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Abstract38

Building reliable and robust quantitative structure-property relationship (QSPR)39

models is a challenging task. First, the experimental data needs to be obtained,40

analyzed and curated. Second, the number of available methods is continu-41

ously growing and evaluating different algorithms and methodologies can be42

arduous. Finally, the last hurdle that researchers face is to ensure the repro-43

ducibility of their models and facilitate their transferability into practice. In44

this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data45

sets and QSPR modelling, which attempts to address the aforementioned chal-46

lenges. QSPRpred’s modular Python API enables users to intuitively describe47

different parts of a modelling workflow using a plethora of pre-implemented com-48

ponents, but also integrate customized implementations in a ”plug-and-play”49

manner. QSPRpred data sets and models are directly serializable, which means50

they can be readily reproduced and put into operation after training as the51

models are saved with all required data pre-processing steps to make predic-52

tions on new compounds directly from SMILES strings. The general-purpose53

character of QSPRpred is also demonstrated by inclusion of support for multi-54

task and proteochemometric modelling. The package is extensively documented55

and comes with a large collection of tutorials to help new users. In this paper,56

we describe all of QSPRpred’s functionalities and also conduct a small bench-57

marking case study to illustrate how different components can be leveraged to58

compare a diverse set of models. QSPRpred is fully open-source and available at59

https://github.com/CDDLeiden/QSPRpred.60

Scientific Contribution61

QSPRpred aims to provide a complex, but comprehensive Python API to conduct62

all tasks encountered in QSPR modelling from data preparation and analy-63

sis to model creation and model deployment. In contrast to similar packages,64

QSPRpred offers a wider and more exhaustive range of capabilities and inte-65

grations with many popular packages that also go beyond QSPR modelling. A66

significant contribution of QSPRpred is also in its automated and highly stan-67

dardized serialization scheme, which significantly improves reproducibility and68

transferability of models.69

Keywords: QSPR modelling, QSAR modelling, proteochemometrics,70

cheminformatics, machine learning, software71
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1 Introduction72

Quantitative Structure-Property Relationship (QSPR) modelling can be described73

as the application of empirical methods (i.e. statistical and machine learning (ML)74

approaches) to find the mathematical relationship between molecular structure and a75

property of interest [1]. In the past decades, QSPR and mainly Quantitative Structure-76

Activity Relationship (QSAR) modelling methods have established themselves as key77

instruments in drug discovery [2–6] and beyond [1, 7]. Reliable QSPR models have the78

potential to reduce the need for time and resource intensive experimental screening of79

compounds by enabling effective compound selection in the drug development pipeline80

[8]. The increasing amount of experimental data available (i.e., in ChEMBL [9] and81

PubChem [10]) also enables the use of more advanced methods which have seen rapid82

development [11, 12]. Therefore, given the prevalence of QSPR modelling and its83

constant development, there is a need for software tools that can support researchers84

not only in the tasks of developing and deploying models in practice, but also in85

the critical assessment of new methods and validation of non-trivial computational86

workflows that include many preliminary steps such as collection, curation and analysis87

of data as well as model training, evaluation and deployment.88

In the traditional sense, QSPR modelling focuses mainly on describing the89

relationship between the compound structure and a property of interest, but pro-90

teochemometric modelling (PCM) has emerged as an extension that also introduces91

the protein target information into the equation [13, 14]. A PCM approach can extrap-92

olate similarities and differences across (super)families and is therefore promising93

in poly-pharmacology and off-target prediction [15], as well as a strategy for data94

augmentation and relevant binding residue identification [16, 17]. Although in the tra-95

ditional sense, the architecture is identical to that of a single-task model, it includes96

bio-activity endpoints for multiple proteins, by featurizing each compound-protein97

combination separately [18]. Therefore, PCM has inherent applicability challenges that98
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combine those of single-task and multi-task modelling (i.e. dataset size [19, 20], data99

balance [21, 22], sparsity [23], but also unique featurization requirements that need to100

take the proteins themselves into account [19, 20]).101

No matter the underlying philosophy, both traditional and PCM QSPR models102

can be obtained by combining various algorithms and methodologies, which often103

need to be benchmarked against one another in a systematic and comprehensive man-104

ner. While there is still an ongoing debate on whether and under what conditions a105

meaningful comparison of QSPR methodologies is possible [24], benchmarking and sys-106

tematic comparison have become an integral part of the QSPR field. Whether it is the107

comparison of new algorithms [18, 25, 26], molecular representations [27–29], model108

development strategies [20, 21], model validation [30, 31], the nature of data [32], or109

to provide usage guidelines [33], one common denominator of such studies is that they110

base their conclusions on a systematic comparison using a standardized subset of data.111

During this task, researchers are faced with many challenges from compiling a repre-112

sentative subset of data for the diverse set of tasks seen in QSPR modeling [29] to113

choosing the right method to obtain statistically sound results [34–36]. However, even114

more fundamental problems such as the dominance of median predictions [24] or com-115

bining data sources [37] can plague benchmarking results. Therefore, even with the116

long history of the QSPR modeling field, it is clear that benchmarking methodologies117

are important, but not problem-free.118

Another challenge that QSPR modellers face is the reproducibility of results and119

model deployment. While not specific to QSPR modelling [38, 39], reproducibility is a120

topic widely discussed in cheminformatics and computational drug discovery [40–42]121

and pertains mainly to correct estimation of real-world performance data, but also122

the practical transition from model building and evaluation to deployment [43]. For123

example, the deployment phase also needs to implement crucial steps to process com-124

pound structures before prediction to ensure equivalent compound representation as125
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during training. However, currently, there is a lack of open-source tools that would126

sufficiently address the reproducibility of results and the transfer of models into prac-127

tice and it is often up to the modeller to provide these, which leads to a large disparity128

between researchers in how reproducibility and deployment of models is addressed.129

Several open-source applications are available that support researchers in QSPR130

modelling and help in solving some of the aforementioned challenges. A popular131

framework is KNIME [44], which utilizes a GUI with visual workflows and has many132

pre-implemented components. However, designing custom components in KNIME can133

be challenging and the integration of Python extensions in the Java-based API is not134

always straightforward [45]. With a focus on deep-learning-based models, DeepChem135

[46], was one of the pioneering Python packages for molecular modelling. It offers a136

wide array of different featurizers and models and a flexible and easy to understand137

API that is modular and extensible. However, not all DeepChem models address the138

aforementioned reproducibility and deployment issues out-of-the-box. For example, the139

offered SklearnModel class does serialize the model itself, but reproducing the prepa-140

ration workflow and creating the feature matrix is left to the users themselves, which141

can be inconvenient or, worse, might create reproducibility and deployment problems.142

Extending DeepChem, AMPL [47] prioritized automated machine learning for bench-143

marking and it enables users to conveniently build and validate models. However, it144

still lacks functionality to readily deploy and use models in practice. ZairaChem [48]145

is another recent package, which proposes an automated cascade for training machine146

learning models, empowering users with little knowledge in data science to train robust147

ensemble-based models. However, one limitation of ZairaChem is that it currently only148

supports classification models and also does not enable model serialization with prepa-149

ration steps included. This is addressed in a recently published package, PREFER150

[49], which wraps trained models fully, including data preprocessing. It implements a151

pipeline based on AutoSklearn [50], covering steps such as data preparation, model152
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selection, and model evaluation. However, PREFER, offers a slightly less flexible API153

than the previous options and combining different feature representations and split-154

ting methods is not possible without modifying the source code of the package itself.155

One more package that supports comprehensive serialization of data preprocessing156

steps within produced models is Qptuna [51]. It features a modular API with variety157

of pre-implemented algorithms and featurizers, as well as a focus on model explain-158

ability. However, due to its focus on hyperparameter optimization and streamlining159

the modelling process the API is not as rich and extensible as in the case of some160

other packages such as DeepChem. For example, it might be tedious to use differ-161

ent hyper-parameter optimization strategies not implemented by the Optuna package,162

which Qptuna is based on. All of the aforementioned packages also lack support for163

PCM modelling with Qptuna as a notable exception with its support for simple Z-164

scale descriptors. Even though there exists a package with pure focus on PCM, an R165

tool called camb (Chemically Aware Model Builder) [52], it has not been maintained166

since 2017 [53]. Therefore, support for accessible and straightforward PCM modelling167

is still lacking among contemporary open source packages. Similarly, the inclusion of168

applicability domain of QSPR models is also not fully considered in any of the above169

packages.170

In this work, we present QSPRpred, an open-source package that attempts to com-171

pile the essentials of QSPR modelling into a compact and accessible Python package.172

As such, the package aims to address a user base with varying ranges of expertise173

from students to well-rounded QSPR modellers interested in developing and testing174

new approaches. With QSPRpred we try to provide high-level interfaces to accomplish175

QSPR modelling tasks in few steps, but at the same time try to encourage writing of176

modular Python code by making sure all variable steps are encapsulated and easily177

replaceable by custom implementations. In addition to being customizable, all steps178
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can also be combined using the built-in benchmarking workflow, which enables stream-179

lined model building to the likes of AMPL or Qptuna, but completely described in180

Python with ”plug-and-play” components. This provides a platform for researchers181

to experiment and validate novel approaches quickly. In addition, QSPRpred tackles182

the problem of reproducibility and deployment of models by streamlining setting of183

random seeds and using a global serialization model that not only includes the model184

itself, but also the molecule preparation and featurization steps. This means that a185

shared model can be reloaded and directly used for predictions from SMILES strings186

without the need to repeat any preparation steps.187

2 Implementation188

Although a wide variety of different QSPR models and descriptors have been described189

in literature [1], there is a significant overlap in the general QSAR/QSPR modelling190

workflow. QSPRpred leverages this by providing a modular framework that comes191

with many out-of-the-box components while also providing clear interface definitions192

to facilitate comprehensive extensibility features (Figure 1). The description of vari-193

ous aspects of this workflow will be the subject of the following subsections: Section194

2.1 includes an extensive description of all the data preparation components that195

QSPRpred provides. Section 2.2 provides relevant details on model training and eval-196

uation. In addition, QSPRpred also provides various visualization tools, which are197

described in section 2.2.6.198

2.1 Data199

2.1.1 Data collection200

The first step of any QSPR modelling project is the collection of data. The supplied201

data should at least contain the molecule SMILES sequences and the property to be202

predicted, but can contain any extra information as needed. Furthermore, data can203
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be retrieved from an external source programmatically, using the DataSource class,204

which is used to describe the creation of data sets from different sources. By default205

QSPRpred provides the Papyrus data source, which can be used to collect data from206

the eponymous dataset Papyrus, a large-scale curated bioactivity dataset [54]. This207

method of data collection is also used for creating multiple benchmarking datasets208

dynamically, see section 3 for an example. Fetching data with a DataSource will209

directly return the data in a MoleculeTable object or a QSPRDataset. MoleculeTable210

is a data container that provides functionality to handle different operations for211

molecule preparation and descriptor calculation while QSPRDataset is its extension212

that provides functionality specific to QSPR modelling such as data splitting.213

An instance of QSPRDataset can also be initialized directly (without a DataSource)214

by the user through a tabular format (e.g. CSV/TSV) or an SDF file. The user always215

needs to specify one or more properties to be predicted during initialization or dur-216

ing the lifetime of the data set. These are specified as TargetProperty, which are217

associated with a specific modelling TargetTask, such as REGRESSION or MULTICLASS.218

In the following sections, several data pre-processing and preparation steps will be219

described which can be applied to the QSPRDataset. The prepareDataset method220

QSPRDataset streamlines the process by applying the data preparation steps in a fixed221

order: data filtering, descriptor calculation, data splitting, feature filtering and feature222

standardization. The user can specify which components should be used for each step,223

which includes custom components that can be implemented by creating subclasses224

of the abstract base class for each component. The QSPRDataset and MoleculeTable225

are serializable to JSON (JavaScript Object Notation) and other associated files (see226

section 2.2.7), which enable the user to save and reload prepared datasets in machine-227

and human-readable format.228
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2.1.2 Data pre-processing229

Before being used for model fitting, data samples may be removed based on the follow-230

ing criteria: specific values (CategoryFilter, e.g. remove all samples from a specific231

source or year), identical descriptor values (RepeatsFilter) or user-defined filters.232

Moreover, as the underlying pandas [55] dataframe can be accessed and edited, any233

further data analysis steps can be executed in this phase. For easy visualization and234

exploratory analyses of the dataset, integration with Scaffviz [56] is provided, which235

is described in more detail in the visualization section 2.2.6.236

2.1.3 Descriptor calculation237

Descriptor calculation in QSPRpred is facilitated through the DescriptorSet class238

which wraps one or more types of descriptors. There are many integrated implemen-239

tations of the DescriptorSet available including: RDKit descriptors [57], Mordred240

[58], Mold2 [59], PaDEL [60] and Tanimoto distance to other molecules. Additionally241

a range of different types of molecular fingerprints are implemented, such as Mor-242

gan and MACCs [61] fingerprints. A trained QSPRpred model can itself also be used243

as descriptor for stacked modelling. While users can add new implementations of244

DescriptorSets this may not always be practical, for example when using descrip-245

tors from experimental measurements. In this case, the descriptors can be provided246

as a data frame directly via the built-in DataFrameDescriptorSet. Moreover, a cus-247

tom implementation of the DescriptorSet interface, also exists for protein descriptors248

(ProteinDescriptorSet) that are commonly used for PCM modelling (i.e. z-scales249

[62], BLOSUM [63] and VHSE [64]). This is provided via the standalone ProDEC250

[65] package, which enables calculation of multiple sequence alignment-based descrip-251

tors for proteins. The multiple sequence alignment is done with Clustal Omega [66] or252

MAFFT [67], but QSPRpred also describes an API to easily integrate other alignment253

methods.254
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2.1.4 Feature filtering255

Feature filtering is commonly used to select the most informative features from the256

calculated descriptors. Here, the feature filters currently implemented in QSPRpred257

will be discussed, however, new feature filters can be easily added by the user. Filters258

in QSPRpred are always calculated using only the training set or the training fold259

of the data set to avoid data leakage (see subsection 2.1.5). The first filter that is260

implemented is the LowVarianceFilter, which calculates the variance within a feature261

on the training set and removes it if it is below a threshold specified by the user.262

A HighCorrelationFilter is also available. It calculates the correlation between263

features and removes them if it is higher than the user-specified threshold. Finally,264

QSPRpred provides integration with BorutaPy [68], which is a Python implementation265

of the Boruta filter [69]. Boruta filtering is an all-relevant feature selection method266

that removes features based on their relevance compared to random features.267

2.1.5 Data splitting268

The choice of how to split data can greatly influence our impression of future per-269

formance of the model [22, 70]. QSPRpred supports any scikit-learn-style [71] data270

splitter class that has a method split(X,y) that yields for each split/fold the indices271

for each subset. Splits can be applied at two levels, during dataset preparation to cre-272

ate the independent test set (which will be used by TestSetAssessor) and during273

model optimization/training to create (cross-)validation sets with CrossValAssessor274

(described in section 2.2.3). QSPRpred also offers several integrated splits. All275

of these methods support the creation of a single train-test split or k-folds.276

Firstly, SklearnRandomSplit which wraps scikit-learn’s (Stratified)ShuffleSplit277

method. Three splits (RandomSplit, ClusterSplit, ScaffoldSplit) are included278

that utilize the BalanceSplit [72] package to create well-balanced data splits for279

(sparse) datasets without data leakage between different tasks. The ManualSplit can280
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be used to apply a predefined split. The TemporalSplit is used to make time series-281

based test or cross-validation splits. QSPRpred also has a BootstrapSplit class that282

can wrap any split and use it for repeated sampling of the dataset applying the specified283

split in replicates. Furthermore, any of the above-mentioned splitters can be applied284

to PCM modelling with the help of the PCMSplit class, which will ensure the splits are285

balanced with respect to the protein targets. Two other PCM-specific splitters are also286

available LeaveTargetOut and TemporalPerTarget. LeaveTargetOut will remove all287

the data points for a certain target, to evaluate how well the PCM model extends to288

new targets. The TemporalPerTarget split applies a temporal split that avoids data289

leakage with multiple tests for compounds for different targets over time, by using the290

first occurrence of the molecule in the dataset for all proteins as timepoint.291

2.2 Modelling292

2.2.1 General293

QSPRpred inherently supports both single and multi-task variants of regression and294

single-class and multi-class classification. All models implemented with QSPRpred295

are wrapped in a QSPRModel subclass, which can then be applied to a QSPRDataset296

instance. The model task is automatically derived from the target properties specified297

in the dataset, i.e. two single-class TargetTask target properties, will result in a multi-298

task single-class model. Model tasks in QSPRpred are encoded as a Python Enum class299

(e.g. REGRESSION, SINGLECLASS, MULTITASK MULTICLASS), which allows easy specifica-300

tion of which tasks a model can support. Like the dataset object, a QSPRModel can be301

serialized to JSON (see section 2.2.7). Currently, available model implementations are:302

SklearnModel, DNNModel, PyBoostModel and ChempropModel. The SklearnModel is a303

wrapper for all scikit-learn estimators [71]. The DNNModel is a PyTorch [73] implemen-304

tation of a fully-connected neural network. PyBoost is a wrapper around the Py-Boost305

[74] package, a Gradient Boosted Decision Tree toolkit. The ChempropModel wraps306
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the basic Chemprop [75] message passing neural network, although it does not sup-307

port all functionality that Chemprop provides. Moreover, any new type of model can308

be simply implemented by creating a subclass of the abstract base class QSPRModel,309

requiring the user to just implement methods for fitting, predicting and serialization of310

the model. There is also a dedicated tutorial to implementing new models (see section311

2.5) to help QSPR practitioners with integration of novel methods.312

2.2.2 PCM modelling313

Creating a PCM model differs slightly from creating a standard QSPR model. PCM314

models require protein featurization and can introduce the need for different splitting315

methods, as discussed in section 2.1.3 and 2.1.5 respectively. To create a PCM dataset,316

QSPRpred provides a class called PCMDataSet which forms the alternative input for317

a model of the class PCMModel, which is slightly altered from the base QSPRModel and318

can be used to wrap QSPRModel implementations for PCM. This is mainly necessary319

because in order to make predictions with a trained model, the protein identifier of320

the protein to make predictions for is needed.321

2.2.3 Model Assessment322

To evaluate model performance, QSPRpred provides a class called ModelAssessor323

that defines a structure for performance evaluation. Given a QSPRpred model and a324

dataset, it will run an evaluation and return the specified metric. All scikit-learn [71]325

scoring functions can be used or custom ones can be provided to the ModelAssessor.326

By default, two ModelAssessor subclasses are implemented, namely the327

TestSetAssessor and the CrossValAssessor. As the name suggests, the328

TestSetAssessor evaluates the model performance on the test set of the provided329

dataset. It will use the model to predict values for the test set and return the score330

given by the provided metric. On the other hand, the CrossValAssessor can perform331

cross-validation on the training set. The folds are determined by the user-specified332
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splitting method (see section 2.1.5). It will return a list of scores for each fold. Because333

of the flexible splitting method, this class is not limited to cross-validation, but can334

also perform bootstrapping, through resampling of the training set (see section 2.1.5).335

Both described ModelAssessor implementations will write the predictions to the336

model directory in TSV format, including unique molecule identifiers provided by the337

dataset. Using the identifiers each prediction can be linked back to the original data338

point, which allows for detailed analysis and visualization (see section 2.2.6) of the339

model performance.340

2.2.4 Hyperparameter optimization341

Finding the right hyperparameters for a model, can be a challenging task. As342

with previously discussed components, QSPRpred provides a flexible base class343

HyperparameterOptimization. Hyperparameter optimization requires specification344

of the search space; which model parameters to tune and for which values or within345

which bounds. A template of how to provide the search space file can be found in the346

documentation [76]. Furthermore, a ModelAssessor needs to be specified, that deter-347

mines how a set of hyperparameters will be evaluated. If the ModelAssessor returns348

multiple scores, e.g. in the case of cross-validation a score for each fold is returned,349

the score will be aggregated by a user-specified function.350

Two default implementations of HyperparameterOptimization exist: GridSearch351

and OptunaOptimization GridSearch is an exhaustive search algorithm, that eval-352

uates all combinations of the specified hyperparameters. OptunaOptimization is a353

form of Bayesian optimization using Optuna’s [77] Tree-structured Parzen Estimator354

algorithm as the acquisition function. Bayesian optimization is used for iteratively355

proposing new hyperparameters for a machine learning model applying the Bayesian356

principle, which allows for finding the optimal hyperparameter combinations without357

an exhaustive search. The user needs to set the number of iterations because it is an358
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iterative process. By default the search starts with a random sample of ten parameter359

combinations, afterwards, the acquisition function is used.360

2.2.5 Applicability Domain361

For evaluation of the applicability domain of trained models, QSPRpred provides362

integration with MLChemAD [78]. MLChemAD implements many commonly used363

definitions of the applicability domain for cheminformatics models, based on k-nearest364

neighbors, the local outlier factor or on bounding approaches. It is also possible to365

implement a custom applicability domain using the ApplicabilityDomain base class.366

An ApplicabilityDomain object may be attached to a QSPRDataset. Then during367

the dataset preparation, the applicability domain can be fit on the training set to368

identify or remove outliers from the test set. Furthermore, the ApplicabilityDomain369

object can be attached to a model and fit on the whole dataset. In production mode,370

when predicting from SMILES the model will return whether this compound is within371

the applicability domain of the trained model.372

2.2.6 Visualization373

The test set and cross-validation assessments write to result files in the model directory374

as described in section 2.2.3. These result files are human readable and can be used375

to easily generate any visualization users require. QSPRpred also has a ModelPlot376

class, that provides a number of different plots that can be generated directly from377

an instantiated model with result files present. These plots include receiver operating378

characteristic (ROC) curves, precision-recall curves, calibration plot and barplots for379

a range of scikit-learn [71] classification metrics. Metrics such as precision, recall and380

Matthews Correlation Coefficient can be visualized not only for single-task models, but381

also for multi-task and multi-class classification models. In the case of multi-class mod-382

els metrics are calculated per class (one-vs-rest) and with different averages. Moreover,383
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correlation plots can be generated for multi and single-task regression models. In addi-384

tion to the native ModelPlot, QSPRpred’s MoleculeTable and QSPRModel instances385

can be used directly with the interactive chemoinformatics visualization package Scaf-386

fviz [56]. Scaffviz offers alternative visualization of model errors and is essentially an387

adapter between molplotly [79] and QSPRpred. It can be used to apply dimension-388

ality reduction methods to obtain 2D embeddings of molecules from descriptors and389

display them in an interactive scatter plot. However, any properties from the data390

set can be displayed on each axis as well. Points may be coloured by any property391

in the data set, including training and test splits. It can also visualize model errors392

for mispredicted compounds as color overlay as well, which helps identifying difficult393

compounds to predict.394

2.2.7 Reproducibility & Transferability395

In accordance with the R(eusability) of the FAIR principles [80], almost everything in396

the QSPRpred API is serializable to a human-readable file format. The vast major-397

ity of objects are serializable to a JSON file, which can be read easily even without398

QSPRpred, including model parameters of created models and workflow settings. This399

is possible thanks to the ml2json package [81] and the jsonpickle [82] project. Since400

pandas.DataFrame instances are used to represent all tabular data, they can be saved401

to several formats, including human-readable .csv files. When a human-readable rep-402

resentation is not possible (i.e. with deep learning models), sufficient metadata is403

saved to be able to recreate it as closely as possible. Additionally, the random state of404

QSPRpred is globally configurable, allowing for full reproducibility of results involv-405

ing random operations. The random seed, whether newly generated or passed by the406

user, is saved to metadata and can be re-used to get the same results. Each dataset407

is initialized with a single random state, which is adopted by models and used in all408

subsequent random operations. However, QSPRpred also allows further fine-grained409
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control over the random state by having the option to control the random state of410

models and splits separately from the dataset.411

2.3 Architecture412

The structure of the QSPRpred package reflects the intended usage as outlined in413

Figure 1 with several packages and subpackages separating the different tasks (Figure414

2). Every data structure and functional element of the API has its own abstract def-415

inition, which is followed in the reference implementations. For example, the main416

QSPRDataset (located in qsprpred.data.tables.qspr) class implements several417

interfaces defined in qsprpred.data.tables.base. Likewise, the QSPRModel abstract418

base class (located in qsprpred.models.base) defines the API of a model while the419

qsprpred.models.sklearn is its implementation that facilitates a compatibility layer420

between the scikit-learn [71] package and QSPRpred. Such a standardized approach421

to API development makes integration of new tools and data structures easier and422

changes to code minimal as libraries update over time.423

The modular architecture of QSPRpred also makes optional installation of depen-424

dencies possible. Much of the functionality located in qsrppred.extra depends on425

external packages that can sometimes pull many dependencies alongside them, but426

with careful modular separation it is not necessary to install those dependencies427

unless they are truly needed. Therefore, QSPRpred also supports various instal-428

lation flags to make sure only necessary dependencies are installed for different429

intended use cases. For example, the dependencies needed to support functionalities in430

qsprpred.extra.gpu are only installed if the [gpu] flag is specified upon installation,431

but without it the rest of the package will still function normally.432

In addition to the flexible Python API, QSPRpred also offers extensive command433

line interface (CLI). While less customizable than the API, the CLI allows the user to434

train a wide variety of QSPR models without having to write any code. The QSPRpred435
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CLI is subdivided into three callable scripts (data CLI, model CLI and predict CLI)436

that cover the entire QSPR model building workflow (see figure 1).437

With the data CLI it is possible to create a range of datasets for different tasks with438

one command, including datasets for multi-class and multi-task modelling (see section439

2.2). Furthermore, most of the base QSPRpred data pre-preprocessing functionality is440

available through this CLI, including all the different descriptors sets, and data splits441

as well as target imputation for multi-task modelling.442

After creating one or more datasets through the CLI or the Python API, the model443

CLI can be used for model training. With the model CLI a range of scikit-learn [71]444

models and a PyTorch [73] fully-connected neural net can be trained. The model CLI445

provides the same main training steps as the Python API, namely hyperparameter446

optimization, cross-validation and test set predictions. Finally, after model training447

has completed, the trained models can be used to make predictions on new sets of448

molecules with the predict CLI.449

2.4 Documentation450

In QSPRpred, much effort is also devoted to guiding new users as well as potential451

contributors. The code follows a predetermined style guide [83], which requires that452

every functionality needs to be properly documented via a docstring that is then453

visible on the QSPRpred documentation page [76] upon publishing a new release.454

The style guide also requires that Python type hints are present for all methods455

and functions to indicate which data structures are compatible and expected. Pre-456

commit hooks are also available that can be used to check code before committing to457

ensure compliance with the style guide. In addition to these strict API documentation458

requirements, the documentation pages also contain guides on how to use the CLI and459

other miscellaneous items pertaining to the usage of the package.460
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2.5 Tutorials461

We have dedicated several Jupyter notebooks to featuring real-life QSPR modelling462

examples. The tutorials expect basic understanding of QSPR modelling concepts and463

are designed to mainly showcase QSPRpred functionality. While they are easily acces-464

sible by beginners and are suitable to be used by students, they also include specialized465

notebooks for more advanced users who want to customize behaviour and integrate466

new methods.467

The user progressively learns all functionalities within QSPRpred from data set468

acquisition to model evaluation. A quick start tutorial is designed to get the user to469

prepare a dataset and run a single-task QSAR regression model with QSPRpred as470

quickly as possible. After the quick start tutorial, a series of one, seven and three tuto-471

rials covering respectively the basics of benchmarking, data handling and modelling472

within QSPRpred are available. These tutorials go over the main aspects that need473

to be taken into account in any modelling project prior to modelling (i.e data collec-474

tion, preparation, featurization and splitting), but also the necessary tools to build475

and validate models (i.e. formulation of model tasks, model assessment and logging of476

progress and results). These basic tutorials can be accessed individually or followed477

sequentially from the quick start guide.478

On top of the basic tutorials, a series of ten advanced data and modelling tuto-479

rials are available. These help the user to build on top of the already acquired basic480

knowledge of QSPRpred by teaching them how to customize functionalities and add481

new features. These tutorials are aimed at researchers who develop new methods and482

want to take advantage of QSPRpred to automate and standardize certain tasks. The483

advanced tutorials showcase the possibilities to perform hyperparameter optimization484

and add custom descriptors and data splitting methods, as well as custom models.485

Moreover, these tutorials also dive deeper into the modelling options by showing how486
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to build deep learning, multi-task, and PCM models, and advanced model monitoring487

via the popular Weights & Biases (W&B) framework [84].488

2.6 Testing489

In order to ensure that all functionalities of the package remain operational even as490

the code changes, be it by internal factors (code updates) or external (dependency491

updates), frequent testing of the code is necessary. Therefore, the inherent part of492

the QSPRpred package is unit testing and every new functionality added needs to be493

accompanied with testing code.494

QSPRpred also takes advantage of continuous integration (CI) not only to run unit495

tests, but also to frequently run the tutorial code and check consistency of models.496

Therefore, it is always ensured that upon any modification of the code all tutorials are497

up to date, all code is working as expected and all reference models return the same498

expected results. The latter is especially important to guarantee model consistency499

across different versions of the code and its dependencies by highlighting changes that500

could lead to past results being unrepeatable.501

3 Results502

QSPRpred also provides an overarching API to conduct benchmarking experiments.503

These features are located in the qsprpred.benchmarking package and provide a504

streamlined way to test various combinations of molecular descriptors, model algo-505

rithms and even data set preparation strategies. In this section, we will show two506

example scenarios of experiments focused on building and comparing regression mod-507

els. The code to reproduce these experiments is available at https://github.com/508

CDDLeiden/qsp-bench, but the repository can be easily extended and adapted to509

other scenarios as well using the instructions within.510
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3.1 Experiment 1: Benchmarking Single-Task and Multi-Task511

Regression Models512

A multi-task modeling approach can be beneficial in modeling several endpoints at513

once for similar biological targets [85]. However, it is not always clear if such an514

approach will lead to an improvement over the more traditional single-task modeling515

or what multi-task methodology would be the most optimal for the data at hand.516

There is a plethora of methods that could be considered. As a result, researchers are517

often confronted with a large selection of viable workflows and methods [86].518

For this small case study, we chose a bioactivity data set of 4 adenosine receptors519

(A1, A2A, A2B and A3). The adenosine receptors are a highly conserved family of520

enzymes that share many similarities and selective modulators of adenosine receptors521

are of interest in drug discovery. Therefore, many compounds that share structural522

similarities are often tested against multiple or all of these receptors. This makes multi-523

task modeling an eligible method to consider when creating a QSAR model for these524

receptors. The data set used in this study was assembled by querying the Papyrus525

data set (version 05.6) on the respective UniProt accession keys (P30542, P29274,526

P29275 and P0DMS8) using QSPRpred’s integration. Only minor modifications to527

the adapter were made through inheritance to facilitate multi-task modeling and the528

adapted implementation is available in the qsp-bench repository. Compounds in this529

data set were represented by Morgan fingerprints with radius 3 and bit length of 2048530

(as implemented in RDKit [57]).531

The choice of models, in this case, study was motivated by the recently added532

multi-task capability to the popular xgboost package [87]. Since the models imple-533

mented in this package adhere to the scikit-learn API, they can be readily used534

in QSPRpred with the SklearnModel class. For the multi-task scenario, we compared535

the two modelling strategies currently implemented by xgboost: (1) Multi Output536

Tree (MOT) and (2) One Output Per Tree (OOPT).537
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The goal of the case study was to compare these two multi-task strategies with538

a baseline KNeighborsRegressor algorithm from the popular scikit-learn package539

[71], but also against a simple MedianModel model inspired by the recent work of Janela540

et al. [24], which predicts the median target property value for every test instance.541

In all workflows, the target property was the median pCHEMBL value as determined542

from the Papyrus data set [54]. All experiments were conducted in 30 replicas and543

using either a standard random train-test splitting strategy or a cluster split strategy,544

RandomSplit and ClusterSplit classes in the QSPRpred API, respectively. For each545

model, we report the R2 metric on each task separately 3.546

Overall, we found no benefit in using a multi-task model over a single-task model547

when using 30 repeated experiments (Figure 3). In fact, the multi-task models showed548

slightly worse performance overall in both the random split and clustered split in all549

tasks (Figure 3). This is likely due to the sparsity of the multi-task target variables550

and the effect of imputation.551

It can also be seen that the cluster split (Figures 3C and 3D) is more difficult552

than a standard random split (Figures 3A and 3B) for all models as indicated by a553

significant drop in performance for both single-task and multi-task models. This is554

expected since the clustered split is designed with the intent to present the model with555

more difficult examples in the test set.556

In addition, the performance shows more variance across the scaffold split than557

the random split. This is likely due to the difficulty of the test set fluctuating more558

with the varying similarity of the test compounds to the training set, which depends559

on the clusters created (Figure 3).560

In all experiments the xgboost models were comparable to the561

KNeighborsRegressor model (Figure 3). For the multi-task case the OOPT strategy562

worked slightly worse or was comparable to MOT (Figures 3B and 3D). Contrary to563
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findings of Janela et al. [24], we did not see elevated performance of the MedianModel564

baseline on this particular data set and benchmarking conditions.565

Therefore, using multiple single task models is likely a better choice for the data at566

hand. However, it should be noted that more models and strategies could be consid-567

ered here and also compared in a follow up study. For example, deep learning models568

may be better-suited for multi-task modeling than the algorithms tested herein. Their569

architecture can be adapted in a number of ways to accommodate multi-task learn-570

ing [88]. Another point to consider is the influence of sparsity of the data [89]. We571

simply imputed missing labels with a median value in our experiments, which may572

have introduced large bias to these central values in the multi-task models presented.573

Surprisingly, this did not affect the performance of the MedianModel, which should574

theoretically benefit from such imputation. Finally, it should also be noted that proper575

statistical testing should also be conducted to determine under which conditions the576

performance of models truly significantly differs.577

3.2 Experiment 2: Comparison of Regression Models of578

Different Architectures579

One problem that QSPRpred is trying to address is how to bring models built with dif-580

ferent algorithms and, thus, different software requirements under one roof and how to581

run and benchmark them with as similar API as possible. Therefore, in this case study582

we show an example that integrates and compares both the XGBoostRegressor model583

and a deep learning based method Chemprop in one benchmarking experiment on sev-584

eral data sets. Both models have different hardware and software requirements with585

XGBRegressor being CPU-based and accepting fingerprints as input and Chemprop586

requiring GPU-accelerated training and raw SMILES as input. With the exception of587

raw standardized SMILES for Chemprop, the same fingerprint, replica counts, splitting588
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strategies and evaluation metrics were used in this case as well. The MedianModel was589

again used as a simple baseline.590

We also switched to four MoleculeNet benchmarking sets for this experiment to591

show how data sets from this source can be integrated for benchmarking. The data592

sets we chose have a diverse set of target properties. In particular we chose to evaluate593

the predictivity of the built models on the Lipophilicity, clearance, solubility and free594

solvation energy (Figure 4).595

Clearance is known to be a difficult property to predict [90] and was also the596

worst performing data set in our experiments (Figure 4). In the cluster split scenario,597

the XGBRegressor did not even perform above the MedianModel baseline (Figure598

4B). The XGBRegressor was also the inferior model in all scenarios we observed.599

However, it should be noted we did not optimize hyperparameters for these models600

and just used them with their defaults. Therefore, it is possible a better performance601

could still be achieved for XGBRegressor as well as ChemProp. Again, we observed602

that the clustered split showed degraded performance across all data sets and the603

variance between replicas was larger (compare Figure 4A and 4B). This is consistent604

with Experiment 1. The XGBRegressor also showed larger variance in predictions605

as compared to ChemProp, which might indicate that ChemProp is more stable and606

consistent in its predictive performance.607

These case studies were not by all means complete or exhaustive, but they illustrate608

how QSPRpred could be used to run various experiments for validation of novel QSPR609

methodologies on a variety of problems. Moreover, the available code in the qsp-610

bench repository can be quickly derived from to create other benchmarks. We think611

that this is an especially interesting prospect for developers of new models who can612

validate their approach within QSPRpred, but the simple act of integrating it into the613

benchmarking workflow also makes it readily available for deployment by others.614
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4 Conclusions615

QSPRpred is a new and versatile open-source package for QSPR modelling. QSPRpred616

addresses a number of issues in the QSPR modelling field, including a need for tools617

that facilitate easy comparison and validation of an ever-growing number of different618

QSPR workflows. QSPRpred enables this by its modular Python API that simpli-619

fies the implementation of a plethora of QSPR modelling tasks, which can be easily620

tied together in its benchmarking workflow. Furthermore, reproducibility of results is621

ensured through consistent serialisation of models and data in human-readable for-622

mat. Inclusion of data pre-processing and featurization steps with the models enables623

direct application of trained models to new compounds using only a SMILES string.624

Moreover, to our knowledge this is the first QSPR modelling tool to support pro-625

teochemometric modelling in Python. QSPRpred is also integrated with a number of626

other packages developed in the Leiden Computational Drug Discovery group, notably627

DrugEx [91] for de novo drug design and Papyrus [54] for collection of bio-activity628

data. Extensive documentation and comprehensive tutorials are available.629

In the future, we will continue to develop QSPRpred and extend its capabili-630

ties. Most notably we intend to further extend the range of available descriptors (i.e.631

Molfeat from datamol.io [92]) and models (i.e. by adding support for ensemble mod-632

elling and a wider range of neural network architectures with the help of skorch [93], a633

scikit-learn [71] compatible neural network library that wraps PyTorch [73]). Further-634

more, we will integrate QSPRpred within GenUI [94], which provides an accessible635

user interface for cheminformatics, QSAR modelling and AI-based molecular genera-636

tion provided by the associated DrugEx framework [91]. Furthermore, continued efforts637

are needed to teach and adhere to high standards for FAIR [80] research practices638

and we hope that QSPRpred will prove to be a helpful tool to assist researchers in639

reproducible and transferable QSPR modelling. Therefore, with an assortment of sup-640

porting and depending packages already developed or under active development and641
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with active user base from both Leiden University and UCT Prague, we aim to keep642

QSPRpred up to date and help researchers to perform experiments faster and in a643

more standardized and reproducible manner as the field of QSPR modelling evolves.644

Supplementary information. The source code is available from https://github.645

com/CDDLeiden/QSPRpred. The described version of the software (v3.0.1) is also646

archived on zenodo at https://doi.org/10.5281/zenodo.10720563.647

Availability and requirements.648

• Project name: QSPRpred649

• Project home page: https://github.com/CDDLeiden/QSPRpred650

• Case Study Code: https://github.com/CDDLeiden/qsp-bench651

• Operating system(s) Full support for Linux. QSPRpred is supported on Windows652

apart from the PCM modelling, which relies on Clustal Omega [66] or MAFFT [67].653

These require manually installation on Window. We are currently working on full654

support for MacOS.655

• Programming Language: Python656

• Other requirements: Python 3.10, see https://github.com/CDDLeiden/657

QSPRpred/blob/main/pyproject.toml for full list of requirements.658

• License: MIT659
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[3] Jiménez-Luna, J., Grisoni, F., Weskamp, N., Schneider, G.: Artificial intelligence705

in drug discovery: recent advances and future perspectives. Expert Opinion on706

Drug Discovery 16(9), 949–959 (2021) https://doi.org/10.1080/17460441.2021.707

1909567708

[4] Alves, V.M., Bobrowski, T., Melo-Filho, C.C., Korn, D., Auerbach, S., Schmitt,709

C., Muratov, E.N., Tropsha, A.: QSAR Modeling of SARS-CoV Mpro Inhibitors710

Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates711

for Repurposing against SARS-CoV-2. Molecular Informatics 40(1), 2000113712

(2021) https://doi.org/10.1002/minf.202000113713
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Fig. 1 Visualization of the QSPRpred workflow. Each box represents a general step in QSPR/QSAR
modelling, e.g. data collection and visualization. Every rounded rectangle is an abstract base class
in QSPRpred defining the interface of the respective step. Each of these classes has a number of
implementations included, which are listed in the attached box, e.g. the abstract base class DataFilter
has RepeatsFilter and CategoryFilter available as an out-of-the-box implementation. Therefore,
altering the behaviour of each component can be achieved either through inheritance or by simply
providing a custom implementation if the respective abstract base class.
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Fig. 2 Graphical overview of the QSPRpred package architecture. Only the main packages
discussed in this work are included. The majority of the functionality is centered around
the qsprpred.data package, which integrates API definitions and tools to work with chemi-
cal structures (qsprpred.data.chem), featurization (qsprpred.data.descriptors), processing
tools for data and feature filtering qsprpred.data.processing, data splitting and resam-
pling (qsprpred.data.sampling), data source adapters (qsprpred.data.sources) and data
storage implementations (qsprpred.data.tables). The qsprpred.models package contains
the base definition of a QSPRpred model API in qsprpred.models.model, which is imple-
mented for scikit-learn models in qsprpred.models.sklearn. In addition, the qsprpred.models

package also contains functionality needed to monitor training (qsprpred.models.monitors),
optimize (qsprpred.models.hyperparam optmization) and assess model performance
(qsprpred.models.assessment methods and qsprpred.models.metrics). The qsprpred.extra

package extends functionality of both qsprpred.data and qsprpred.models with additional
extensions that support deep neural networks and PCM modelling functionality. Finally, the
qsprpred.benchmarks package houses data classes needed to set up (qsprpred.benchmarks.settings)
and run benchmarking experiments (qsprpred.benchmarks.runner).
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Fig. 3 Coefficients of determination (R2) calculated for each replica in different benchmarking runs
conducted in Experiment 1.

Fig. 4 Coefficients of determination (R2) calculated for each replica in different benchmarking runs
conducted in Experiment 2.
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