesizability. 2. An in-house synthesizability score
is learned based on the returns of the synthesis planning software estimating the in-house synthesiz-
ability of molecules. Its generalizability is successfully evaluated against unseen ChEMBL molecules.
3. This score is used as an objective alongside a MGLL target QSAR model in a multi-objective de
novo drug design task to successfully provide thousands of potential candidates. 4. Three of these
drug candidates are successfully experimentally evaluated using only in-house resources for their syn-
thesis routes, where one shows evident activity.

2 Results & Discussion

2.1 In-house synthesizability

To evaluate the transfer synthesis planning to our real-life, resource-limited univer-
sity setting, we deployed the open-source synthesis planning toolkit AiZynthFinder
[18] with two different building block sets, 5,955 in-house university building blocks
(“Led3”) and 17.4 million generally available commercial compounds (“Zinc”). The
synthesis planning performance was evaluated for two datasets, a set number of cen-
troids of a Butina-clustered [33] subset from Papyrus (“Caspyrus”) [32] and a set of
200,000 randomly sampled drug-like ChEMBL [34] molecules.

An overview of the synthesis planning results is presented in Figure 2. This analysis
showed that the difference in performance when using only 5,955 Led3 building blocks
compared to 17.4 million Zinc building blocks, despite a 3,000-fold increase, is notably
small. Using the more limited Led3 building blocks, solvability rates for Caspyrus
centroids are around 60%, except when using only 1,000 clusters (“Caspyrus1k”) or
evaluating on ChEMBL. For the far more extensive Zinc building blocks, solvability
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Fig. 2 Synthesis Planning Performance. Evaluation using 5,955 Leiden University in-house
(“Led3”) or 17.4 million general building blocks (“Zinc”). Percentage of molecules where a complete
synthesis route to either building blocks can be found using synthesis planning on different subsets
of a Butina-clustered Papyrus [32] (“Caspyrus”) or a sample of 200,000 ChEMBL molecules.

rates are around 70% across all datasets. The solvability disparity between both build-
ing blocks is around +12% for most datasets except for Caspyrus1k, where roughly
+17% more molecules are solved with Zinc building blocks. A notable difference
between both building blocks is that the shortest synthesis route found with in-house
building blocks is, on average, two reaction steps longer than those using Zinc build-
ing blocks, as more building blocks allow shorter synthesis routes across all datasets
(see Figure 3).
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Fig. 3 Distribution of the shortest synthesis route found. Evaluation using synthesis planning
with 5,955 building blocks (Led3) and 17.4 million building blocks (Zinc) on the Caspyrus and 200,000
ChEMBL molecules datasets. The dotted line indicates the average route length for both building
block sets.

Overall, these results suggest that storing a large commercially sized stock of build-
ing blocks is unnecessary to run synthesis planning, as a small building set loses only
–12% solvability when accepting slightly longer synthesis routes. These results open
the possibility of planning the synthesis of desired compounds in-house instead of buy-
ing new building blocks from a vendor and potentially allowing the prioritization of
interesting drug discovery candidates according to available in-house resources.
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2.2 In-house synthesizability score

After discovering that in-house building blocks are sufficient for performing synthesis
planning, we trained a CASP-based synthesizability score for assessing the in-house
synthesizability of molecules without requiring resource-intensive synthesis planning.
In short, we trained an XGBoost model [35], following the methodology suggested by
RaScore [26], to predict if a complete synthesis route can be found for a molecule using
synthesis planning. Here, we used the previously generated routes for the in-house
Led3 and Zinc building blocks as training data. Afterward, we evaluated the models
on respective independent test sets (10% of the data - “IND-Test”) and 200,000 newly
sampled ChEMBL molecules not present in any training datasets (“ChEMBL-Test”)
to further evaluate generalizability, for which we additionally conducted synthesis
planning with both building block sets (see Figure 4).
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Fig. 4 Benchmarking in-house and general synthesizability scores. Performance comparison
of CASP-based synthesizability scores predicting the synthesizability using in-house (“Led3”) and
general (“Zinc”) building blocks in contrast to finding a synthesis route using synthesis planning.
Scores are evaluated by measuring the F1 and MCC scores on independent test sets of the respective
training datasets (“IND-TEST”) and 200,000 newly sampled and, to all models, unknown ChEMBL
molecules (“ChEMBL-TEST”).

On both evaluation tasks, our trained in-house models achieved excellent results
in both F1 and Matthews Correlation Coefficient (MCC) [36, 37] classification scores,
which were used to assess the predictivity of synthetic accessibility by the trained
scorer. For datasets with at least 10,000 molecules, the F1 performance on the respec-
tive test sets surpassed 0.8, proving competitive with the results from larger training
datasets. The MCC performance generally improved with more training data, reach-
ing acceptable levels with at least 10,000 molecules, likely because more data enhances
the discernment of non-synthesizable molecules. When employing the same training
data but using routes based on Zinc building blocks instead, the resulting classifiers
performed comparably to those trained with in-house building blocks. Like the Led3
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building blocks, classifiers based on Zinc building blocks achieved acceptable F1 and
MCC performance when trained on datasets of at least 10,000 molecules. The perfor-
mance differences in F1 and MCC between the respective dataset test sets and the
additionally sampled and unseen 200,000 ChEMBL molecules were minor (except for
Caspyrus1k).

These results indicate that our models can accurately estimate in-house synthe-
sizability on a large drug-like chemical space and generalize beyond their respective
test sets, allowing us to assess in-house synthesizability for our laboratory in the drug
discovery process.

2.3 In-house synthesizability of generated molecules

Since we can successfully predict if a molecule is in-house synthesizable, we wanted
to investigate if these scores can be used in a de novo drug design setting to generate
in-house synthesizable drug candidates.

For this purpose, we combined our in-house synthesizability scores with an MGLL
QSAR model to train a multi-objective DrugEx [11] molecular generator to find potent
and readily synthesizable compounds for this target (compare training details in meth-
ods 4.3). We deployed a novel DrugEx training strategy that helped our generator
to learn the desired chemical spaces by guiding it from a general drug-like chemi-
cal space towards our target space with both a fine-tuned target-specific generator
model, capturing the known ligand distribution, and a QSAR model, capturing the
scaffold specific information. As we wanted to evaluate the effect of different synthe-
sizability scores, we trained multiple molecular generators with different QSAR and
synthesizability model combinations. We used the QSAR model without any synthe-
sizability score or in combination with either the SAScore [25] or our in-house and
general synthesizability scores trained on 10,000 and 200,000 molecules (Caspyrus10k
& ChEMBL200k). To evaluate the trained molecular generators, we sampled 100,000
molecules for each trained generator and assessed how many are synthesizable with
either building blocks using synthesis planning (“solved”) and are seen as active by
the QSAR model with a probability larger than 0.8 (“active”).

The performance of different synthesizability scores in combination with our QSAR
model is presented in Figure 5. The compounds generated with only a QSAR model as
an objective have a very low yield of solvable and active structures. This is true when
solving with the in-house and general building blocks. In contrast, SAScore produces
a lot of solvable molecules that are, however, not active. Regarding synthesizability
scores trained using synthesis planning, all CASP-based synthesizability scores per-
form well and produce between 20,000 and 30,000 predicted active and synthesizable
candidates using either the in-house or general building blocks. Surprisingly, scores
trained on Caspyrus10k produce the most solved and active molecules, whereas CASP-
based synthesizability scores trained on 200,000 ChEMBL molecules produce more
solved molecules but not more active ones. It is worth noting that the solvability of the
generated molecules is expectably lower than the ChEMBL test sets (compare Figure
4) as molecules are generated along the Pareto front between the QSAR model and
the respective used synthesizability score (compare Supplementary: Figure C5 for an
example of the generated objective space).
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Fig. 5 Generated synthesizable and potentially active molecules using in-house syn-
thesizability scores. Evaluation of 100,000 molecules generated per selected QSAR model and
CASP-based synthesizability score combination. “Solved” denotes the successful identification of a
synthesis route for a particular molecule with the respective building blocks (in-house Led3 and Zinc),
while “Active” is measured by the QSAR model with a probability threshold of greater than 0.8.

Quantitatively, our experiment shows that using in-house synthesizability scores
within a de novo generator can produce thousands of in-house synthesizable molecules,
which can function as a starting point for experimental in-house evaluation.

2.4 Synthesizability score impact on generated molecules

After we showed that CASP-based synthesizability scores facilitate the generation
of synthesizable molecules, we set out to investigate their impact on the generated
candidates and potential problems with their predictive performance in the desired
candidate space.

First, given that we tested in-house and general synthesizability scores alongside
our QSAR model, an obvious question is whether these different scores target separate
chemical spaces and generate, consequently, distinct candidates. Our primary motiva-
tion stems from the fact that the number of solved de novo candidate molecules from
the in-house and general Caspyrus10k synthesizability scores are comparable when
using in-house building blocks within synthesis planning. This yields the question of
whether one can use a general synthesizability score in de novo design first and solve
with in-house building blocks afterward to receive the same candidates. For this pur-
pose, we created a joint UMAP projection [38] of all the solved and potentially active
candidate molecules from both the in-house and general synthesizability scores trained
with Caspyrus10k, making the synthesizability score results comparable as they are
trained on the same dataset. Here, molecules generated with these two scores prioritize
different chemical sub-spaces, showing that utilizing only a general synthesizability
score and running synthesis planning with in-house building blocks afterward is prob-
lematic as the generated results can differ (see Figure 6, Supplementary: Figure C1
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for ChEMBL200k). In detail, the usage of only a general score produces sparse results
in areas prioritized by the in-house score and, while still partially recovering the same
key scaffolds, creates different molecules. Between both candidate spaces, only 1,124
unique molecules, solved with in-house building blocks and seen as active by the QSAR
model, are shared (based on InChI comparisons).

Umap 1

Um
ap

 2

Caspyrus10k Score
Led3
Zinc

Fig. 6 Contrasting the shared generated chemical space of in-house and general synthe-
sizability scores. UMAP visualization of the solved and potentially active molecular space derived
from combining the molecules generated from both in-house and general synthesizability scores trained
on the same dataset (“Caspyrus10k”). In both instances, in-house building blocks are used for syn-
thesis planning to evaluate solvability. UMAP is calculated using Morgan Fingerprints (Radius 3,
Size 2048).

Second, CASP-based synthesizability scores are trained on a specific drug-like
chemical space, in our case 200,000 ChEMBL or up to 50,000 Caspyrus molecules,
for which synthesis planning is conducted and that is consequently known to the
model. However, a specific target chemical space explored by our de novo generation
might fall outside of this known model scope and produce unreliable predictions. To
analyze if this happens in our generation process, we evaluated if our CASP-based
scores correctly predict the route planning results for the 100,000 generated molecules
and compared the performance to the independent ChEMBL 200k test set (compare
Figure 4). Naturally, we could only compare scores used during the generation with
their respective building blocks, meaning that a score trained using synthesis planning
results from Zinc building blocks is now also evaluated against Zinc building blocks.
Across all models, the performance on generated molecules decreases and performs
worse than on the ChEMBL test set, showing a clear domain shift away from the
training data (see Figure 7). However, the overall performance for most scores is still
acceptable, with around 0.7 F1 and an MCC of around 0.5. For the worst performing
Caspyrus10k score based on Zinc building blocks, it is questionable if an MCC of 0.26
is still sufficient to be reliably used.
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Fig. 7 Out-of-distribution predictive performance of synthesizability scores on the
explored chemical space. Evaluation of the predictive performance of CASP-based synthesizabil-
ity scores on de novo generated molecules contrasted with the performance on the ChEMBL-Test
set (compare Figure 4). The predictive performance of each score is evaluated by synthesis planning
using the building blocks specific to each score’s training.

Overall, these results suggest that synthesizability scores, in-house or general, can
be used to generate desired candidates, but it is necessary to be careful when using
such scores as they might produce different candidate distributions, and the reliability
of the individual score predictions might differ.

2.5 Experimental candidate and synthesis route evaluation

Next, we experimentally evaluated our methodology regarding the predicted activity
and their suggested in-house synthesis routes. For this purpose, we first deployed a vir-
tual screening approach to reduce the candidate set to a manageable size. In detail, we
filtered the molecules generated with the in-house Caspyrus10k synthesizability score,
requiring that molecules be perceived as active and synthesizable by their respective
objective function using a probability filter threshold of 0.8 (32,907 candidates). Next,
we reduced the resulting molecules by the requirement that a synthesis route with
our in-house building blocks could be found, resulting in 20,055 potential candidate
molecules (compare Supplementary: Table C5 for the other scores). It is notewor-
thy that we relied here on a virtual screening setting rather than directly using the
solved candidates from the prior experiments (compare Figure 5) since this setting
reflects a more realistic application of our synthesizability scores in the future, reduc-
ing resource-intensive synthesis planning. To decrease the resulting large number of
synthesis candidates further, we first analyzed the entire candidate set regarding the
Tanimoto similarity for each molecule to the known ligands of MGLL (see Supple-
mentary: Figure C2). We then applied further filtering in that a found synthesis route
cannot be longer than five reaction steps to focus on easy-to-make candidates (4,675),
required drug-likeness by satisfying the Lipinski rule of 5 [39] (950), and enforced nov-
elty by having a Tanimoto similarity to known ligands of smaller than 0.7 (609). From
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these 609 candidates, domain experts selected three candidates for experimental val-
idation based on diversity, potential activity (“chemical eye”), and the presence of a
short synthesis route (1 or 2 steps). These three candidates were made using the sug-
gested synthesis routes by the synthesis planning algorithm and evaluated in a natural
substrate assay for MGLL inhibition.

The experimental inhibition results of our candidates and their respective in-house
synthesis routes are presented in Figure 8. Compound 1 showed clear activity with an
IC50 of 1 µM, and compounds 2 and 3 show slight activity of around 100 µM IC50.
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Fig. 8 Selected de novo generated candidates, synthesis routes based on in-house build-
ing blocks, and their experimentally validated activity. A, B, C) Selected candidates 1, 2, 3
for experimental evaluation and their respective in-house synthesis routes. D) Residual MGLL enzyme
activity after treatment with varying concentrations of inhibitor as measured by natural substrate
assay (compare Supplementary: Experimental Evaluation D for details).

Although all three tested molecules showed some level of inhibitory activity, a
stricter boundary of ≤ 10 µM, generally used for hit finding, only leaves one candidate
that can be classified as active. This lower potency is unsurprising, given that the
selection of molecules to synthesize was based on conducting at most two synthesis
steps. Nevertheless, from these experimental results, we can conclude that we can
generate in-house synthesizable and active drug candidates that rely on CASP routes
using our limited building blocks.

2.6 Critical analysis of de novo generated candidates

Given that most de novo methods only do an in-silico evaluation of their drug can-
didates [30], it is vital to critically analyze our experimentally evaluated and active
molecules stemming from a de novo drug design approach to provide further inside.

For this purpose, we first contrasted our synthesized candidates with known ligands
to analyze their novelty. When directly inspecting our selected candidates, even though
active and in-house synthesizable, their novelty in key scaffolds is limited. Looking at
the closest known ligands, as determined by a Tanimoto similarity threshold, for the
respective candidate structures, 2 and 3 are variations of the closest ligand. However,
candidate 1, which was also the most active one in our experiments, deviates more
from the closest known ligands in the training dataset and seems to combine distinct
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motives found in previously explored analogs using the same key scaffold (see Figure 9,
Supplementary: Figure C3 for candidate 2 & Figure C4 for candidate 3), akin to what
a medicinal chemist would think of trying in the various Design cycles of a candidate.

Fig. 9 Closest known ligands compared to most active candidate 1. Measured by Tanimoto
similarity on Morgan Fingerprints (Radius 3, Size 2048).

In the second step, we compared our solved candidate space to the known ligands
to understand what constitutes our generated space and how our objective functions
influence the generation of potential candidates and the presence of key scaffolds.
For this purpose, we created a joint UMAP projection of all the solved generated
candidate molecules, our three synthesized candidates, and all known ligands for the
target. For the known ligands, we annotated which molecules are active or inactive in
terms of our QSAR model (compare methods 4.3) and for which of the active ligands a
synthesis route could be found with our in-house building blocks. When analyzing the
joint UMAP projection of the generated candidate molecules and known ligands (see
Figure 10), candidate molecules are generated in areas where active ligands that are
synthesizable with our in-house building blocks are present. From this, we can conclude
that the QSAR model works as intended, which is supported by the direct rediscovery
of 145 known active ligands in our candidate space (based on InChI comparisons)
that the QSAR model also classified as active and, in comparison, the rediscovery of 0
inactive ligands. This, however, also explains the usage of key scaffolds in our generated
candidates, as the QSAR model operates on the structures of known ligands for MGLL
and does not generalize well beyond that. Inactive known ligands, in comparison, tend
to be in areas of low candidate density. They can, however, also be close to active
ligands with higher density, especially when analogs to known actives are tested.

We can conclude further that the applied in-house synthesizability score works
as intended as a generation objective, as unsolvable active ligands are outside areas
with high candidate density. Intriguingly, the model generates two major clusters of
molecules with little to no known molecules tested for MGLL. These areas could hold
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Fig. 10 Contrasting the generated drug candidate space with the known MGLL ligand
space. UMAP visualization of the solved molecular candidate space of 20,055 molecules generated
with in-house synthesizability score (“Caspyrus10k”) and target QSAR model as training objectives
and known MGLL ligands. Known MGLL ligands are marked as either inactive (“black circle”) or
active. Active ligands are differentiated between synthesizable using in-house building blocks (“green
circle”) and those that are not (“red circle”). Experimentally tested candidates are denoted with a
star. UMAP is calculated using Morgan Fingerprints (Radius 3, Size 2048).

more ’creative’ ligands, which was also illustrated by their lengthier synthetic routes.
For synthetic reasons, these were outside of the scope of this research.

3 Conclusion

In this work, we have introduced an end-to-end and experimentally evaluated in-house
de novo drug design approach that provides active drug candidates and their in-house
synthesis routes by repurposing already available chemicals to reduce costs, lead times
and potentially chemical waste in the drug discovery process.
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We have demonstrated that synthesis planning can be successfully conducted by
using only a small set of roughly 6,000 in-house available building blocks, making
it unnecessary to have a commercially vendor-sized stock of building blocks avail-
able. With this, we demonstrated the possibility of conducting potential synthesis
in-house while repurposing already available resources. Compared to utilizing general
vendor building blocks, this in-house approach yields only a -12% decrease in synthesis
planning success rate when accepting the resulting, on average, two reactions longer
synthesis routes. Next, we leveraged our in-house synthesis planning approach to create
an in-house machine learning synthesizability score to predict if a molecule is synthe-
sizable with our in-house building blocks. We further showed that it is possible to train
such a score on a small, selected subset of molecules, allowing the recreation of our
score within a day in case of changes in our available building blocks, reactions, or the
general adaptation to a new laboratory environment by the broader research commu-
nity. Finally, we showed the successful application of this score in de novo drug design
by generating molecules that are both active against our selected MGLL target and in-
house synthesizable. We further demonstrated that combining synthesis planning and
de novo drug design is viable and valuable in a small laboratory setting by providing
a large set of in-house accessible candidate molecules to our chemists, showing that
including such a synthesizability score increased the number of in-house synthetically
accessible molecules manifold. Out of this candidate pool, we validated three selected
candidates not only in silico but experimentally, finding an active molecule with new
disconnection ideas for our target and additionally verifying that the algorithmically
proposed in-house synthesis routes are feasible in our laboratory setting.

Even though the proof-of-concept for in-house synthesizability of generated struc-
tures is the main focus of this study, a primary limitation relates to the novelty of
the generated structures. Generally, we see in our candidates one of the current prob-
lems in de novo drug design, where key scaffolds for the target are re-used, and the
sidechains are algorithmically altered (e.g., [3]). In our work, we do not explore poten-
tially more active candidates with more complex side chains and, consequently, longer
synthesis routes, as we find novel ideas for a possible MGLL inhibitor, even when
looking only at fairly undecorated molecules. Still, the re-usage of key scaffolds is
also present in our work. Even though we do not enforce or fix any scaffolds for the
target, our trained molecular generator re-discovers active and in-house synthesizable
molecules with known scaffolds on its own.

A natural future improvement is to replace the target QSAR model, potentially
limiting the diversity of generated key scaffolds, with other methods for assessing
protein-ligand activity like a shape-based pharmacophore [40] or docking [41, 42].
Since both synthesis planning and synthesizability scores are active research fields,
improving the synthesis planning performance with more complex neural networks
capturing that capture the reaction logic [22, 23] or better approximation models for
synthesizability [27, 28] that combine more synthesis route criteria beyond binary
CASP-synthesizability [21]. Along the same lines, optimizing the right in-house build-
ing blocks to open synthetically accessible chemical spaces might be of further interest.
Here, the presence of the right mix of small laboratory building blocks could allow
the synthesis of a broader chemical space with as few as possible reactions. Beyond
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focusing only on in-house synthesizability, merging in-house with cheap and easy-to-
acquire vendor building blocks could be of practical interest to maximize cost-efficient
synthesis.

Finally, our in-house synthesizability score is regularly used in our university setting
for de novo drug design and virtual screening to streamline the overall drug discovery
process. Its internal usage and the application of similar scores in other institutions
will hopefully facilitate a change for a more efficient and sustainable drug discovery
process and a further combination of contemporary artificial intelligence methods with
real-world laboratory experimentation going forward. For this purpose, we provide all
relevant code that relies solely on open-source software and all data to reproduce the
results presented in this work, allowing easy and cost-free creation of other in-house
synthesizability scores.

4 Methods

4.1 Synthesis planning

For all synthesis planning in this study, we used the publicly available open-
source AiZynthfinder [18] synthesis planning framework. Specifically, we relied on the
AiZynthfinder-provided NeuralSym reaction network [43] that is trained on publicly
available USPTO reactions [44] and Monte-Carlo Tree Search [14] as the respective
search algorithm. The search settings were limited to a search time of 900 seconds
per molecule, 1000 search iterations, and a synthesis route depth of 8. Further, we
added 50 possible reactions to the tree search per reaction model call (compare Sup-
plementary: Table A2 for details). The building blocks used, i.e., search targets in the
tree search, were 17,422,831 Zinc building blocks provided by AiZynthinder [18], used
for the general evaluation of synthesizability, and 5,955 building blocks provided by
the Leiden University Early Drug Discovery & Development department [45], used for
in-house synthesizability.

We utilized two datasets to evaluate synthesizability using the respective build-
ing blocks: First, we created a representative subset of the synthesizable drug-like
molecules space that allows fast evaluation and retraining of potential synthesis
scores named Caspyrus. The creation process mimicked our work evaluating different
model architectures in synthesis planning with 10,000 molecules [23]. We selected the
high-quality Papyrus dataset [32] of 1,238,835 molecules and cleaned them with the
Guacamol cleaning strategy [29] to ensure drug-like molecules. We further removed
known building blocks stemming from Zinc [18], Enamine [46], MolPort [47] and
eMolecules [48]. We then clustered the remaining molecules using Butina clustering
[33] with a cut-off of 0.6 using Morgan fingerprints [49] (radius of 2, fingerprint size of
1024), which resulted in 137,963 cluster centroids. From these centroids, we removed
19 centroids that are directly in clinical study phases 1-3 [50] as we wanted to pre-
vent later molecular generation towards intellectual property spaces. Finally, we took
centroids of the n largest clusters to create the different Caspyrus versions (see Table
1).
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Table 1 Different Caspyrus versions.
Overview of the selected cluster centroids
per Caspyrus dataset and their overall
represented molecules.

Name Centroids Molecules

Caspyrus1k 1,000 82,352
Caspyrus10k [23] 10,000 280,956
Caspyrus20k 20,000 371,231
Caspyrus50k 50,000 491,422

Second, we sampled 200,000 molecules from ChEBML, following the evaluation
framework of RaScore [26], and cleaned them with the same Guacamol cleaning strat-
egy. Compared to the clustered Caspyrus dataset, this dataset is more likely to contain
noisy data, duplicates, and potential building blocks.

We measured the number of molecules for which at least one complete synthe-
sis route with the respective building block sets could be found on both evaluation
datasets. Furthermore, we used the shortest found route of all found synthesis routes
to evaluate the minimum route length.

4.2 Synthesizability scores

We leveraged the results of the synthesis planning to train our general and in-house
synthesizability scores. To approximate synthesis planning, we used XGBoost [35]
as a binary classifier to learn the relationship between the selected molecules and
their synthesis planning result (synthesis route found/not found). We selected the
rather “simplistic” XGBoost, following the well-working RaScore [26], as we were more
interested in the general applicability of our approach and because more complex
Graph Neural Network architectures showed only slight performance improvements
[27, 28]. The input into all XGBoost models were Morgan fingerprints (radius of 3,
size of 2048) using additional selected chemical properties following DrugEx [11].

All classifiers were trained and evaluated with the following scheme: Initially, we
split away 10% of the respective data as a test set following the process of RaScore
[26], where we used the ability to find a synthesis route with Led3 building blocks as
a stratifying criterion. On the remaining 90% of the data, the training dataset, we
conducted a 5-fold cross-validation to evaluate different hyperparameter settings. Our
hyperparameter optimization scheme consists of 1000 rounds of Bayesian Optimization
for every classifier using Bayesian Optimization and Hyperband [51] - in total, multiple
days of runtime per classifier. Here, the selected hyperparameters were the learning
rate (0.05-0.4), maximum depth of a tree (1-50), minimum loss reduction required for
further partition of a tree (0-10), and number of trees (5-250). The final score is then
trained on the entire training dataset using the best hyperparameters.

The final performance of each score is evaluated on two datasets: First, the respec-
tive 10% test data for each dataset not used during training. Second, we sampled
an additional 200,000 cleaned molecules from ChEMBL [34] and conducted synthesis
planning to create a new test to measure the generalizability of the trained scores on a
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large chemical space (compare Supplementary: Table B3 for optimal hyperparameter
settings and results). Noteworthy, we ensured that the molecules from this ChEMBL
test set are neither in the Caspyrus nor the Chembl200k datasets used to train our
CASP-based synthesizability scores.

4.3 De novo molecular generation

The trained CASP-based synthesizability scores were evaluated in a de novo drug
design setting, where the goal was to generate active and in-house synthesizable
molecules for our selected MGLL protein target [31], evaluated by in silico synthesis
planning and experimental evaluation.

For this purpose, we used our molecular generator DrugEx [11] alongside a set
of desirable generation objectives, in our case, a trained target QSAR model and
multiple different synthesizability scores. We selected DrugEx v3 as the molecular
generator for two reasons: First, DrugEx is currently the only Reinforcement Learning
(RL) approach that uses a reward based on the Pareto front instead of a single or a
scalarized objective [52], which allows the model to more accurately learn the trade-
offs between different objectives and produce more diverse solutions. This is especially
important in our setting as the biological activity predicted by the QSAR model and
synthesizability are non-consumable without losing information about the trade-offs
between both objectives, meaning that a synthesizable molecule is not necessarily
active and vice versa. Second, we hope for the adoption of our approach in the future,
as DrugEx is open source, well-maintained with high code quality [53] and allowed
for all the data and methods used to create this work to be publicly available. Given
that the DrugEx framework offers several generative model architectures, we decided
to use the latest graph-based transformer model operating on fragments in this work
[11], where the goal is to learn the generation of novel and valid molecules from a
predetermined chemical space given a set of starting fragments – substructures smaller
than known key scaffolds. The version 3.4.0.dev1 of the DrugEx software was used
throughout this work.

In our case, the training process of DrugEx consisted of three steps:
(1) A pretrained model was obtained, that captures the general drug-like chemical

space by learning the mapping between fragments and their respective molecules. Here,
we used a pre-trained model based on Papyrus 05.5 [32] that was trained by applying
BRICS fragmentation [54] on the molecules in Papyrus to achieve the aforementioned
goal.

(2) A fine-tuned DrugEx model was created by conducting transfer learning on
the pre-trained model with the chemical space related to MGLL. For this purpose,
we extracted 700 structures related to MGLL from Papyrus 05.5 [32] using the
MGLL Uniprot ID Q99685 (Supporting information: Q99685.tsv) and utilized them
to fine-tune the pre-trained model. These 700 ligands in the fine-tuning set were also
fragmented with the BRICS method following the same protocol as the pre-trained
model (1). Out of the resulting data set of fragment-molecule pairs, 10% were used
for validation and implementation of the early stopping strategy. The training pro-
cess ran for 200 epochs with a batch size of 512 until no improvement in loss could be
observed after 50 epochs (compare Supplementary: Figure C6).
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(3) In the final step, we used RL to steer our model towards generating active
and synthesizable molecules by repeatedly generating a set of molecules, evaluating
the generated molecules with our objectives, and retraining the model based on the
Pareto-front of both active and synthesizable molecules. Here, the general pre-trained
model (1) was used as the actively trained network (Gϑ) and the fine-tuned model
(2) as the fixed network (Gφ) in the DrugEx RL exploration strategy [11]. To train
the model, the same set of training and validation fragment-molecule pairs was used
as in the fine-tuning step (2). Given that we wanted to evaluate the effect of differ-
ent synthesizability scores, we trained multiple models that each combined a different
synthesizability score with our QSAR model (see Table 2). Further, several values for
the exploration parameter epsilon were explored that controlled the fraction of data
originating from the fixed fine-tuned ligand space model during training (compare
Supplementary: Figure C7). For all objectives, modifier settings were set according to
values recommended in the literature or based on a suitable classification threshold to
support smooth model training (compare Supplementary: Table C7). For each trained
model, the training was set to continue for at most 500 epochs, with early stopping
being triggered once the overall desirability on the validation set stopped improving.
Based on the epsilon trade-off data obtained (compare Supplementary: Figure C7),
the final set of 100,000 compounds was generated with models with an exploration
parameter epsilon of 0.2 as they offered the best trade-off between objective optimiza-
tion (desirability) and structural diversity. All models built are made available in the
public domain as part of the provided data.

Table 2 Trained DrugEx models. Models are trained
using a combination of the QSAR model alongside a
synthesizability score, relying in the case of CASP-based
synthesizability scores on a unique set of training data
and building blocks.

Synthesizability Score Training Data Building Blocks

QSAR Only - -
SAScore - -
Led3Caspyrus10k Caspyrus10k In-house
Led3ChEMBL200k ChEMBL200k In-house
ZincCasyprus10k Casyprus10k General
ZincChEMBL200k ChEMBL200k General

The QSAR model used for the MGLL [31] activity objective was trained by using
the QSPRPred library [55], which directly interfaces with DrugEx to facilitate QSAR
model scoring. The same set of 700 MGLL ligands from Papyrus, as described in the
fine-tuning step (2), was used to obtain bioactivity data for this model. For model
evaluation and selection, we divided the ligands into training and test sets using both
a scaffold split (80% training, 20% test) and a time split (pre-2018 training, since 2018
test), comparing the results obtained from different models under both evaluation
strategies. Here, we opted for a classification task instead of a regression task for the
QSAR modeling as, from our experience, classification works better in DrugEx during

19

https://doi.org/10.26434/chemrxiv-2024-wtjt6 ORCID: https://orcid.org/0000-0001-6639-1508 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-wtjt6
https://orcid.org/0000-0001-6639-1508
https://creativecommons.org/licenses/by-nc-nd/4.0/


RL optimization. The labels to distinguish active and inactive molecules were taken
from the pChEMBL values in Papyrus, where molecules with at least 6.5 pChEMBL
were treated as active. For both scaffold- and time-splits, we applied hyperparame-
ter optimization using grid-search with a 5-fold cross-validation on the training data
(compare Supplementary: Table C8) to find the optimal hyperparameters and selected
the best model algorithm based on the overall test-set performance across both eval-
uation strategies. Out of the nine evaluated models via QSPRPred (Random Forrest,
Extra Tree Classifier, XGBoost, Multi-Layer Perceptron, Gradient Boosting Classifier,
AdaBoost, k-nearest neighbors, Support Vector Classification, and Gaussian Näıve
Bayes) [35, 56], we picked XGBoost for our QSAR model as it performed consis-
tently well across both the scaffold and time split benchmarks (see Figure 11) and
provided fast inference speeds required for our RL training. Due to data scarcity, we
retrained the selected XGBoost classifier afterward with all known bioactivity data
for our target. The optimal hyperparameters for this final model were chosen from
the prior scaffold-split optimization workflow, as the resulting model showed the best
performance both during cross-validation and on the external test set.
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Fig. 11 Performance of the QSAR model evaluated on known MGLL ligands. Performance
is measured using 5-fold cross-validation on the training data (“CV”) and an independent test dataset
(“Test”) while employing both scaffold- and time-splits.

To investigate the effect of our synthesizability scores on generated molecules, we
used different synthesizability scores as a second objective alongside the QSAR model
(see Table 2). In our baseline setting, we only used the QSAR model without any syn-
thesizability score (”QSAR Only”) or combined SAScore [25] with the QSAR model
(“SAScore”). We picked SAScore as a heuristic synthesizability baseline as it is a
widely adopted measure to evaluate molecules (e.g., [29]) and differs substantially from
our CASP-based synthesizability scores as it measures the topological complexity of a
molecule instead of approximating the ability to find a synthesis route using synthe-
sis planning. As SAScore does not provide a probability for synthetic complexity, we
transformed the scores using a smoothed-clipped score function (compare Supplemen-
tary: Table C7). For our non-baseline setting, we selected four different CASP-based
synthesizability scores alongside our QSAR model, where two measured the in-house
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synthesizability and the other two measured general synthesizability. For our in-house
synthesizability scores, we used models trained on the Caspyrus10k and ChEMBL200k
datasets using in-house building blocks. The rationale behind this selection was two-
fold: First, we wanted to know how much data is required to train a synthesizability
score. Second, a synthesizability score based on 10,000 molecules is easily retrainable
in case of available building blocks or reaction changes, as the computational require-
ments of running synthesis planning differ substantially between 10,000 and 200,000
molecules. For the general synthesizability scores, we selected models based on the
same Caspyrus10k and ChEMBL200k datasets, as this allowed a direct comparison
on the same training dataset between our sparse locally available in-house building
blocks and generally available building blocks. Noteworthy, the ChEMBL200k score
mimics the RaScore [26], as it is trained with the same amount of data and comparable
building blocks.

To evaluate different combinations of the QSAR model and synthesizability score,
we generated 100,000 molecules for each uniquely trained DrugEx model. We evaluated
the synthesizability of our generated molecules by conducting synthesis planning using
in-house and general building blocks on the generated molecules with the same settings
as in the prior synthesis planning step. Given that we can sample indefinitely from our
trained models, we sampled 100,000 molecules for each trained model, assuming that
a denser population of candidates generated along the Pareto front should increase
our hit probabilities (e.g., [52]) and provide us with enough examples to evaluate each
score profusely.

Supplementary information. Additional figures, tables and experimental details
are provided in the supplementary information.
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Appendix A In-house synthesis planning

Table A1 Synthesis Planning Performance. Evaluation using 5,955 Leiden University
in-house (“Led3”) or 17.4 million general building blocks (“Zinc”). Percentage of molecules where a
complete synthesis route to either building blocks can be found using synthesis planning on different
subsets of a Butina-clustered subset from Papyrus [32] (“Caspyrus”) or a sample of 200,000
ChEMBL molecules.

Dataset

Building Blocks Caspyrus1k Caspyrus10k Caspyrus20k Caspyrus50k CHEMBL200k

Led3 52.4% 58.1% 59.3% 59.8% 55.0%
Zinc 69.8% 72.0% 72.1% 71.6% 66.7%

Table A2 Synthesis Planning
search settings. AiZynthFinder
[18] search settings used
throughout this work.

Parameter Value

Search Algorithm Mcts
C 1.4
cutoff cumulative 0.995
cutoff number 50
Max transforms 9
Iteration limit 1000
Time limit 900
Use prior True
Return first True
Exclude target from stock True
Prune cycles in search True

Appendix B In-house synthesizability score
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Appendix C In-house de novo drug design

Table C4 Generated synthesizable and potentially active
molecules using in-house synthesizability scores. Evaluation of
100,000 molecules generated per selected QSAR model and
CASP-based synthesizability score combination. “Solved” denotes the
successful identification of a synthesis route for a particular molecule
with the respective building blocks (in-house Led3 and Zinc), while
“Active” is measured by the QSAR model with a probability
threshold of greater than 0.8.

Synthesizability Score Building Blocks Solved Solved & Active

QSAR Only Led3 1,468 762
QSAR Only Zinc 1,635 883
SAScore Led3 58,052 2,447
SAScore Zinc 62,452 2,851
Led3-Caspyrus10k Led3 35,697 25,044
Led3-Caspyrus10k Zinc 42,564 30,071
Zinc-Caspyrus10k Led3 35,102 24,912
Zinc-Caspyrus10k Zinc 35,084 24,575
Led3-ChEBML200k Led3 30,650 22,202
Led3-ChEBML200k Zinc 30,765 21,732
Zinc-ChEBML200k Led3 43,655 24,109
Zinc-ChEBML200k Zinc 48,078 26,554

Table C5 Virtual Screening results with post-generation filtering. Virtual Screening
outcomes for the 100,000 generated molecules from each trained DrugEx model, employing training
objectives as post-generation filters. The 100,000 generated molecules are filtered by the QSAR
model, the respective synthesizability score, and both combined (desired molecules). These desired
molecules are evaluated with synthesis planning using both Led3 and Zinc building blocks. Filter
thresholds are set at > 0.8 for both the QSAR and synthesizability models and ≤ 4.5 for the SAScore.

QSAR Model Filter Desired Solved

RL Training Objectives QSAR Only SAScore Both (Desired) Led3 BB Zinc BB

QSAR Only 76,828 - - 762 883
SAScore 7,689 95,331 6,089 2,420 2,808
Led3-Caspyrus10k 67,407 48,093 32,907 20,055 23,054
Led3-ChEMBL200k 64,913 26,229 18,307 14,077 13,597
Zinc-Caspyrus10k 66,628 66,664 48,338 22,419 22,058
Zinc-ChEMBL200k 51,310 54,668 27,775 19,780 21,440
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Fig. C1 Contrasting the shared generated chemical space of in-house and general syn-
thesizability scores using ChEMBL200k. UMAP visualization of the solved and potentially
active molecular space derived from combining the molecules generated from both in-house and gen-
eral synthesizability scores trained on the same dataset (“ChEMBL200k”). In both instances, in-house
building blocks are used for synthesis planning to evaluate solvability. UMAP is calculated using
Morgan Fingerprints (Radius 3, Size 2048).

Table C6 Out-of-distribution predictive performance of synthesizability scores on the
explored chemical space. Evaluation of the predictive performance of CASP-based
synthesizability scores on de novo generated molecules. The predictive performance of each score is
evaluated by synthesis planning using the building blocks specific to each score’s training.

Synthesizability Score Accuracy Precision Recall F1 MCC

Led3-Caspyrus10k 0.696 0.545 0.892 0.677 0.465
Led3-ChEMBL200k 0.809 0.653 0.804 0.720 0.585
Zinc-Caspyrus10k 0.496 0.408 0.965 0.573 0.263
Zinc-ChEMBL200k 0.716 0.641 0.929 0.759 0.486

Table C7 DrugEx RL objective modifier functions and class decision thresholds. This
table details the parameters of different modifier functions used within DrugEx, including their
lower and upper bounds (Lower x, Upper x) and class decision thresholds. Detailed descriptions of
modifier functions are available in Table S2 [53].

DrugEx Objective Modifier Function Lower x Upper x Class Decision Threshold

QSAR Classifier ClippedScore 0.2 0.8 0.5
SAScore SmoothClippedScore 7 4 0.5
Led3-based Score ClippedScore 0.2 0.8 0.5
Zinc-based Score ClippedScore 0.2 0.8 0.5
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Fig. C2 Tanimoto Similarity to the closest known ligands. Evaluated on the solved vir-
tual screening results using the in-house Caspyrus10k model, determined using Morgan Fingerprints
(Radius 3, Size 2048).
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Fig. C3 Closest known ligands compared to most active candidate 2. Measured by Tani-
moto similarity on Morgan Fingerprints (Radius 3, Size 2048).
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Fig. C4 Closest known ligands compared to most active candidate 3. Measured by Tani-
moto similarity on Morgan Fingerprints (Radius 3, Size 2048).
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Fig. C5 Pareto Front of the generated molecules using DrugEx. QSAR indicates the
perceived activity with respect to our protein target, in-house synthesizability score indicates the
synthesizability perceived by our in-house Caspyrus10k synthesizability score.
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Fig. C6 DrugEx Fine-Tuning Loss. Validation and Training loss during DrugEx fine-tuning of
the domain-specific ligand space model.
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Fig. C7 DrugEx epsilon parameter trade-offs. Maximum Desirability achieved by each model
during RL for varying values of the exploration parameter epsilon. The parameter epsilon captures
the fraction of data that is sampled during each training iteration from the fixed fine-tuned ligand
space model instead of the actively trained model.
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Table C8 QSAR model hyperparameter optimization. Overview of tested classifiers,
different hyperparameters, possible grid search values and the best-found values.

Algorithm Hyperparameter Possible Values Best

RandomForest n estimators 50, 200, 1000 1000
criterion gini, entropy, log loss log loss
min samples split 30, 2, 0.1, 0.05 2
min samples leaf 30, 1, 0.1, 0.05 1
max features sqrt, log2 sqrt
class weight balanced, balanced subsample, None balanced
max samples 0.3, 0.7, 1.0 1.0
ccp alpha 0.005, 0.05, 0.1 0.005

ExtraTrees n estimators 50, 200, 1000 200
criterion gini, entropy, log loss log loss
min samples split 30, 2, 0.1, 0.05 2
min samples leaf 30, 1, 0.1, 0.05 1
max features sqrt, log2 sqrt
class weight balanced, balanced subsample, None balanced
max samples 0.3, 0.7, 1.0 1.0
ccp alpha 0.005, 0.05, 0.1 0.005

XGBoost learning rate 0.001, 0.01, 0.1, 0.3, 1.0 0.1
max depth 5, 10, 50, 100 50
n estimators 50, 200, 1000 50
colsample bytree 0.3, 0.7, 1.0 0.3
colsample bylevel 0.3, 0.7, 1.0 0.3
colsample bynode 0.3, 0.7, 1.0 1.0
lambda 0.0, 0.5, 1, 2, 5 0
alpha 0.0, 0.5, 1, 2, 5 0

Multi-Layer Perceptron hidden layer sizes
(50,), (50, 50), (100,), (100, 100), (500,),

(500, 500), (500, 100), (100, 500)
(100, 500)

alpha 0.0001, 0.001, 0.01 0.001
early stopping True, False False
max iter 50, 100, 200, 1000 50

GradientBoosting n estimators 50, 200, 1000 200
min samples split 30, 2, 0.1, 0.05 0.1
min samples leaf 30, 1, 0.1, 0.05 1
max features sqrt, log2 sqrt
ccp alpha 0.005, 0.05, 0.1 0.005
loss log loss, exponential exponential
learning rate 0.001, 0.01, 0.1, 0.3, 1.0 0.1
subsample 0.3, 0.7, 1.0 0.7
n iter no change 1, 5 5
tol 0.0001, 0.001, 0.01, 0.1 0.0001

AdaBoost n estimators 50, 200, 1000 1000
learning rate 0.1, 1.0, 2.0, 5.0 0.1

KNN n neighbors 1, 3, 5, 10 5
weights uniform, distance distance
metric cityblock, manhattan, euclidean, cosine cityblock

SVC C 0.5, 1.0, 5.0 5.0
kernel linear, poly, rbf, sigmoid linear

Gaussian Naive Bayes var smoothing 1e-9, 1e-6 1e-6
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Appendix D Experimental Evaluation

D.1 Biochemistry experimental

D.1.1 Cloning, overexperssion and membrane preparation

Full-length cDNA encoding human MGLL (GenBank ID: BC006230.2; obtained from
Source Bioscience) was amplified by PCR and cloned into expression vector pcDNA3.1
in frame with a C-terminal FLAG-tag. All plasmids were isolated from transformed
XL10-Gold competent cells (prepared using E. coli transformation buffer set; Zymo
Research) using plasmid isolation kits following the supplier’s protocol (Qiagen).
Constructs were verified by Sanger sequencing (Macrogen).

HEK293T (human embryonic kidney) cells were obtained from ATCC and tested
on regular basis for mycoplasma contamination. Cultures were discarded after 2-3
months of use. Cells were cultured at 37 °C under 7% CO2 in high-glucose DMEM
containing phenol red, stable glutamine, 10% (v/v) high iron newborn calf serum
(Seradigm), penicillin and streptomycin (200 µg/mL each; Duchefa). Medium was
refreshed every 2-3 days and cells were passaged two times a week at 80-90% conflu-
ence. One day prior to transfection, HEK293T cells were transferred from confluent 10
cm dishes to 15 cm dishes. Before transfection, medium was refreshed (13 mL). A 3:1
mixture of polyethyleneimine (PEI; 60 µg/dish) and plasmid DNA (20 µg/dish) was
prepared in serum-free medium (2 mL) and incubated for 15 min at RT. The mixture
was then added dropwise to the cells, after which the cells were grown to confluence
in 72 h. Cells were then harvested by suspension in PBS, followed by centrifugation
(200 g, 5 min). Cell pellets were flash-frozen in liquid nitrogen and stored at -80 °C.

Cell pellets were thawed on ice and resuspended in lysis buffer A (20 mM HEPES
(pH 7.2), 2 mM DTT, 250 mM sucrose, 1 mM MgCl2, and 25 U/ml benzonase). Suspen-
sions were homogenized by polytron (3 × 7 s, 20,000 rpm, SilentCrusher S; Heidolph,
Schwabach, Germany), incubated on ice for 30 min, and subsequently centrifuged at
93,000 g for 30 min at 4°C (Ti70 or Ti70.1 rotor; Beckman Coulter, Woerden, The
Netherlands). Pellet was resuspended in storage buffer B (20 mM HEPES (pH 7.2),
2 mM DTT)]. Suspension was homogenized by polytron (1 × 10 s, 20,000 rpm). Pro-
tein concentrations were determined with Quick Start Bradford reagent (Bio-Rad,
Hilversum, The Netherlands) or Qubit fluorometric quantitation (Life Technologies,
Breda, The Netherlands). Membranes were diluted with storage buffer B to the desired
concentration, aliquoted, frozen in liquid nitrogen, and stored at -80°C.

D.1.2 Biochemical evaluation of MGLL inhibitors

Assays were performed in HEMNB buffer (50 mM HEPES pH 7.4, 1 mM EDTA, 5
mM MgCl2, 100 mM NaCl, 0.5% (w/w) BSA) in black, flat-bottom 96-well plates
(Greiner). Inhibitors were added from 40x concentrated stock solution in DMSO.
MGLL-overexpressing membrane preparations (0.3 µg per well) were incubated with
inhibitor for 20 min at RT in a total volume of 100 µL. Next, 100 µL assay mix contain-
ing glycerol kinase (GK), glycerol-3-phosphate oxidase (GPO), horse radish peroxidase
(HRP), adenosine triphosphate (ATP), Amplifu™Red and 2-arachidonoylglycerol (2-
AG) was added. Fluorescence (λex = 535 nm, λem = 595 nm) was measured at RT in 5
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min intervals for 60 min on a Clariostar (BMG Labtech) plate reader. Final assay con-
centrations: 1.5 ng/µL MGLL-overexpressing membranes, 0.2 U/mL GK, GPO and
HRP, 125 µM ATP, 10 µM Amplifu™Red, 25 µM 2-AG, 5% DMSO, 0.5% ACN in a
total volume of 200 µL. For IC50 determinations, the assay was performed as described
above, but with variable inhibitor concentrations. All measurements were performed
in N = 2 (individual plates), n = 2 (technical replicates on same plate) or N = 2, n
= 4 for controls. Fluorescence values were corrected for the average fluorescence of
the negative control (mock-membranes + vehicle). Slopes of the corrected data were
determined in the linear interval. The Z’-factor for each assay plate was calculated
using the formula Z’ = 1 – 3(σpc + σnc)/(µpc - µnc) with σ = standard deviation, µ
= mean, pc = positive control and nc = negative control, and plates with Z’ ≥ 0.6
were accepted for further analysis. For IC50 determination, slopes were normalized to
the positive control and analysed in a non-linear dose-response analysis with variable
slope (GraphPad Prism 9.0).

Appendix E Chemistry Experimental

E.1 General chemistry

All used glassware was oven dried. Reagents were either acquired from Sigma-Aldrich,
Acros and Merck and used without further purification unless specified otherwise.
Moisture sensitive reactions were performed under a nitrogen atmosphere using anhy-
drous solvents dried over activated molecular sieves (4 Å). Traces of water were
removed from starting materials through co-evaporation with toluene. Thin layer chro-
matography (TLC) was performed using TLC Silica gel 60 F245 on aluminums sheets
(Merck). Compounds were visualized using an ultraviolet lamp (λmax = 254 nm),
KMnO4 staining (K2CO3 (40 g), MnO4 (6 g), H2O (600 mL) and 10% NaOH (5 mL))
or ninhydrin staining (ninhydrine (200 mg), AcOH (5 mL) and EtOH (100 mL). The
crude compounds were purified by either flash column chromatography using Screening
Devices silica gel 60, or automated flash column chromatography using Biotage Isolera
One or Four Flash Chromatography Systems and pre-packed cartridges of Screening
Devices UltraPure Irregular Silica Gel (40 – 63 µm, 60 Å). LC-MS measurements
were performed on a Thermo Finnigan LCQ Advantage Max ion-trap mass spectrom-
eter (ESI+), coupled to a Surveyor HPLC system (Thermo Finnigan) or a Thermo
Vanquish Focused UHPLC+ system, equipped with a C18 column and coupled to a
Thermo LCQ Fleet ion-trap mass-spectrometer. Both LC-MS systems were equipped
with a standard C18 (Gemini, 4.6 mmD × 50 mmL, 5 µm particle size, Phenomenex)
analytical column. Eluents A: H2O, B: ACN, C: 1% aq. TFA, gradients: 10 – 90% or
a 0 – 50% gradient of ACN in water with 0.1% TFA. A Bruker AV-400 Cryomagnet
was used to obtain proton(1H)-NMR and carbon(13C)-NMR. Chemical shifts (δ) are
reported are reported in parts per million (ppm) downfield of tetramethylsilane (TMS)
or solvent resonance as the internal standard (CDCl3: δ 7.26 for 1H, δ 77.16 for 13C,
CD3OD: δ 3.31 for 1H, δ 49.00 for 13C). Splitting patterns reported in an abbrevi-
ated manner (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet),
coupling constants (J) are quoted in Hertz (Hz). Peak assignments were aided by 2D
COSY, HSQC, and HMBC experiments. MestReNova software (version 14.0.1-23559)
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was used for the analysis of the NMR spectra. PerkinElmer ChemDraw Professional
(version 22.2) was used to draw molecular structures presented in this work.

Fig. E8 Experimentally evaluated candidates.

E.1.1 1,1,1,3,3,3-hexafluoropropan-2-yl
4-cyclohexylpiperazine-1-carboxylate (1)

Triphosgene (0.5 eq., 89 mg, 0.30 mmol) and Na2CO3 (1 eq., 63 mg, 0.60 mmol) were
dissolved in DCM (3.0 mL, 0.1M) under argon and stirred on ice. Subsequently 1-
cyclohexylpiperazine (1 eq., 100 mg, 0.60 mmol) in DCM (3 mL) was added and the
obtained mixture was stirred at 0 ºC for 1 h. Upon full conversion to the carbamoyl
chloride intermediate, the reaction mixture was filtered, rinsed with DCM (10 mL)
and concentrated under reduced pressure. Hexafluoroisopropanol (1 eq., 100 mg, 0.60
mmol) and DiPEA (2 eq., 155 mg, 1.20 mmol) were dissolved in DCM (3 mL, 0.2
M) and added drop wisely to the carbamoyl chloride in DCM (3 mL). The obtained
solution was stirred under argon atmosphere for 19 h. Upon full conversion of the
starting materials, the reaction mixture was quenched with sat. NH4Cl (2 mL) and
brought to pH 7 using 1M NaOH (1 mL). Subsequently, the neutral solution was
extracted with DCM (3x 10 mL), after which the combined organic layers were dried
(MgSO4) and concentrated under reduced pressure. After purification with column
chromatography eluting with isocratic DCM, the title compound was partially isolated
as a white solid (43.0 mg, 0.12 mmol, 20%). 1H NMR (400 MHz, CDCl3) δ 5.75 (p, J
= 6.2 Hz, 1H), 3.95 – 3.25 (m, 4H), 2.83 – 2.49 (m, 5H), 2.52 – 2.24 (m, 1H), 2.03 –
1.79 (m, 5H), 1.65 (dd, J = 13.0, 3.6 Hz, 1H), 1.48 – 1.15 (m, 5H), 1.16 – 0.99 (m, 1H).
13C NMR (101 MHz, CDCl3) δ 151.41, 120.80 (t, J = 285.0 Hz), 68.15 (hept, J = 136
Hz), 64.02, 49.07, 48.99, 48.89, 48.66, 48.42, 46.63, 44.93, 44.56, 28.71, 26.20, 25.83.

E.1.2 (1H-benzo[d][1,2,3]triazol-1-yl)
(3-(4-fluorophenyl)piperidin-1-yl)methanone (2)

3-(4-Fluorophenyl)piperidine (1 eq., 100 mg, 0.56 mmol) and Na2CO3 (1 eq., 46.3
mg, 0.56 mmol) were dissolved in DCM (5.6 mL, 0.1) under argon and stirred on ice.
Subsequently, triphosgene (0.5 eq., 82.8 mg, 0.28 mmol) was added and the obtained
mixture was stirred at 0 ºC for 1 h. Upon full conversion to the carbamoyl chlo-
ride intermediate, the reaction mixture was filtered, rinsed with DCM (10 mL) and
concentrated under reduced pressure. To the obtained solid the benzotriazole 1H-
benzo[d][1,2,3]triazole (1 eq., 66.5 mg, 0.56 mmol) were dissolved in DCM (2.8 mL,
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0.2 M), after which DiPEA (2 eq., 144 mg, 1.12 mmol) was added drop wisely and
the obtained solution was stirred under argon atmosphere for 19 h. Upon full conver-
sion of the starting materials, the reaction mixture was quenched with sat. NH4Cl (2
mL) and brought to pH 7 using 1M NaOH (1 mL). Subsequently, the neutral solution
was extracted with DCM (3x 10 mL), after which the combined organic layers were
dried (MgSO4) and concentrated under reduced pressure. After purification with col-
umn chromatography eluting with isocratic DCM, the title compound was partially
isolated as a translucent oil (42.0 mg, 0.13 mmol, 23%). 1H NMR (400 MHz, CD2Cl2)
δ 8.04 (dd, J = 42.5, 8.3 Hz, 2H), 7.52 (dt, J = 60.0, 7.6 Hz, 2H), 7.29 – 7.21 (m,
2H), 7.01 (t, J = 8.2 Hz, 2H), 4.62 (d, J = 15.9 Hz, 2H), 3.47 – 2.74 (m, 3H), 2.17
(d, J = 13.7 Hz, 1H), 1.98 – 1.78 (m, 2H). 13C NMR (101 MHz, CD2Cl2) δ 161.83 (d,
J = 245.0 Hz), 149.47, 145.46, 138.06, 133.28, 129.42, 128.62 (d, J = 7.9 Hz), 125.29,
119.91, 115.56 (d, J = 21.1 Hz), 113.56, 42.12, 31.59, 25.80.

E.1.3 (4-benzhydrylpiperazin-1-yl)(thiazol-2-yl)methanone (3)

The free amine 1-benzhydrylpiperazine (1 eq., 200 mg, 0.79 mmol), PyAOP (2 eq., 597
mg, 1.59 mmol) and the benzoic acid thiazole-2-carboxylic acid (1 eq., 102 mg, 0.79
mmol) were dissolved in DMF (0.4 M), after which DiPEA (4 eq., 0.56 ml, 1.59 mmol)
was added dropwisely and the mixture was stirred for 21 h. Upon reaction completion,
the solution was dissolved in EtOAc (10 mL) and washed with brine (2 x 10 mL), after
which the aqueous layer was extracted with EtOAc (3x 10 mL). The combined organic
layers were dried (MgSO4), filtered and concentrated under reduced pressure and the
remaining oil was further purified by silica gel column chromatography eluting with a
gradient of 0-40% ether in pentane to obtain the title compound as a pale-yellow solid
(259 mg, 712 mmol, 90%). 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 3.2 Hz, 1H),
7.45 – 7.39 (m, 5H), 7.31 – 7.22 (m, 4H), 7.21 – 7.13 (m, 2H), 4.39 (t, J = 5.0 Hz, 2H),
4.25 (s, 1H), 3.80 (t, J = 5.1 Hz, 2H), 2.48 (dt, J = 11.8, 5.0 Hz, 4H). 13C NMR (101
MHz, CDCl3) δ 165.21, 159.05, 143.03, 142.13, 128.62, 127.89, 127.16, 123.91, 75.96,
52.40, 51.73, 46.55, 43.62.
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[8] Blaschke, T, Arús-Pous, J, Chen, H, Margreitter, C, Tyrchan, C, Engkvist, O,
Papadopoulos, K, Patronov, A (2020) REINVENT 2.0: An AI Tool for De Novo
Drug Design. Journal of Chemical Information and Modeling 60(12), 5918–5922
https://doi.org/10.1021/acs.jcim.0c00915

[9] Winter, R, Montanari, F, Steffen, A, Briem, H, Noé, F, Clevert, DqA (2019) Effi-
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