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Abstract 16 

Despite the increasing interest on electrocatalytic refinery of renewable feedstocks to 17 

produce value-added chemicals, nitrile electrosynthesis from alcohols is rarely 18 

studied. Here, we report the direct electrosynthesis of nitriles from primary alcohols 19 

and ammonia, with a simple nickel catalyst under benign conditions in aqueous 20 

electrolytes. The highest benzonitrile faradaic efficiency of 63.0% was achieved at 21 

1.375 V vs. RHE. The reaction proceeds via a dehydrogenation-imination-22 

dehydrogenation sequence, with the rate-determining step likely involving the 23 

cleavage of α-carbon C-H bond of the alcohol. Based on the electrochemical and in-24 

situ Raman analyses, we propose that the in-situ formed Ni2+/Ni3+ redox species 25 

serves as the active site for converting alcohol to nitrile, while Ni2+ also exhibits 26 

capability for the oxidation of imine. Various aromatic, aliphatic and heterocyclic 27 

primary alcohols were transformed to the corresponding nitriles, exhibiting broad 28 

feasibility. This study offers a promising electrocatalytic system for the sustainable 29 

synthesis of high-value nitriles. 30 
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1. Introduction 35 

Due to the depletable nature of fossil fuel feedstocks and the rising global emphasis 36 

on carbon neutrality, there has been an increasing interest devoted to the 37 

electrocatalytic refinery of waste materials for the sustainable synthesis of value-38 

added chemicals.[1-3] The benefits afforded by electrocatalytic processes are multi-39 

fold – electrical energy inputs are readily available from renewable sources, water can 40 

be used as a solvent (avoiding the need for organic solvents), and benign operations 41 

at or near ambient temperature are feasible.[4, 5] In particular, C-N coupling reactions 42 

are an important class of reactions for manufacturing various bulk and fine chemicals, 43 

such as fertilizers, synthetic fibres, pigments and pharmaceuticals.[6-8] These 44 

reactions involve the formation of carbon-nitrogen bonds between a carbon-based 45 

compound and a nitrogen source, giving rise to organonitrogen products. Notable 46 

works in electrocatalytic C-N coupling include the electrosynthesis of amines and 47 

amides from CO2 or CO.[9-11] Interestingly, urea has been successfully synthesised 48 

from CO2 and various nitrogenous species.[12] Recently, the valorisation of CO2-49 

derived formic acid and methanol to formamide has also been demonstrated.[13-15] 50 

Biomass-derived carbonyl compounds are also used for the electrocatalytic reductive 51 

amination (ERA) C-N coupling reaction.[16-18] A special case of ERA uses α-keto 52 

acids as the substrate to produce amino acids, which have immense biological uses, 53 

utilising various metal and carbon-based cathodes.[19-22] 54 

Despite the extensive efforts in the wider topic of electrocatalytic C-N coupling, 55 

the direct electrosynthesis of nitriles from primary alcohols is not common. Nitriles are 56 

versatile intermediates for producing higher value chemicals, including biological 57 

materials, pharmaceuticals and polymers.[23, 24] The conventional chemical methods 58 

for nitrile synthesis, such as the Sandmeyer[25] and the Rosenmund-von Braun[26] 59 
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reactions, are not benign as they utilise toxic starting materials, require severe reaction 60 

conditions and generate large amounts of chemical waste (Fig. 1a). Improved 61 

chemical routes using alcohols and ammonia as the substrates, via ammoxidation[27-62 

33] or oxidant-free dehydrogenation coupled with imination[34-36], have been recently 63 

reported. However, they face certain issues, including the need for oxidants or high 64 

reaction temperatures, as well as poor selectivity due to over-oxidation and other 65 

undesired side reactions. On the electrocatalysis front, the synthesis of hydrogen 66 

cyanide, an analogue of nitrile, has been demonstrated using methane and ammonia 67 

as the substrates,[37] albeit at elevated temperatures of 800-1000 °C with solid 68 

electrolytes. The required temperature for hydrogen cyanide synthesis in the solid 69 

electrolyte was decreased to 500-650 °C by replacing methane with methanol.[38, 39] 70 

Moreover, Zhang and co-workers have developed an efficient electro-oxidative 71 

coupling strategy for the synthesis of various nitriles with moderate to high yields from 72 

corresponding alcohols and aqueous ammonia under mild conditions.[40] Their 73 

bimetallic electrocatalyst consists of Cu and a noble metal Pd, which acted as the sites 74 

for the oxidation and coupling reactions, respectively. Therefore, opportunities exist 75 

for electrocatalytic nitrile synthesis from alcohols. 76 

Here, we report a facile one-pot synthesis of various nitriles from primary alcohols 77 

and ammonia, in the presence of Ni catalyst under ambient temperature using 78 

aqueous electrolyte without the need for oxidants (Fig. 1b). Ten materials were first 79 

screened and Ni was determined as the optimal catalyst. Several control experiments 80 

and kinetic studies were performed to deduce the reaction pathway and rate-limiting 81 

step. To understand the metal sites contributing to the catalytic activity, we conducted 82 

electrochemical analyses and in-situ experiments. The influence of different reaction 83 

parameters was also studied. 84 
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 85 

Figure 1. Schematic comparison of the nitrile syntheses. a) Conventional chemical route. b) 86 
Proposed electrochemical route. 87 

2. Experimental 88 

2.1. Chemicals 89 

Sodium perchlorate (NaClO4, ≥98.0%), sodium hydroxide (NaOH, ≥98.5%), potassium 90 

hydroxide (KOH, 90%), ammonia solution (~25 wt. % NH3 in water), benzyl alcohol 91 

(≥99%), benzyl-α,α-d2 alcohol (99%, D, 98%), benzaldehyde (≥99%), benzoic acid 92 

(≥99.5%), benzonitrile (≥99%), benzamide (99%), 4-methoxybenzyl alcohol (98%), 4-93 

methoxybenzonitrile (99%), 2-hydroxybenzyl alcohol (99%), 2-hydroxybenzonitrile 94 

(99%), 4-hydroxybenzyl alcohol (99%), 4-cyanophenol (95%), 4-hydroxy-3-95 

methoxybenzyl alcohol (98%), 4-hydroxy-3-methoxybenzonitrile (98%), 4-96 

chlorobenzyl alcohol (99%), 4-chlorobenzonitrile (99%), 4-nitrobenzyl alcohol (99%), 97 

4-nitrobenzonitrile (97%), 4-nitrobenzamide (98%), furfuryl alcohol (98%), 2-furonitrile 98 

(99%), acetamide (~99%), 1-butanol (99.8%), butyronitrile (≥99%), 1-hexanol (≥99%), 99 

hexanenitrile (98%), 1,6-hexanediol (99%), adiponitrile (99%), 1-pentanol (≥99%), 3-100 

(trimethylsilyl)-1-propanesulfonic acid sodium salt (97%), hydrochloric acid (HCl, 37%) 101 

and sulfuric acid (H2SO4, 95.0-98.0%) were purchased from Sigma-Aldrich. Nitric acid 102 
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(HNO3, 65%) and absolute ethanol (>99.7%) were provided by VWR Chemicals. 103 

Acetone (HPLC grade) and acetonitrile (HPLC grade) were purchased from Fisher 104 

Chemical. Deuterium oxide (D2O, D, 99.9%) was purchased from Cambridge Isotope 105 

Laboratories. Nitrogen gas (N2, 99.9995%) was supplied by Air Liquide. Commercially 106 

available reagents were used as received without further purification. All aqueous 107 

solutions were prepared using ultra-pure water (Milli-Q®, resistivity of 18.0 MΩ cm). 108 

2.2. Preparation of electrodes 109 

Manganese plate (Mn plate, ~1 mm thickness, 99.9%) was purchased from Xingtai 110 

Xinnai Metal Materials Co., Ltd. Iron foam (Fe foam, 1.0 mm thickness, 99.9%), cobalt 111 

foam (Co foam, 1.6 mm thickness, 99.9%), nickel foam (Ni foam, 1.0 mm thickness, 112 

≥99.9%) and copper foam (Cu foam, 1.0 mm thickness, ≥99.7%) were purchased from 113 

Kunshan Guangjiayuan New Materials Co., Ltd. Zinc foam (Zn foam, 1.0 mm 114 

thickness, 99.9%) was purchased from Kunshan Lvchuang Electronic Tech Co., Ltd. 115 

Ruthenium plate (Ru plate, 1 mm thickness, 99.95%) was purchased from Quanzhou 116 

Qijin New Material Tech Co., Ltd. Palladium plate (Pd plate, 0.1 mm thickness, 117 

≥99.98%) was purchased from Wuxi Mini Chemistry Art Meseum Co., Ltd. Platinum 118 

plate (Pt plate, 0.1 mm thickness, ≥99.99%) was purchased from Shanghai Chengxin 119 

Scientific Instrument Co., Ltd. Carbon paper (CP, TGP-H-060, 0.19 mm thickness) 120 

was purchased from Suzhou Sinero Tech Co., Ltd. 121 

Fe, Co, Ni, Cu, Zn and carbon paper electrodes used in this work were cut into 122 

1.5 × 3 cm, while the dimensions for Mn, Ru, Pd and Pt plates were 1 × 1 cm. The 123 

cleaning and preparation of metal electrodes were carried out immediately prior to use 124 

in every experiment. Fe, Zn and Mn electrodes were mechanically polished using 125 

sandpaper, then washed with ultra-pure water. Co, Ni and Cu electrodes were first 126 

sonicated with acetone for 30 min before washing with ultra-pure water, then 127 
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pretreated by immersing in 2 M HCl for 30 min. Ru, Pd and Pt electrodes were stored 128 

in 33% HNO3 until use. The pretreatment of carbon paper was performed through 129 

sonicating in 1 M HNO3 for 30 min. After that, the carbon paper was washed thoroughly 130 

using ultra-pure water and absolute ethanol, followed by drying overnight at 80 °C. 131 

2.3. Material characterisation 132 

Raman spectra were collected by a Raman microscope (XploRATM Plus, HORIBA 133 

Scientific) with a 638 nm excitation laser using a 100X objective lens. The chemical 134 

environments of the Ni foam were identified by X-ray photoelectron spectroscopy 135 

(XPS, Kratos AXIS UltraDLD, Kratos Analytical Ltd.) with mono Al Kα X-ray source. All 136 

XPS data were calibrated to C 1s (C-C bond) at 284.50 eV and analysed using 137 

XPSPEAK Version 4.1 software. 138 

2.4. Electrochemical measurements 139 

All the electrochemical measurements were carried out using a Gamry Interface 140 

1010E potentiostat (Gamry Instruments Inc., U.S.). Similar to our previous study,[19] 141 

a glass two-chamber (H-type) three-electrode configurated electrochemical cell, which 142 

was separated by a piece of Nafion 117 membrane (N117, Dupont, Xianfeng 143 

Instrument Tech Co., Ltd), was used for all experiments. Reference and counter 144 

electrodes were a Hg/HgO electrode (1 M KOH) with a double-salt bridge (Shanghai 145 

Yueci Electronic Tech Co., Ltd.) and a platinum mesh (Pt mesh, 10 × 10 mm, ≥99.99%, 146 

Shanghai Chengxin Scientific Instrument Co., Ltd.), respectively. The electrolyte 147 

volume was 40 mL (50 mL in total volume) for both anodic and cathodic chambers, 148 

except for the H-cell with Mn, Ru, Pd and Pt plates as working electrodes, whose 149 

electrolyte volume was 9 mL (15 mL in total volume). In all cases, 15 mL/min purified 150 

nitrogen gas was purged through the anodic electrolyte for 30 min at the start of each 151 

experiment to exclude the air. During the measurements, the electrolyte solution was 152 
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stirred and bubbled with nitrogen gas continuously. The potentials applied against the 153 

Hg/HgO reference electrode were calibrated to the reversible hydrogen electrode 154 

(RHE) scale without iR compensation using the follow equation: 155 

𝐸RHE(V) = 𝐸Hg/HgO(V) + 0.098 V + 0.059 V × pH  (eq. 1) 

All current densities were calculated on the basis of the measured currents and 156 

geometric areas of the working electrodes (4.5 cm2 for Fe, Co, Ni, Cu, Zn foams and 157 

carbon paper, 1 cm2 for Mn, Ru, Pd and Pt plates). 158 

The electrosynthesis of nitriles was performed by chronoamperometry and 159 

investigated systematically under different working electrodes, applied potentials, pH, 160 

substrate concentrations, ammonia concentrations and substrate types. In a typical 161 

electrolysis procedure, certain concentrations of NH3, NaClO4, KOH and/or NaOH 162 

aqueous solution with and without organic substances were used as the anolyte and 163 

catholyte, respectively. Specifically, the influence of pH on the catalytic performance 164 

was carried out by varying the concentrations of NaOH and/or NaClO4 to reach the 165 

desired pH values and keep the total molar of the anions in different electrolytes was 166 

the same. 167 

The linear sweep voltammetry (LSV) measurements were performed at a scan 168 

rate of 5 mV/s or 10 mV/s under various conditions. 169 

The cyclic voltammetry (CV) measurements were conducted with scan rates 170 

ranging from 5 to 200 mV/s under various conditions. 171 

2.5. Product identification and quantification 172 

During and after the chronoamperometry test, the electrolyte solution collected from 173 

the anodic chamber was immediately analyzed by either high-performance liquid 174 

chromatography (HPLC), gas chromatography (GC) or 1H nuclear magnetic 175 
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resonance (NMR) spectroscopy depending on the substrate type. The cathodic 176 

electrolyte was also analyzed to make sure the membrane was in good condition. 177 

Before HPLC and GC analyses, the electrolyte solution was acidified to pH 5−6 by 2 178 

M HCl and filtered through a polyethersulfone (PES) syringe filter (0.22 μm, Microlab 179 

Scientific). 180 

The aromatic and heterocyclic compounds were analyzed by HPLC (Agilent, 1260 181 

Infinity II), equipped with an InfinityLab Poroshell 120 EC-C18 column (3.0 × 150 mm, 182 

2.7-Micron, 1000 bar) and an ultraviolet-visible (UV) detector (1260 Infinity II 183 

Refractive Index detector). 5 mM H2SO4 aqueous solution and acetonitrile with 0.2 184 

mL/min flow rate (isocratic elution) were used as the A and B mobile phases, 185 

respectively. The column temperature was 30 °C and the injection volume was 3 μL. 186 

The aliphatic substrates (except for ethanol and 1,6-hexanediol) and their 187 

derivatives were determined by GC (Agilent, 7890A), equipped with a HP-5 column 188 

(30 m × 0.320 mm, 0.25 micron) and a flame ionization detection (FID) detector. 189 

Nitrogen was applied as the carrier gas. 1-Pentanol was added in the previously 190 

prepared 2 M HCl (used for acidifying the samples) as the internal standard to quantify 191 

the substrates, intermediates and products. 192 

The qualitative and quantitative analyses of ethanol, 1,6-hexanediol and their 193 

derivatives were carried out by NMR spectroscopy (Bruker AscendTM 400, 400 MHz) 194 

at room temperature with water suppression. In short, 250 μL of the sampled 195 

electrolyte solution was mixed with 250 μL of internal standard solution consisting 3-196 

(trimethylsilyl)-1-propanesulfonic acid sodium salt in D2O. 197 

The Faradaic efficiency (FE) for target products, side products and intermediates 198 

was calculated as follows: 199 
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FE(%) =
𝑛×𝐶×𝑉×𝐹

𝑄
× 100  (eq. 2) 

where n is the number of electrons required for the formation of the compound (n = 2 200 

for aldehyde; n = 4 for nitrile, amide and acid), C is the molar concentration of the 201 

compound, V is the volume of the electrolyte, F is the Faraday constant (96485 C 202 

mol−1), and Q represents the total charge passed during the electrolysis. 203 

2.6. Kinetic modelling of the reaction 204 

A set of time-dependent concentrations of benzyl alcohol, benzaldehyde, benzonitrile 205 

and benzoic acid were used to simulate the reaction rate constants. Reaction kinetic 206 

parameters were fitted according to the least squares fitting algorithm of MATLAB 207 

lsqcurvefit.[41-43] Several constrains were used to confirm that the fitting curve is 208 

reasonable. The kinetic equations and fitting curve are shown in Supplementary Fig. 209 

S18. 210 

2.7. In-situ Raman spectroscopy measurements 211 

A home-made electrochemical cell shown in Supplementary Fig. S10 was used for in-212 

situ Raman spectroscopy experiments. In-situ Raman spectra were recorded using 213 

the aforementioned Raman microscope (XploRATM Plus, HORIBA Scientific), with a 214 

638 nm excitation laser and a 10X objective lens, under controlled potentials by the 215 

electrochemical workstation (Gamry Interface 1010E potentiostat, Gamry Instruments 216 

Inc., U.S.). Further details for the setup and measurements are provided in 217 

Supplementary Fig. S10. 218 

3. Results and Discussion 219 

3.1. Ni is the best catalyst among the screened materials 220 

In the initial screening, nine monometallic catalysts which were reported to be active 221 

in the thermocatalytic nitrile production from alcohols, including Zn, Mn, Fe, Co, Ni, 222 
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Cu, Ru, Pd and Pt,[44] as well as carbon paper were studied using benzyl alcohol 223 

(BnOH) as a model compound (Fig. 2a). The experiment using Zn was not successful 224 

as Zn actively reacted with alkali to release hydrogen. For the other nine materials, Ni 225 

delivers benzonitrile (PhCN) as the main product with the highest faradaic efficiency 226 

(FE) of 49.2% and formation rate of 90.8 mmol m-2
cat h-1, with the co-generation of 227 

benzaldehyde (PhCHO), benzoic acid (PhCOOH) and benzamide (PhCONH2). Ru 228 

also has the capacity for PhCN production, but a significantly lower nitrile FE of 11.2% 229 

and an unexpectedly low total FE for the organic products (25.6%) were observed. 230 

These are possibly due to the competing ammonia oxidation reaction[45] and 231 

dissolution of Ru under oxidative potentials (as indicated by the dark green-coloured 232 

electrolyte). In sharp contrast, Mn, Fe, Co, Cu, Pd, Pt, and C show no activity for PhCN 233 

production. Particularly, Mn, Co and Cu faced severe issues of metal oxidation and 234 

leaching under the reaction conditions. We further investigated the electrocatalytic 235 

properties of the catalysts using linear sweep voltammetry (LSV) (Supplementary Fig. 236 

S1), and conducted the electro-oxidation of BnOH without the addition of ammonia 237 

(Fig. 2b). In addition to Ni, Ru, Co and Cu also exhibit activity in converting BnOH to 238 

the corresponding oxidative products, with a consumption rate of up to 946.7 mmol m-239 

2
cat h-1 on Ru. However, the total FEs on Co, Cu and Ru are unsatisfactory, with only 240 

50.3% for Ru and less than 15% for Co and Cu. In the absence of BnOH, for Mn, Co, 241 

Ni, Cu and Ru, there exist anodic currents before the operating potentials (1.425 V or 242 

-0.265 V vs. RHE), likely due to metal oxidation (Supplementary Fig. S1a-e). Contrary 243 

to Ni and Ru which display LSV current enhancements in the presence of BnOH, Mn, 244 

Co and Cu show decreased peak currents, suggesting that the BnOH oxidation rates 245 

are very slow on these metals. For Mn, Co, and Cu, it may be beneficial to dope 246 
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another element to stabilise the higher oxidation state metal species, thus reducing 247 

the metal dissolution rates.[15, 40, 46] 248 

 249 

Figure 2. Catalyst screening and performance analysis. a) FEs and PhCN formation rate of electro-250 
oxidative coupling of BnOH and NH3 on various catalysts. Reaction conditions: 20 mM BnOH, 1 M NH3, 251 
pH 13, 1.425 V vs. RHE (0.675 V vs. RHE for Mn), 8 h reaction time (reduced for Co and Cu due to 252 
significant metal dissolution). b) FEs and BnOH consumption rate of electro-oxidation of BnOH on various 253 
catalysts. Reaction conditions: 20 mM BnOH, pH 13, 1.425 V vs. RHE (-0.265 V vs. RHE for Mn), 1 h 254 
reaction time. 255 

3.2. Nitrile synthesis follows a dehydrogenation-imination-dehydrogenation 256 

sequence 257 

In thermocatalysis, there are two possible reaction pathways for nitrile synthesis from 258 

primary alcohols and ammonia (Scheme S1).[35] Pathway I starts with the 259 
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dehydrogenation of alcohol to aldehyde, which then condenses with ammonia to form 260 

an imine intermediate. The imine is subsequently dehydrogenated to afford the nitrile 261 

product. In pathway II, a direct nucleophilic attack by an ammonia molecule on the α-262 

carbon of the alcohol occurs. This results in an SN2 substitution of the -OH group with 263 

-NH2 group to produce an amine intermediate, which then undergoes sequential 264 

dehydrogenations to generate a nitrile product. 265 

A series of control experiments were carried out to determine the main pathway 266 

(Table 1). No PhCN was detected in the absence of applied potential, BnOH or 267 

ammonia (Entries 1-3), and only the oxidative products of BnOH were generated when 268 

ammonia was absent, confirming that PhCN originates from the electro-oxidative 269 

coupling of BnOH and ammonia. Notably, when BnOH was replaced by PhCHO, 270 

PhCN could be obtained with similar FE of ~50% (Entry 5), demonstrating that PhCHO 271 

serves as the key intermediate for nitrile production. We also employed benzylamine 272 

(BnNH2) as the carbon source, considering that nitrile could be synthesised from the 273 

electrochemical dehydrogenation of amine on Ni-based catalysts.[47-56] Indeed, the 274 

electro-oxidation of BnNH2 resulted in PhCN formation, though the FE (74.5%) was 275 

rather different from that when using BnOH as the carbon source (Entry 6). Moreover, 276 

we were not able to detect BnNH2 intermediate throughout the whole process of BnOH 277 

electrolysis (Supplementary Fig. S2, S3a). These results suggest that pathway II via 278 

the direct amination of BnOH to yield BnNH2 is highly unlikely. 279 
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Table 1. The list of control experiments to confirm the reaction pathway. 280 

Entry C source N source E / V vs. RHE Main organic product (FE / %) 

1 BnOH NH3 × N.D. 

2 × NH3 1.425 N.D. 

3 BnOH × 1.425 PhCOOH (94.0) 

4 BnOH NH3 1.425 PhCN (49.2) 

5 PhCHO NH3 1.425 PhCN (46.2) 

6 BnNH2 NH3 1.425 PhCN (74.5) 

7 PhCN NH3 1.425 PhCONH2 

8 PhCOOH NH3 1.425 N.D. 

9 PhCONH2 NH3 1.425 N.D. 

Reaction conditions: Ni foam, 20 mM C source (if present), 1 M N source (if present), pH 13, 1.425 V 
vs. RHE (if present), 8 h reaction time. N.D. = not detected. 

To probe the possibility of the various side reactions, PhCN, PhCOOH and 281 

PhCONH2 were used to conduct the electrolysis. When PhCN was used as the carbon 282 

source, only a trace amount of PhCONH2 was detected, with a PhCONH2 to PhCN 283 

ratio of less than 4.5% (Entry 7, Supplementary Fig. S3b, c), which is smaller than the 284 

corresponding ratio during BnOH electrolysis (7-8%). This implies that PhCONH2 is 285 

probably produced from PhCN hydrolyzation as well as hemiaminal (PhC(OH)NH2) 286 

dehydrogenation. Electrolysis using PhCOOH and PhCONH2 failed to generate any 287 

organic products (Entries 8, 9). Taken together, the electrocatalytic synthesis of nitrile 288 

using primary alcohol and ammonia follows a dehydrogenation-imination-289 

dehydrogenation pathway (Scheme 1). The direct oxidation of aldehyde to form acid 290 

serves as the main competing reaction, and the dehydrogenation of hemiaminal 291 

intermediate and hydrolyzation of nitrile lead to the amide side product. 292 
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 293 

Scheme 1. Plausible reaction pathway in the Ni foam catalysed electro-oxidative coupling of primary 294 
alcohols and ammonia to nitriles. 295 

3.3. Ni2+/Ni3+ redox cycle and Ni2+ are active for nitrile synthesis 296 

We initially used LSV to examine the electrochemical properties of Ni foam. In the 297 

absence of the organic compounds or ammonia, there is an oxidation peak with an 298 

onset at ~1.35 V vs. RHE, which is ascribed to the transformation of Ni2+ to Ni3+ (Fig. 299 

3a, b, eq. 3). 300 

Ni(OH)2 + OH- ⇌ NiOOH + H2O + e- (eq. 3) 

When ammonia is present, the current starts to climb in the same potential region 301 

(Supplementary Fig. S4), attributable to the Ni3+-catalysed direct oxidation of 302 

ammonia.[57] Upon the addition of BnOH, Ni foam exhibits an oxidative wave with 303 

enhanced current density (Fig. 3a), which is also observable in the cyclic voltammetry 304 

(CV) curves (Supplementary Fig. S5a). Furthermore, the reduction peak 305 

corresponding to the conversion of Ni3+ to Ni2+ is weakened after introducing BnOH 306 

(Supplementary Fig. S5a). A similar phenomenon was observed from the multi-307 

potential chronoamperometry tests, displaying that the reduction current of Ni3+ to Ni2+ 308 

disappeared when BnOH was injected during the open circuit state (Supplementary 309 

Fig. S6). We used ex-situ X-ray photoelectron spectroscopy (XPS) and Raman 310 

spectroscopy to understand this process. As illustrated in the XPS spectra, the surface 311 

of the acid-treated Ni foam was mainly composed of metallic Ni and Ni2+ 312 
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(Supplementary Fig. S7b). When the organic compounds and ammonia were absent, 313 

the characteristic peaks associated with Ni3+ were detected in both XPS and Raman 314 

spectra after applying a potential of 1.45 V vs. RHE (Supplementary Fig. S7c, S8), 315 

which disappeared upon stirring in an electrolyte solution containing BnOH and 316 

ammonia (Supplementary Fig. S7d, S8). According to the above results, we deduce 317 

that the electrochemically generated Ni3+ triggers the C-N coupling of BnOH and 318 

ammonia to PhCN, accompanied by the simultaneous reduction of Ni3+ to Ni2+ 319 

(Supplementary Fig. S9, eq. 4), which is likely the widely accepted Ni2+/Ni3+-mediated 320 

indirect oxidation of organic compounds.[58] 321 

4NiOOH + BnOH + NH3 → 4Ni(OH)2 + PhCN + H2O (eq. 4) 

In-situ Raman analyses (Supplementary Fig. S10) were further carried out to 322 

verify the assumption through probing the changes in Ni foam during potential 323 

alterations. As displayed in Fig. 3c, two peaks located at 473 and 553 cm-1 are 324 

observed above around 1.35 V vs. RHE, which correspond to the Ni3+-O bending and 325 

stretching vibrations of NiOOH, respectively. The intensities of the NiOOH peaks 326 

increase progressively as the potential becomes more positive. The presence of 327 

ammonia has insignificant effects on the formation of NiOOH: it only results in slightly 328 

decreased peak intensities (Supplementary Fig. S11, S12), possibly due to the partial 329 

passivation of the electrode surface by ammonia. When BnOH was added, the NiOOH 330 

peaks only accumulate at potentials higher than 1.55 V vs. RHE, with distinctly 331 

decreased intensities (Fig. 3d). These results confirm that the in-situ formed Ni2+/Ni3+ 332 

redox species serves as the active site for the PhCN production from BnOH and 333 

ammonia. 334 

Interestingly, compared to that with BnOH and ammonia, the NiOOH peaks start 335 

to appear at a negatively shifted potential (~1.45 V vs. RHE) with higher intensities 336 
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when PhCHO intermediate and ammonia are present (Fig. 3e). This is despite a higher 337 

current recorded under the in-situ Raman measurements (Supplementary Fig. S13), 338 

which may imply that the reaction between PhCHO and NiOOH is faster (compared to 339 

that between BnOH and NiOOH) and the peaks may be expected to emerge at a more 340 

positive potential. Additionally, there is indeed an obvious increase in the Ni2+/Ni3+ 341 

oxidative current (Fig. 3b, Supplementary Fig. S5b), as well as a decrease in the 342 

Ni3+/Ni2+ reductive current (Supplementary Fig. S5b) after adding PhCHO. The 343 

characteristic peaks attributed to Ni3+ were also not discernible after mixing the 344 

oxidative-potential-treated Ni foam with PhCHO and ammonia (Supplementary Fig. 345 

S7e, S8). Thus, these give us hints that the Ni2+/Ni3+ species may be just one of the 346 

several possible reactive sites for the C-N coupling of PhCHO and ammonia. 347 

Remarkably, given that the onset potential shifts largely in the negative direction to 348 

around 1.23 V vs. RHE when PhCHO is present (Fig. 3b), it is reasonable to speculate 349 

that Ni2+ also plays a key role in the oxidative coupling reaction (eq. 5). 350 

PhCHO + NH3 + 2OH- 
  Ni2+  
→     PhCN + 3H2O + 2e- (eq. 5) 

To confirm this, we performed electrolysis in the presence of PhCHO and ammonia at 351 

1.27 V vs. RHE (Supplementary Fig. S14), where Ni3+ does not form (Supplementary 352 

Fig. S15, S16). Although at a relatively lower formation rate, PhCN is the only 353 

detectable product with a high FE of 74.8%, demonstrating the promising potential of 354 

the Ni2+ site in the production of nitriles from aldehydes and ammonia. We note that 355 

Ni2+ has only been hinted, based on LSV studies, as the active site for limited cases 356 

of electrochemical oxidative reactions, including cysteine (CySH) dimerisation[59, 60] 357 

and N-acetylglucosamine (NAG) oxidation[61] reactions. 358 
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 359 

Figure 3. Investigation of the catalytic active sites. a) LSV curves of Ni foam without (grey line) and 360 
with (green line) BnOH and NH3 at a scan rate of 10 mV/s without stirring (pH 13). b) LSV curves of Ni 361 
foam without (grey line) and with (green line) PhCHO and NH3 at a scan rate of 10 mV/s without stirring 362 
(pH 13). 2D spectra for the potential-dependent in-situ Raman studies of Ni foam c) without BnOH, 363 
PhCHO or NH3; d) with BnOH and NH3 and e) with PhCHO and NH3. Further details for Raman spectra 364 
are given in Supplementary Fig. S12. 365 

3.4. Nitrile synthesis depends on potentials, pH and reactant concentrations 366 

The effects of various applied potentials, pH values and ammonia/BnOH 367 

concentrations on the FEs and PhCN formation rate of the Ni foam-catalysed 368 

electrosynthesis of PhCN were systematically investigated. As the potential becomes 369 

more positive than ~1.42 V vs. RHE, the PhCN formation rate increases sharply from 370 

around 40 to 90 mmol m-2
cat h-1 and levels off (Fig. 4a), which could be rationalised by 371 

earlier LSV results (Fig. 3a). As long as the NiOOH active phase could be rapidly 372 

regenerated under these sufficiently positive potentials, the rate of the Ni2+/Ni3+-373 

mediated indirect oxidation of BnOH and ammonia is independent of the applied 374 
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potentials, which also suggests that the rate-determining step (RDS) directly involves 375 

the PhCN formation as opposed to the generation of NiOOH. In the range of 1.35 to 376 

1.50 V vs. RHE, the FE towards PhCN firstly increases to its highest value of 63.0% 377 

and shows a downward trend at potentials higher than 1.375 V vs. RHE. 378 

Notably, the PhCN formation rate exhibits a strong pH dependence, increasing 379 

substantially from 0.66 mmol m-2
cat h-1 (pH 12) to 90.8 mmol m-2

cat h-1 (pH 13) and 380 

declining greatly thereafter (Fig. 4b). The very low PhCN formation rate at pH 12 is 381 

likely due to the lack of formation and/or regeneration of NiOOH caused by insufficient 382 

OH- as indicated in eq. 3. Possible reasons for the drops in PhCN formation rate and 383 

FE at pH 14 include that (1) the imine formation is suppressed while the geminal diol 384 

formation is promoted on account of more prevalent nucleophilic attack by OH- on 385 

imine and aldehyde (Scheme S2);[62] and (2) strong alkaline electrolyte is beneficial 386 

for the Cannizzaro reaction and the hydrolysis of nitrile (Scheme S3), leading to the 387 

enhancement of acid formation. The lower FE for PhCN at pH 14, in contrast to that 388 

at pH 13, is also observed regardless of the ammonia concentrations tested (Fig. 4c). 389 

As the ammonia concentration increases, the PhCN FE displays a significant increase, 390 

possibly owing to the shifted aldehyde-imine equilibrium to the imine side. There is a 391 

decline of FE for PhCN at high ammonia concentrations, probably because ammonia 392 

oxidation reaction becomes more favourable. When the BnOH concentration 393 

increases, the formation rate and FE of PhCN show remarkable upward trends before 394 

being subject to fluctuations (Fig. 4d). The plateau in the PhCN formation rate at BnOH 395 

concentrations above 20 mM may be attributed to the saturation of the Ni3+ sites, 396 

whose rate of transformation from Ni2+ now limits the overall rate of PhCN formation. 397 
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 398 

Figure 4. Influence of reaction conditions on PhCN electrosynthesis. FEs and PhCN formation rate 399 
of the electro-oxidative coupling of BnOH and NH3 on Ni foam for 8 h under different a) applied potentials 400 
(20 mM BnOH, 1 M NH3, pH 13) and b) pH values (20 mM BnOH, 1 M NH3, 1.425 V vs. RHE. c) FE of 401 
PhCN in the Ni foam catalysed electro-oxidative coupling of BnOH and NH3 for 8 h under different 402 
ammonia concentrations (20 mM BnOH, 1.425 V vs. RHE). d) FEs and PhCN formation rate of the 403 
electro-oxidative coupling of BnOH and NH3 on Ni foam for 8 h under different BnOH concentrations (1 404 
M NH3, pH 13, 1.425 V vs. RHE). 405 

3.5. The rate-determining step involves the alcohol α-carbon C-H bond cleavage 406 

Kinetic analyses were carried out to further understand the RDS of the reaction at pH 407 

13 and 1.425 V vs. RHE. The formation of PhCN was first order with respect to BnOH 408 

at low concentrations, attaining an approximately zeroth-order dependence at BnOH 409 

concentrations beyond 20 mM. (Fig. 5a). Similarly, a roughly first-order dependence 410 

on ammonia concentration was determined at lower concentrations, whereas a 411 

negative order was obtained above 1 M NH3 (Fig. 5b). The negative order could be 412 

rationalised by the ammonia poisoning effect, which is also revealed in the correlation 413 

between BnOH consumption rate and ammonia concentration (Supplementary Fig. 414 

S17). 415 
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 416 

Figure 5. Kinetic measurements of PhCN electrosynthesis. The dependences of PhCN formation 417 
rate on the concentration of a) BnOH (1 M NH3) and b) NH3 (20 mM BnOH) at pH 13, 1.425 V vs. RHE 418 
and conversion around 20%. 419 

On the basis of the proposed reaction pathway (Scheme 1) and observed reaction 420 

orders, we conducted kinetic modelling of the reaction (Supplementary Fig. S18) to fit 421 

the experimental results as depicted in Supplementary Fig. S3a. Due to the limited 422 

concentration of the PhCONH2 side product throughout the period of reaction (< 3% 423 

yield), a simplified reaction scheme (Scheme 2) was used. The kinetic model 424 

predictions agree reasonably well with the experimental results and the optimised 425 

parameters are displayed in Table 2, where k1, k2 and k3 refer to the rate constants for 426 

the production of PhCHO, PhCN and PhCOOH, respectively, while K is the equilibrium 427 

constant for the reversible reaction between PhCHO and imine. Although these rate 428 

constants have the same order of magnitude, the fact that k1 has the lowest value 429 

implies that the RDS may involve the dehydrogenation of BnOH to form PhCHO. 430 

 431 
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Scheme 2. Simplified reaction pathway used for the modelling of the Ni foam catalysed benzonitrile 432 
synthesis from benzyl alcohol and ammonia. 433 

Table 2. Kinetic modelling of the reaction rate constants (ki) and equilibrium constant (K). 434 

k1 / h-1 k2 / h-1 k3 / h-1 K / mM-1 

0.211 0.479 0.243 1.15 × 10-3 

Reaction conditions: Ni foam, 20 mM BnOH, 1 M NH3, pH 13, 1.425 V vs. 
RHE. 

A kinetic isotope effect (KIE) study was performed to determine whether the RDS 435 

is the C-H bond cleavage at the α-carbon or the O-H bond breakage in the hydroxyl 436 

group of BnOH. The undeuterated substrate (PhCH2OH) and PhCD2OH (deuteration 437 

of both α-hydrogen of benzyl alcohol) were transformed to PhCN under the same 438 

reaction conditions. As exhibited in Table 3, the formation rate of PhCD2OH is smaller 439 

than that of PhCH2OH, yielding a KIE value of 1.73. The observed normal KIE value 440 

suggests that the α-hydrogen abstraction through a hydrogen atom transfer 441 

mechanism may indeed be the RDS for the overall reaction (eq. 6). 442 

(PhCH2OH)ads + NiOOH 
  RDS  
→    (PhĊHOH)ads + Ni(OH)2 (eq. 6) 

It is worth mentioning that Choi et al. have demonstrated another novel mechanism 443 

involving hydride transfer from α-hydrogen in alcohols to Ni4+ site in NiOOH.[63, 64] 444 

Considering that this mechanism happens at more positive potentials (> 1.5 V vs. RHE) 445 

and is potential-dependent with the regeneration of the catalytically active species as 446 

the RDS, we rule out the possibility of this pathway in our case. 447 
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Table 3. Kinetic isotopic effects for PhCN electrosynthesis. 448 

Entry Alcohol 
PhCN formation rate / 

mmol m-2
cat h-1 

KIE 

1 PhCH2OH 57.3 

 

2 PhCD2OH 33.2 

3 𝑘PhCH2OH 𝑘PhCD2OH⁄    1.73 

Reaction conditions: Ni foam, 20 mM PhCH2OH or PhCD2OH, 1 M NH3, pH 13, 
1.425 V vs. RHE, around 20% conversion. 

3.6. Electrosynthesis on Ni extends to other nitriles 449 

A series of aromatic, aliphatic and heterocyclic primary alcohols were used as 450 

substrates to study the performance of our electrocatalytic system at synthesising the 451 

corresponding nitriles. Initially, we used aromatic substrates with electron-donating 452 

groups at the para- or ortho-position, including 4-methoxybenzyl alcohol, 4-453 

hydroxybenzyl alcohol, 2-hydroxybenzyl alcohol and vanillyl alcohol, which gave very 454 

low to negligible conversions (Supplementary Table S1). Based on literature[65, 66] 455 

and our LSV analysis (Supplementary Fig. S19), a probable reason for the inactivity 456 

is the passivation of the Ni foam brought about by a radical polymerisation process, 457 

as the substituents may be converted to negatively charged phenoxide ions under 458 

alkaline reaction conditions. Among the aromatic substrates para-substituted with 459 

electron-withdrawing groups (-Cl and -NO2), the conversions are relatively high (above 460 

87%), although the nitrile selectivities are lower than that obtained using BnOH as the 461 

substrate (Fig. 6). This is mainly due to much higher amide selectivities (compared to 462 

that of using BnOH as substrate) on these substituted substrates (Supplementary 463 

Table S2). Similar phenomena of depressed nitrile selectivity and high amide 464 

selectivity were seen when using furfuryl alcohol as the substrate. Interestingly, the 2-465 

furonitrile was observed to convert rapidly to the amide on standing, within several 466 
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hours even without stirring. Remarkably, the Hammet plot (Supplementary Fig. S20) 467 

exhibits a good linear correlation with a positive slope,[67] implying that the rate-468 

determining alcohol dehydrogenation step involves more proton-transfer than 469 

electron-transfer character.[68, 69] Meanwhile, the aliphatic alcohols could also be 470 

transformed to corresponding nitriles, albeit with lower selectivities. As a majority of 471 

these substrates have been reported to be derivable from lignocellulose and/or 472 

CO2,[70-76] our electrosynthetic strategy shows promising feasibility at valorising 473 

waste materials to make organonitrogen products. 474 

 475 

Figure 6. Substrate scope of the electrosynthesis of nitriles from primary alcohols and ammonia. 476 
Reaction conditions: Ni foam, 20 mM primary alcohol (5 mM for 1b and 1c), 1 M NH3, pH 13, 1.425 V vs. 477 
RHE, 8 h reaction time. Conversions and selectivities are indicated below each compound, with the latter 478 
in parentheses. 479 

4. Conclusions 480 

We have utilised Ni foam for the electrocatalytic synthesis of benzonitrile from benzyl 481 

alcohol, with the highest formation rate of 90.8 mmol m-2
cat h-1 and FE of 63.0%. The 482 

reaction likely follows a dehydrogenation-imination-dehydrogenation pathway, with the 483 

oxidation of the aldehyde intermediate to carboxylic acid being the main competing 484 

reaction and amide as another side product. Ni2+/Ni3+ redox species acts as a key site 485 

for the C-N coupling between benzyl alcohol and ammonia to produce benzonitrile. 486 

The kinetic studies revealed that the extraction of the α-hydrogen from the primary 487 

alcohol via a hydrogen atom transfer mechanism is likely the overall rate-limiting step. 488 
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Notably, we showed that Ni2+ is a plausible site for the oxidative coupling, specifically 489 

for the oxidation of imine to nitrile, which has not been reported so far. In all, we have 490 

demonstrated a noble-metal-free monometallic catalyst for the electrocatalytic nitrile 491 

synthesis from primary alcohols. Given the established electrocatalytic pathways from 492 

nitrogen-containing ions present in wastewater (NO3
-, NO2

-) to NH3, our work is 493 

potentially an enabler of the environmentally sustainable electrosynthesis of valuable 494 

nitrile compounds purely using waste materials (CO2, waste biomass, wastewater) as 495 

feedstocks. 496 
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