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Abstract

The liquid slip phenomenon are pivotal for understanding fluid behavior at small scales and has been
investigated using the lattice Boltzmann method (LBM). Boundary conditions for the lattice Boltzmann
liquid flow simulation, however, are much beyond from ideal and how to precisely determine the boundary
conditions for liquid flow with slip remains a challenge. In this study, we integrate the slip boundary
condition for fluid flow for Newtonian as well as non-Newtonian fluid. Our primary emphasis is to
comprehend the influence of slip effects on the flow characteristics of real shear-thickening fluid (STF),
encompassing Newtonian, shear-thinning, and shear-thickening behaviors under varying applied stresses
or strain rates. In order to achieve this, we have introduced the combination of modified bounce back and
specular reflection (MBSR) scheme and half way bounce back and specular reflection (HBSR) scheme.
In theory, the interactions between the parameters of the combination and the slip length are explicitly
deduced. The specified combination parameter is decided by the slip length given and the relaxation
time. These slip boundary conditions are analyzed for their distinct results. Our process has been
tested for accuracy and reliability for Newtonian flow as well as non-Newtonian flow and the results
are compared with the analytical solution. We also develop a theoretical model to elucidate the flow
characteristics of real shear-thickening fluid (STF) in a channel with slip effects. Investigating pressure
and channel height variations, we observe nuanced responses. Initially, under increasing pressure, the
regime with Newtonian flow rate Q1 dominates, reaching a peak. As pressure rises yielding dominance
to another regime with shear-thinning flow rate Q2, while regime with shear-thickening flow rate Q3

remains zero. Further pressure escalation prompts a monotonically increasing trend in Q3, achieving
dominance. Simultaneously, Q1 and Q2 approach zero. These trends hold true with and without slip
effects, with higher flow rates in the presence of slips for a given pressure drop and viscosity. Additionally,
as channel height increases, Q1 predominates at lower heights, transitioning to dominance by Q2 and
then Q3 at larger heights.
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1 Introduction

In recent years, researchers have shown a growing interest in understanding the phenomenon of liquid
slip [1–4], where a fluid flows near a solid surface with a relative motion between the two, resulting in a
slip velocity [3, 5] at the boundary. Slip conditions, deviating from the conventional no-slip assumption
in fluid mechanics, gain prominence in microfluidics and nanofluidics where viscosity effects become
substantia [6, 7]. Notably, slip reduces drag in nanoflows, optimizing efficiency in nanoscale devices,
and finds applications in industrial lubrication. To effectively use numerical simulations, it’s crucial to
establish appropriate slip boundary conditions. These boundary conditions play a vital role in accurately
modeling and understanding slip effects, making them a significant aspect of research in this field.

The slip length is determined by the characteristics of the fluid-solid system, including viscosity,
surface roughness, and ambient conditions. Viscosity influences the ease of fluid slip, while surface
roughness and ambient conditions contribute to the deviation from the traditional no-slip behavior at
the fluid-solid interface [8]. We have a range of the slip length considered in literature which depends
on the height of the domain. To investigate and simulate liquid slip, computational methods have
become essential tools, and the lattice Boltzmann technique [9–12] is one such method widely used for
its versatility and ability to handle complex fluid behaviors. However, when simulating fluid flow with
slip using the lattice Boltzmann method (LBM), determining accurate boundary conditions becomes a
challenging task. The researchers have been actively working on improving the accuracy of slip boundary
conditions in lattice Boltzmann simulations. Within the realm of LBM, significant research has been
dedicated to addressing slip boundary conditions.

In LBM, there exist two primary approaches for implementing slip boundary conditions. The first
strategy involves directly constructing the slip velocity using Navier’s slip model. Subsequently, velocity
boundary conditions are employed to simulate the slip velocity. Tian et al., for instance, employed a
second-order implicit scheme to calculate the first-order derivative of the slip velocity at the boundary
[13]. Meanwhile, Zheng et al. introduced a coupling between the momentum equation, energy equation,
and LBM to obtain the slip velocity, effectively circumventing the challenge of computing the second-
order derivative of the slip velocity [14]. Both Tian et al. and Zheng et al. applied the non-equilibrium
extrapolation scheme to achieve slip boundary conditions, but they did not explicitly consider the nu-
merical slip velocity generated by the velocity boundary conditions.The lattice Boltzmann method has
proven to be a versatile and robust tool for studying microchannel flows with slip boundary conditions,
and researchers have explored various strategies to accurately implement these conditions within the
framework of LBM. These efforts contribute to a deeper understanding of fluid behavior in microchan-
nels, particularly when slip effects come into play.

Slip issues are indeed expected in shear-thickening fluids (STFs) due to the nature of their rheological
behavior. STFs exhibit a significant increase in viscosity at high shear rates, which can lead to the
formation of a percolated network of particles that prevents the fluid from flowing smoothly and also
start behaving like a soft solid [15]. This phenomenon, known as discontinuous shear thickening (DST),
can result in a stick–slip behavior between the fluid acting like a soft solid and the wall, where the
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fluid experiences periods of high stress and low shear rate, followed by sudden jumps in stress and shear
rate near wall [16]. Slip affects the flow of shear-thickening fluids (STFs) by altering the boundary
conditions and the resulting stress distribution. When slip occurs, the fluid’s viscosity increases to
such an extent that it prevents the fluid from flowing smoothly at the boundaries, leading to stick–slip
behavior [17]. Further, wall slip can result in non-uniform flow profiles across the fluid thickness, leading
to flow heterogeneity and variations in the observed rheological behavior [18]. This can complicate the
analysis of shear-thickening mechanisms and limit the applicability of models for describing the fluid’s
flow behavior. In practical applications of shear-thickening fluids, such as in industrial processes or
consumer products, wall slip can affect the performance and stability of the material. For example,
in applications involving coating or lubrication, excessive wall slip may lead to uneven or inconsistent
coverage, impacting product quality and performance [19].

In this study, we have proposed a novel approach to incorporate slip boundary conditions for both
Newtonian and non-Newtonian fluids. To implement slip boundary conditions effectively, the authors
introduce a combination of two schemes: the modified bounce-back and specular reflection (MBSR)
scheme and the half-way bounce-back and specular reflection (HBSR) scheme [3]. These schemes are
used to define how fluid particles interact with the solid boundary in the lattice Boltzmann simulation.
The key innovation lies in how the combination of these schemes is chosen. The study explicitly derives
relationships between the combination parameters and the slip length. The slip length is a critical
parameter that characterizes the extent of slip at the solid-fluid interface. By understanding how to
adjust the combination parameters based on the desired slip length and the relaxation time (a parameter
in the lattice Boltzmann method that controls the rate of convergence to equilibrium), researchers can
tailor the simulation to accurately represent different slip conditions. The research then systematically
analyzes the proposed slip boundary conditions and assesses their impact on simulation outcomes. This
analysis helps uncover the distinct results that arise from these boundary conditions, shedding light on
how slip affects fluid behavior in various scenarios. To validate the proposed method, the researchers
rigorously test its accuracy and reliability. They conduct simulations for both Newtonian and non-
Newtonian flows and compare their results with analytical solutions. This comparison serves as a
benchmark for evaluating the performance of the new slip boundary conditions.

We consider a shallow rectangular channel characterized by dimensions: length L, width W , and
height H, satisfying the conditions H ≪ W and H ≪ L, as depicted in Figure 1. A pressure difference
prompts a flow rate Qtotal in the x1 direction. At x1 = 0, a pressure field p(x1) is introduced at the
reservoir, while the exit pressure is p(x1 = L) as illustrated in Figure 1. The theoretical model without
slips was already derived in our previous study [20]. Here, in this derivation, we also incorporate the
effect of slips λ to understand flow characteristics under slips for the real STF flows.
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Figure 1: Schematic diagram of the upper half part (above the red color dashed line OO′) of the shallow
channel of length L, cross–sectional width W , and height H. The Cartesian axis is taken at the mid
plane of the channel.

2 Numerical method

The Lattice Boltzmann Method (LBM) operates on a lattice grid and models the behavior of fluid
particles as they move and collide in discrete time steps. The LBM simulations has following initializa-
tion, collision and streaming steps. These steps are same to that previously used for analysis of various
systems[20, 21]. The boundary conditions are to be different to incorporate the deviation from “no-slip”
condition.

2.1 Boundary conditions

Here we are considering the slip boundary conditions which corresponds to nonzero velocity at the
wall. In the context of the Lattice Boltzmann Method (LBM) slip boundary condition can be under-
stood through the "half-way bounce-back condition"[3] and "half-way specular bounce-back condition"
methods[3], which are particularly used for modeling fluid flow with slip boundary. In the half-way
bounce-back condition, fluid particles encountering a solid boundary rebound directly back in the op-
posite direction, effectively reflecting off the boundary. This is implemented by setting the distribution
functions of fluid particles moving towards the solid boundary equal to those of particles moving away
from the boundary, but in the opposite direction as shown in 2 (a) . The half-way specular bounce-back
condition extends this concept by incorporating specular reflection, where the angle of incidence not
equals the angle of reflection. Here, fluid particles not only bounce back upon encountering the solid
boundary but also undergo specular deflection from the 180 degree reflection, simulating the behavior
of particles bouncing off a smooth, solid surface. In both methods, modifications to the distribution
functions of fluid particles at boundary nodes are made to accurately simulate the desired boundary
behavior, thereby allowing for accurate modeling of fluid flow phenomena near boundaries for slip in
LBM simulations. The bounce back boundary condition has been explained in figure 2 (a) where the
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density distribution function reflects back from the wall in the given direction of the particle distribution
functions f0, f1, f3, f4, f7 and f8 through the streaming step, while the distributions f2, f5 and f6 remain
unknown. However, in the combined half-way bounce-back condition and half-way specular bounce-
back condition method (referred to as the half-way method) the unkowns remains same as bounce back
boundary condition but the direction of reflection changes according to the accomodation coefficient (r)
depiction is given in 2 (b). Accomodation coefficient is the extend of deflection from the 1800 which
depends on slip length and slip velocity.

Figure 2: The distribution functions for (a) bounce back boundary condition (b) specular bounce back
boundary condition

The expressions for the unknown particle distribution functions are provided below.
For the bottom wall

f2 (x1, x20 , t+∆t) = f∗
4 (x1, x20 , t) (1)

f5 (x1, x20 , t+∆t) = rf∗
7 (x1, x20 , t) + (1− r)f∗

8 (x1, x20 , t) (2)

f6 (x1, x20 , t+∆t) = rf∗
8 (x1, x20 , t) + (1− r)f∗

7 (x1, x20 , t) (3)

For the top wall
f4
(
x1, x2N−1 , t+∆t

)
= f∗

2 (x1, x2N , t) (4)

f7
(
x1, x2N−1 , t+∆t

)
= rf∗

5 (x1, x2N , t) + (1− r)f∗
6 (x1, x2N , t) (5)

f8
(
x1, x2N−1 , t+∆t

)
= rf∗

6 (x1, x2N , t) + (1− r)f∗
5 (x1, x2N , t) , (6)

where f∗
2 (x1, x2N , t), f∗

4 (x1, x20 , t), f∗
5 (x1, x2N , t), f∗

6 (x1, x2N , t), f∗
7 (x1, x20 , t), and f∗

8 (x1, x20 , t),
are the distribution function after the collision.
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Calculating the accommodation coefficient is the most difficult part of solving the preceding equations.
We must determine the link between the slip length and the accommodation coefficient for liquid flow.

It is important to choose the appropriate boundary condition based on the physics of the problem
you are simulating. The choice of boundary condition can significantly impact simulation accuracy and
results. Proper implementation of boundary conditions ensures that the simulated fluid behaves realis-
tically near domain boundaries and interacts correctly with solid surfaces or other boundary features.

3 Theoretical Model with slips for mimicking real STF viscosity

3.1 Governing equations (Cauchy equations)

The Cauchy’s equation [22] and the continuity equation for an incompressible fluid are given by

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p− ρg +∇.τ ,

∇ · v = 0,

(7a,b)

where v = [u, v, w] is the fluid velocity, p is the fluid pressure, ρ is the fluid density, g is the gravitational
body force along negative x2 direction, and τ is the total deviatoric stress tensor.

3.2 Boundary conditions

We assume that the fluid cannot penetrate the channel wall. Therefore, on the boundary Γ.

v · nwall = 0, (8)

where nwall is the unit outward normal vector on the wall. We assume the slip boundary condition at
wall [23, 24], which says

(1−Θ)(mT
wall · D(v)) · nwall +Θv ·mwall = 0, (9)

where mwall is the tangential unit vector along the channel wall and D(v) = (∇v + ∇vT )/2 is the
deformation tensor. Also, the arbitrary parameter Θ meets 0 ≤ Θ ≤ 1. Here, Θ = 0 and 1 correspond
to pure-slip and no-slip boundary conditions. The symmetry boundary condition at the centreline of
the channel x2 = 0 demands the normal velocity to the centreline and the traction tangential to the
centreline (or the shear rate) are both zero. These two conditions can be expressed as

v · ncentreline = 0, (10)

and
t ·mcentreline = 0, (11)

respectively, where ncentreline and mcentreline are the unit normal and unit tangent vector to the symmetry
boundary, respectively. The traction on the boundary, which is equivalent to a Neumann boundary
condition, is expressed as

t = nT
centreline · (−pI + τ ). (12)
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3.3 Mimicking real STF viscosity model

To model the fluid behavior, we use a real mimicking STF viscosity model, which in one dimension is
given by

η(γ̇) =


ηI(γ̇) = m1 for 0 < γ̇ ≤ γ̇1

ηII(γ̇) = m2γ̇
n2−1, n2 < 1 for γ̇1 < γ̇ ≤ γ̇2

ηIII(γ̇) = m3γ̇
n3−1, n3 > 1 for γ̇2 < γ̇

 (13)

3.4 2D planar model

We consider fully developed, steady laminar flow of an incompressible mimicking real STF viscosity fluid
between two parallel plates under lubrication limits in a rectangular channel of height H and width W .
We show the a schematic diagram of the upper half part (above the red color dashed line OO′) of the
shallow channel in Figure 1. The channel is assumed to be sufficiently long and wide in comparison to
the height (that is, H/W ≪ 1, and H/L ≪ 1) to use a two–dimensional planar model [15, 22]. The
mid–plane between the plates will be taken as the origin with the flow domain extending from z = −H/2

to z = +H/2.
Further suppose that the Cartesian velocity components u and w along longitudinal and verti-

cal directions x1 and x2, respectively. The x2 coordinate is measured from the channel’s mid–plane.
Therefore, using the lubrication assumptions in the shallow cross–section of the channel as shown in
[25], we retain the leading order terms. Using the impermeable solid–wall boundary condition, we get
w(x2 = −H/2) = w(x2 = H/2) = 0. In the leading order terms, using the impermeable solid-wall
boundary condition, the normal velocity vanishes everywhere. Further, we neglect the pressure gradient
and velocity components normal to the channel wall. Also, we neglect all body forces. Under these
assumptions, for H/W ≪ 1, and H/L ≪ 1, we show a fluid element ABCDD′A′B′C ′ in Figure 1. The

force balance on this element can be calculated as the pressure p and p+
∂p

∂x1
dx1 acting on the AA′D′D,

and BB′C ′C surfaces, respectively along the positive and negative x1 directions. Also, the shear stress
τx1x2 is acting along the negative x1 direction on both the surfaces DD′C ′C and AA′B′B. Dropping
the x1x2 notation from the stress, the force balance can be written as [26, 27]

2Wpx2 − 2 W

(
p+

∂p

∂x1
∂x1

)
x2 = 2W τdx1, (14)

which implies

τ = ηγ̇ = − ∂p

∂x1
x2 (15)

where η is mimicking the real STF viscosity. As stress is increasing linearly with x2, therefore for constant
and thinning viscosity, the shear rate will also increase with x2. Further for moderate thickening of
viscosity, the shear rate would also increase with x2. Therefore, the channel could be divided into three
regions from the mid-plane.
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3.4.1 In region I: η = ηI for 0 ≤ z ≤ z1

ηI γ̇ = m1γ̇ = − ∂p

∂x1
x2,⇒ γ̇ = − ∂u

∂x2
=

(
− ∂p

∂x1

1

m1

)
x2 (16)

Upon integration, we get

−u1 =
1

2

(
− ∂p

∂x1

1

m1

)
x2

2 + c1, (17)

and the volume flow rate in a channel is given by

Q1 = 2 W

∫ z1

0
u1dx2 (18)

Integrating the right–hand–side of the above equation, we get

Q1 = 2 W

∣∣∣∣ 16
(
− ∂p

∂x1

1

m1

)
z31 + c1z1 (19)

where z1 =

(
m1 γ̇1

/
− ∂p

∂x

)
.

3.4.2 In region II: η = ηII for z1 ≤ z ≤ z2

ηII γ̇ = m2γ̇
n2−1γ̇ = m2γ̇

n2 = − ∂p

∂x1
x2 (20)

γ̇ = − ∂u

∂x2
=

(
−∂p

∂x1

1

m2

) 1
n2

x
1
n2
2 (21)

From integrating, we get

−u2 =
(n2)

(n2 + 1)

(
−∂p

∂x1

1

m2

) 1
n2

x
(n2+1)
(n2)

2 + c2 (22)

And the volume flow rate in a channel is given by

Q2 = 2 W

∫ z2

z1

u2dx2 (23)

Integrating the right–hand–side of the above equation (23) , we get

Q2 = 2 W

(
n2
2

(2n2 + 1)(n2 + 1)

)(
−∂p

∂x1

1

m2

) 1
n2

x
(n2+1)

n2
2 + c2x2|z2z1 (24)

where z2 =

(
m2 γ̇n2

2

/
− ∂p

∂x

)
.
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3.4.3 In region III: η = ηIII for z2 ≤ z ≤ H/2

ηIII γ̇ = m3γ̇
n3−1γ̇ = γ̇n3 =

−∂p

∂x1
x2 (25)

γ̇ = − ∂u

∂x2
=

(
−∂p

∂x1

1

m3

) 1
n3

x
1
n3
2 (26)

Upon integration, we get

−u3 =
n3

(n3 + 1)

(
−∂p

∂x

1

m3

) 1
n3

x
(n3+1)

n3
2 + c3 (27)

And the volume flow rate in a channel is given by

Q3 = 2 W

∫ H/2

z2

u3dx2 (28)

Integrating the right–hand–side of the above equation (28) , we get

Q3 = 2 W

(
n2
3

(2n3 + 1)(n3 + 1)

)(
−∂p

∂x1

1

m3

) 1
n3

x
(2n3+1)

n3
2 + c3x2

∣∣∣∣∣
H/2

z2

(29)

3.4.4 Calculation of c1, c2, and c3

Using the boundary condition that at x2 = H/2, u3 = λ

∣∣∣∣∣∂u3∂x2

∣∣∣∣∣ (due to slip condition), where λ is the

slip length defined as λ =
(1−Θ)

2Θ
|nwall,x2 | ≥ 0, and nwall,x2 is the x2 component of unit vector nwall.

Therefore from equation (27), we get

c3 = λ

∣∣∣∣∣
(

− ∂p

∂x1

1

m3

)1/n3
(
H

2

)1/n3
∣∣∣∣∣− n3

(n3 + 1)

(
−∂p

∂x1

1

m3

) 1
n3

(H/2)
(n3+1)

n3 (30)

Further, using another boundary condition that at x2 = z2 , u3 = u2 (due to continuous velocity
condition), therefore from equations (22), and (27), we get

c2 =
n3

(n3 + 1)

(
−∂p

∂x

1

m3

) 1
n3

(
(z2)

(n3+1)
n3 − (H/2)

(n3+1)
n3

)
− n2

(n2 + 1)

(
−∂p

∂x1

1

m2

) 1
n2

z
(n2+1)
(n2)

2

+λ

∣∣∣∣∣
(

− ∂p

∂x1

1

m3

)1/n3
(
H

2

)1/n3
∣∣∣∣∣

(31)

Similarly, using another boundary condition that at x2 = z1 , u2 = u1 (due to continuous velocity
condition), therefore from equations (17), and (22), we get
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c1 =
(n2)

(n2 + 1)

(
−∂p

∂x1

1

m2

) 1
n2

z
(n2+1)
(n2)

1 +
n3

(n3 + 1)

(
−∂p

∂x

1

m3

) 1
n3

(
(z2)

(n3+1)
n3 − (H/2)

(n3+1)
n3

)

− n2

(n2 + 1)

(
−∂p

∂x1

1

m2

) 1
n2

z
(n2+1)
(n2)

2 − 1

2

(
− ∂p

∂x1

1

m1

)
z1

2

+λ

∣∣∣∣∣
(

− ∂p

∂x1

1

m3

)1/n3
(
H

2

)1/n3
∣∣∣∣∣

(32)

The total flow rate can be written as

Qtotal = Q1 +Q2 +Q3. (33)

3.5 Parameters Used

We have taken a channel 2D domain for simulation, where the height of the channel is 100 and length
of the channel is 1000 lattice units. Slip boundary conditions has been taken at the walls and velocity
inlet and pressure outlet has been considered at the inlet and outlet respectively. The slip length taken
here varying between 0 (for no-slip scenario) to 5 lattice units in corresponding simulations and theory
predictions.

4 Results and Discussion

In our comprehensive investigation of fluid dynamics, we delved into the intricacies of two crucial bound-
ary conditions: slip and no-slip. However, it is the slip condition that has captured our attention most
prominently. This condition has unveiled a striking phenomenon in the velocity profile of a Newto-
nian fluid. Unlike the conventional no-slip scenario, where the fluid particles adhere rigidly to the solid
boundary and exhibit zero velocity at the wall, the slip condition has unveiled a different story.

Under the slip condition, we observed a remarkable increase in velocity near the solid walls. This
noteworthy departure from the no-slip scenario suggests the presence of a fundamental phenomenon
known as ‘boundary slip.’ In simple terms, boundary slip implies that the fluid molecules in immediate
contact with the solid boundary experience enhanced mobility and do not adhere as firmly as they
do in the no-slip condition. The implications of this boundary slip are far-reaching and can be of
paramount importance in various practical applications. It has the potential to influence heat transfer,
mass transport, and overall fluid behavior in systems with small dimensions, such as microfluidic channels
or nanoscale conduits. By allowing fluid molecules to move more freely near the boundary, slip conditions
can alter the shear stress distribution and fundamentally affect the dynamics of fluid flow.

To order to show the contrast between slip and no-slip boundary conditions flow characteristics,
we plot the velocity profile and strain rate profile in figure 3. This visual representation serves as a
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powerful testament to the profound impact of boundary slip on fluid behavior, highlighting the need for
careful consideration of this phenomenon in fluid dynamics research and engineering applications. In

Figure 3: Slip and no slip boundary condition comparison of Newtonian fluid (A) Velocity profile (B)
Strain rate profile.

our research, we extended our analysis to explore the behavior of a shear-thinning fluid with a power law
index of 0.8. This distinctive fluid property introduces a new dimension to our understanding of fluid
dynamics compared to the Newtonian counterpart. One of the most striking observations in the case
of a shear-thinning fluid with a power law index of 0.8 is the unique velocity profile near the boundary
walls. Unlike the behavior in a Newtonian fluid, where the velocity distribution primarily depends on
the viscosity, in a shear-thinning fluid, the power law index comes into play. A power law index of 0.8
indicates that the fluid exhibits a decreasing viscosity with an increasing shear rate.

As a result, we found that near the solid walls, where the shear rates are typically higher due to the no-
slip condition, the velocity of the shear-thinning fluid is significantly enhanced compared to a Newtonian
fluid. This enhanced velocity near the walls can be attributed to the lower effective viscosity of the shear-
thinning fluid in high-shear regions. This discovery carries substantial implications, particularly for
applications involving non-Newtonian fluids. The power law index of 0.8 introduces a unique sensitivity
to shear rate, making it a valuable parameter to consider in designing systems involving such fluids.
Understanding how the power law index influences velocity profiles and strain rates is essential for
optimizing processes in various industries, including pharmaceuticals, food processing, and oil extraction.
Figure 4 illustrates the velocity profile and strain rate vs viscosity profile for the shear-thinning fluid
with a power law index of 0.8. This shows the impact of non-Newtonian behavior on fluid dynamics
and underscores the importance of considering rheological properties when working with shear-thinning
fluids.

Now, let’s turn our attention to the shear-thickening fluid with a power law index of 1.4. This fluid
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Figure 4: Slip and no slip boundary condition comparison of non-Newtonian fluid (n=0.8,m=0.05) (A)
Velocity profile (B) Strain rate vs viscosity profile.

Figure 5: Slip and no slip boundary condition comparison of non-Newtonian fluid (n=1.4, m=0.05) (A)
Velocity profile (B) Strain rate vs viscosity profile.

behaves differently from shear-thinning fluids; it exhibits increasing viscosity with increasing shear rate.
In our analysis, we observed that this shear-thickening fluid displayed a notable reduction in velocity
near the solid walls compared to the fluid with a power law index of 0.8 and a Newtonian fluid. The
increase in viscosity near the wall due to the higher power law index led to a suppression of fluid motion
close to the boundary. In figure 5, we have shown the velocity profiles and strain rate vs. viscosity
profiles for both the shear-thinning fluid with a power law index of 0.8 and the shear-thickening fluid
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with a power law index of 1.4. Figure Both figures 4 and 5 show the divergent effects of non-Newtonian
behavior. It underscores how distinct power law indices can result in disparate velocity distributions
and underscores the critical importance of meticulously accounting for rheological properties in systems
involving these complex fluids.

A real shear-thickening fluid exhibits a unique combination of Newtonian, shear-thinning, and shear-
thickening behaviors [3]. To comprehend the attributes of such a fluid, we have analyzed the viscosity
variation with shear rate, as illustrated in Figure 6. The experimental variation of the real shear-
thickening fluid is represented by black circles, while the model fit, determined using equation (13), is
depicted by the red line. Our fit yielded power-law indices for the shear-thinning and shear-thickening
regions (regions 2 and 3) as n1 = 0.8 and n2 = 1.8, respectively. Additionally, we calculated the
corresponding consistency index coefficients as m1 = 0.065, m2 = 0.0099, and m3 = 34.30.
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Figure 6: The correlation between strain rate and viscosity in a real shear-thickening fluid is depicted in
the plot. The experimental parameters of the real shear-thickening fluid are represented by black circles,
while the model fit, derived using equation (13), is illustrated by the red line. The analysis reveals three
distinct regimes: starting from Newtonian behavior at initial shear rates, transitioning to shear-thinning
behavior at moderate shear rates, and finally entering the thickening regime at higher applied shear
rates.

In Figure 7, we have plotted the velocity profile calculated using the LBM and the theoretical model
derived in section 4 for the three-phase real STF viscosity model. The blue, magenta and green symbols
show the flow characteristics calculated using LBM at (a) λ = 0 lu, (b) λ = 1 lu, and (c) λ = 5 lu,
respectively, and the multicolor dashed line shows the predictions using the derived model with regimes
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Figure 7: The flow characteristics of a real shear thickening fluid at various slip length of (a) λ = 0 lu,
(b) λ = 1 lu, and (c) λ = 5 lu, respectively.

R1, R2, and R3, respectively. As shown, we find a good agreement between the two. The fluid is found
to segregate with Newtonian flow at low shear rates at the centreline of the channel, transitioning to
shear-thinning dominance in the intermediate region between the core and the channel-walls, and finally
observing shear thickening phenomena as shear rates increase near the wall as shown with R1, R2 and
R3, respectively. The appearance of the behavior occurs due to the high strain rates at the walls of the
channels and low at the center of the channel. We show the comparison of magnitude of velocities as
a effect of the slip-length for the same flow rate Q in figure 8. We find that the magnitude of the flow
velocity near the centerline decreases and also near the wall increases as we increase the slip length. This
phenomenon is found in both the LBM studies and the predictions from the theoretical model.

After validation of the LBM predictions with the analytical theoretical model prediction, we now
discuss about the Effect of varying pressure on flow characteristics of real STF viscosity fluid when
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Figure 8: The comparison of magnitude of velocities as a effect of the slip-length for the same flow rate

wall-slip is present in the following sections.

4.1 Effect of varying pressure on flow characteristics of real STF viscosity fluid
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Figure 9: We show for the given real mimicked STF viscosity in (a) how flow rate in the upper half
of the channel per unit width varies as a function of pressure and in (b) the region height varies as a
function of pressure. Here, Q1, Q2, and Q3 are the flow rates in regions 1 (Newtonian core), 2 (shear
thinning intermediate), and 3 (shear thickening near channel wall), respectively. The symbols and the
solid lines of the same color show the flow rates and the region height for slip length λ = 0 lu (as shown
by Vishal et al. [20]) and 5 lu, respectively.

In Figure 9, we show for the given real mimicked STF viscosity, in (a) how flow rate per unit width
varies as a function of pressure and in (b) the region height varies as a function of pressure. The
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symbols and the solid lines of the same color show the flow rates and the region height for slip length
λ = 0 lu (as shown by Vishal et al. [20]) and 5 lu, respectively. Here, Q1, Q2, and Q3 are the flow rates
in regions 1 (Newtonian core), 2 (shear thinning intermediate), and 3 (shear thickening near channel
wall), respectively. We find that at very low pressure drop, the flow in the channel fully starts with
Newtonian flow, as shown with red circles (as we can see the z = H/2 for the region R1); as we further
increase pressure, the region R2 starts to appear (shown with black squares), and now Newtonian and
thinning flow together (Newtonian in core and thiining in outer region) exist approximately for pressure
p < 2Fu/lu2 for both slip-lengths. Further, as we keep increasing the pressure drop, the shear rate’s
magnitude increases, and the channel’s thickening flow dominates (shown with a blue asterisk line). We
find at a low shear rate, Q1 dominates, reaching a maximum value up to where the increasing pressure
for over constant or decreasing regional height z1 dominates the increment of flow; further, after that,
the decreasing height z1 dominates over increasing pressure, and the net flow magnitude of Q1 decreases
due to decrement of the z1. The same appears for Q2. On the other hand, the flow remains zero for
Q3 up to a certain pressure until the shear rate becomes more than 0.3 × 10−3 1/s; after that, the Q3

monotonically increases. We further find that, as the slip-length λ increases, the magnitude of the flow
also increases for the same pressure drop.
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Figure 10: We show for the given real mimicked STF viscosity in (a) how flow rate in the upper half
of the channel per unit width varies as a function of pressure and in (b) the region height varies as a
function of pressure. Here, Q1, Q2, and Q3 are the flow rates in regions 1 (Newtonian core), 2 (shear
thinning intermediate), and 3 (shear thickening near channel wall), respectively. The symbols and the
dashed lines of the same color show the flow rates and the region height for slip length λ = 0 lu (as
shown by Vishal et al. [20]) and 5 lu, respectively.

We also find that initial at low pressure the flow rate varies linearly when Newtonian flow dominates,
i.e. (equation) , followed by increment in the flow rate-pressure slope from linear to 1/(m + 1) , i.e.
(equation). Further increment of pressure decreases the slope from 1/(m + 1) to 1 where the viscosity
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increases from lowest thinning value to the Newtonian value, and at large pressure the flow rate-pressure
slope reaches a constant value where it is proportional to (equation). This is true for both the slip-
lengths. Further as the region height z1 and z2, do not explicitly depends on the slip-length, hence for
both without slip and with slips, for the given pressure drop and other viscosity parameters, the region
height remains same as we find in figure 9(b) for both λ = 0 lu (symbols, as shown by Vishal et al. [20]),
and λ = 5 lu (solid lines), respectively.

In figure 10, we show the flow characteristic at the much larger magnitude of the pressure drop. We
find that as we increase the pressure drop to a large extent, the Q1 and Q2 approaches to zero, and
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Figure 11: For the given real shear thickening fluid viscosity, we show (a) how the flow rate in the upper
half of the channel per unit width varies as a function of the channel’s height. Here, Q1, Q2, and Q3 are
the flow rates in regions 1 (Newtonian core), 2 (shear thinning intermediate), and 3 (shear thickening
near channel wall), respectively. The symbols and the dashed lines of the same color show the flow rates
and the region height for slip length λ = 0 lu (as shown by Vishal et al. [20]) and 5 lu, respectively.
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the channel flow with the thickening characteristics of the flow due to more significant shear rates in
the channel. These phenomenon are true for both the λ = 0 lu (symbols), and λ = 5 lu (solid lines),
respectively.

4.2 Effect of varying channel’s height on flow characteristics of real STF

Finally, we study the effect of the channel’s height on the flow characteristics of real STF flow. In Figure
11, we show for the given real mimicked STF viscosity, in (a) how flow rate varies as a function of
the channel’s height. The symbols and the dashed lines of the same color show the flow rates and the
region height for slip length λ = 0 lu and 5 lu, respectively. Here, Q1, Q2, and Q3 are the flow rates in
regions 1 (Newtonian core), 2 (shear thinning intermediate), and 3 (shear thickening near channel wall),
respectively.

Further, we study the effect of varying channel’s height on flow characteristics of real STF viscosity
fluid with slip-effects and compare it without slip flow characteristics as shown by Vishal et al. [20]. In
Figures 11(a), (b), and (c), we plotted the flow rate up to 50, 100, and 500 lattice units. The symbols
and the dashed lines of the same color show the flow rates and the region height for slip length λ = 0 lu
and 5 lu, respectively. From these three figures, we find that for low heights, Q1 dominates for given
viscosity, and as H increases to a larger order, Q2 and Q3 start to dominate. This is because, for a
given pressure difference, the stress (and hence the corresponding shear rate) is linearly proportional to
the height of the channel. As the shear rate increases, the viscosity of the fluid shifts from Newtonian to
thinning behavior and then to thickening behaviors, which initially makes Q1 dominate, followed by Q2

and Q3, respectively. These phenomenon are true for both the λ = 0 lu (symbols), and λ = 5 lu (solid
lines), respectively. Although the magnitude rise of the flow rate with slips are more in comparison to
the flow rate without slips.

5 Conclusion

In the present investigation, we have highlighted the impact of slip boundary condition in a channel on
the rheological properties, power law indices, and on fluid velocity profiles. We examined the impact
of a real shear-thickening fluid on the velocity profile and pressure drop within the specified domain.
Initially, we conducted analytical calculations for the channel flow, considering three distinct regions
with Newtonian, shear-thinning, and shear-thickening properties of the real shear-thickening fluid. A
comparative analysis of the flow characteristics obtained through lattice Boltzmann methods was then
carried out against the predictions of the theoretical model. Additionally, we explored the shear rate-
dependent viscosity of the fluid as it flows through the channel, employing the lattice Boltzmann method.
Firstly, our exploration of shear-thinning and shear-thickening fluids with power law indices of 0.8 and
1.4, respectively, revealed contrasting behaviors. A power law index of 0.8 led to enhanced velocities
near the solid walls due to decreasing viscosity with increasing shear rate, while a power law index of
1.4, characteristic of shear-thickening fluids, caused a reduction in wall velocities as viscosity increased
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with shear rate. Furthermore, our study extended to real shear-thickening fluids, combining all the
Newtonian, the shear-thinning and the shear-thickening effects. Incorporating strain rate vs. viscosity
data, we observed intricate variations in velocity profiles. Particularly noteworthy was the discovery
that employing slip boundary conditions resulted in significantly higher wall velocities, underlining the
importance of boundary conditions in complex fluid systems.

We extend our investigation to explore the impact of varying pressure and channel height on the
flow characteristics of real shear-thickening fluid viscosity. Our findings reveal a nuanced response to in-
creasing pressure: initially, the flow rate Q1 takes precedence, reaching a maximum value. Subsequently,
as pressure continues to increase over constant/decreasing regional height z1, Q1 starts to decline due
to the decrement in z1, and Q2 becomes dominant, with flow remaining zero for Q3. Upon further
escalating the threshold pressure until the shear rate surpasses a certain threshold, Q3 exhibits a mono-
tonically increasing trend, ultimately becoming dominant. At this juncture, both Q1 and Q2 approach
asymptotically to zero. These phenomena hold true for both scenarios, with and without slip effects.
Notably, flow rate magnitudes are higher with slips for a given pressure drop and viscosity characteristics
within a specified channel domain.

Further, when the channel’s height increases, we observe that, at lower heights, the flow rate Q1

predominates for a given real shear-thickening fluid viscosity profile. As the channel height (H) in-
creases to a larger extent, Q2 and subsequently Q3 begin to dominate. This trend is attributed to the
linear proportionality between stress (and thus shear rate) and the channel’s height for a given pressure
difference. With increasing shear rates, the fluid’s viscosity undergoes a transition from Newtonian to
shear-thinning and then shear-thickening behaviors, causing a sequential dominance of Q1, followed by
Q2 and Q3. These observations hold true for both scenarios, with and without slip effects. It is notewor-
thy that flow rate magnitudes are higher with slips for a given pressure drop and viscosity characteristics
within a specified channel domain.
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