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ABSTRACT: Docking simulation, a key technique in virtual screening, typically treats proteins as rigid bodies. However, proteins 
are inherently flexible, and ligand binding can induce significant conformational changes, affecting prediction accuracy. This study 
proposes a new approach to identify protein binding pockets that exhibit substantial conformational changes upon ligand binding, 
potentially impacting docking simulation accuracy. In this research, we developed a prediction model using graph neural network to 
identify protein pockets with large conformational changes. To train the model, we constructed a dataset by calculating conforma-
tional changes in ligand-binding sites between multiple holo structures corresponding to the apo structure. We evaluated the perfor-
mance of the prediction model and the results demonstrated that our model could identify proteins with significant conformational 
changes, although the prediction accuracy remains low, with an AUC of 0.58 on the test data. This study highlights the potential of 
deep learning approaches in addressing the challenges of protein flexibility in virtual screening and docking simulations.

INTRODUCTION 
Virtual screening is a computational technique used to select drug 
candidate compounds from vast compound libraries, estimated to 
contain between 10!" and 10#" potentially usable compounds1,2. 
This technique primarily evaluates the presence or absence of ac-
tivity between compounds and drug target proteins, as it is crucial 
for drug candidate compounds to bind to target proteins and ex-
hibit pharmacological effects3. There are two main approaches to 
virtual screening: ligand-based virtual screening (LBVS)4, which 
uses information from known active compounds, and structure-
based virtual screening (SBVS)5, which utilizes the three-dimen-
sional structure of proteins. LBVS employs methods such as 
chemical similarity, pharmacophore modeling, and machine learn-
ing to build regression or classification prediction models based 
on known experimental information, enabling rapid selection 
from extensive compound libraries. This method is applicable 
even when the target protein's structure is unknown, provided 
there are experimentally known active compounds. However, it 
relies on the assumption that similar molecules have similar prop-
erties, which can lead to missing novel compound candidates6. On 
the other hand, SBVS evaluates the binding affinity between pro-
teins and compounds based on physicochemical interactions such 
as van der Waals forces, Coulomb forces, and hydrogen bonding, 
enabling the selection of compounds when the target protein's 
structure is known. SBVS has the advantage of discovering novel 
drug candidate compounds without relying on known experi-
mental information. 
One of the key technologies in SBVS is docking simulation, a 
computational technique that predicts the interaction between 
compounds (ligands) and target molecules. The process of dock-
ing simulation starts with acquiring the three-dimensional struc-
ture of the target protein, followed by identifying the binding site, 
preparing the compound library, executing the docking, scoring 
the binding affinity, and finally selecting lead compounds7,8. 
However, proteins are inherently flexible, and the impact of con-
formational changes in the binding site due to ligand binding on 
docking simulation is significant. 
 

The conformational changes in the binding site of proteins due to 
ligand binding affect docking simulation9. Experimental data-
based ligand-bound structures (holo structures) have been shown 
to have higher docking simulation accuracy than unbound struc-
tures (apo structures)10,11 . However, many proteins lack experi-
mentally obtained holo structures. Therefore, docking simulations 
that consider protein conformational changes12 have been consid-
ered, but they are not common due to increased computational re-
quirements. Thus, methods for generating holo structures from 
apo structures have been researched to prepare suitable three-di-
mensional structures for docking simulation. 
There is abundant research on estimating holo structures as suita-
ble three-dimensional structures for docking simulation, using 
techniques such as molecular dynamics (MD) simulations and 
machine learning in recent years13. However, these holo structure 
estimation methods have problems, and there is no practical 
method for estimating holo structures. Methods using MD simula-
tions require information about the ligand or holo structure, which 
is not available for proteins without known holo structures14. 
Moreover, holo structure estimation methods using MD simula-
tions with templates, which are popular approaches for proteins 
without known holo structures, have the problem of limited ap-
plicability to proteins for which suitable templates cannot be pre-
pared15. Additionally, the case study of ButF demonstrates the 
limitations of template-based methods and MD simulations with 
constraints based on known information16. 
Machine learning-based holo structure estimation methods have 
been developed in recent years, offering advantages such as lower 
computational requirements after training and no need for specific 
templates. However, these methods can lose generalization perfor-
mance unintentionally due to the size and bias of the training da-
taset. Generative models used in these methods might have low 
generalization performance due to the small scale of the dataset 
and the low accuracy of the generated structures17,18. 
Considering the absence of practical methods for estimating holo 
structures with usable accuracy, identifying proteins with signifi-
cant conformational changes in the binding site due to ligand 
binding is crucial for minimizing the negative impact on docking 
simulation. This approach could also contribute to the 
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development of holo structure estimation methods. For holo struc-
ture estimation using MD simulations, limited operation for target 
proteins that affect the accuracy of virtual screening can solve the 
problem of high computational requirements. For holo structure 
estimation using machine learning, excluding proteins with small 
structural differences between the apo and holo structures of the 
ligand-binding site from the dataset is expected to improve accu-
racy. Therefore, limiting the dataset to proteins with large struc-
tural differences in the ligand-binding site between the apo and 
holo structures is considered to lead to improved accuracy of holo 
structure estimation methods.   
In light of the challenges associated with holo structure estimation 
and the importance of identifying proteins with significant confor-
mational changes in the binding site, this study aims to develop a 
deep learning-based method to distinguish proteins that exhibit 
substantial conformational changes in the pocket due to ligand 
binding. Specifically, we will focus on estimating whether the 
conformational changes in the pockets between the apo and holo 
structures are significant, with the goal of enhancing the accuracy 
and applicability of docking simulations and virtual screening in 
drug discovery. 

MATERIALS AND METHODS 
The flow of this study is outlined in Figure 1. The process begins 
with searching for the corresponding apo structures for the dataset 
of holo structures and calculating the conformational changes in 
the pocket between the apo and holo structures. As multiple holo 
structures may correspond to a single apo structure, we determine 
the label based on the maximum value of the pocket's structural 
change. Next, graph data are generated from the apo structures us-
ing the types and coordinates of amino acid residues and the cen-
troid coordinates of the pocket. The node features include the type 
of amino acid residue and the distance from the pocket centroid, 
while the edge features use weights based on the distance between 
amino acid residues. Finally, we train and evaluate the prediction 
model using the graph data and the label based on the maximum 
structural change in the pocket.  

 

 
Figure 1. Outline of Research Methods 

 
Datasets construction. For this study, we aim to discriminate 
proteins with significant conformational changes in the pocket 
due to ligand binding using deep learning, with the input being the 
three-dimensional structure of apo proteins. To achieve this, data 
on the conformational changes in the pocket between apo and 
holo proteins is required. Existing datasets only record one holo 
structure for each apo structure, not considering multiple holo 
proteins corresponding to one apo protein and are also small in 
scale19,20. In this research, we constructed a new dataset that rec-
ords the pocket conformational changes for multiple holo proteins 
corresponding to an apo protein. The detailed procedure for con-
structing this dataset is described in the Supporting Information.  

Protein Structure Graph Generation. Protein structure is 
deeply related to its function, and detailed analysis of its structural 
features is crucial for predicting pocket conformational changes 
due to ligand binding. However, directly handling the complex 
three-dimensional structure of proteins is computationally very 
challenging. Therefore, it is necessary to simplify the data repre-
sentation while retaining the necessary information. In this study, 
we converted the protein three-dimensional structure data into 
graph data, which is commonly used as input for deep learning, to 
capture the essential features of the three-dimensional structure 
formed by the protein's molecular chain and represent this struc-
tural information in a form processable by machine learning mod-
els. 
The edge feature is the weight using the distance between the co-
ordinates of the amino acid residues, adopting $

$%&
 (distance= 𝑥) 

as the weight. For the condition of forming edges, in the Test and 
Validation data, edges are formed between amino acid residues 
with a distance of 8Å or less. In the Train data, for distances 
greater than 6Å, the probability of forming an edge approaches 
zero as the distance approaches 10Å, according to the following 
formula: $"'&

(
 (if 6 < 𝑥 < 10). This condition for forming edges 

is aimed at data augmentation and is referred to as "random 
edges." The representative point of the amino acid residue is the 
𝐶) atom coordinate, which is used to consider the influence of the 
distance between side chains. 
The node features used are the type of amino acid residue and the 
distance from the pocket centroid coordinate of the amino acid 
residue. The type of amino acid residue is one-hot encoded into a 
total of 21 types, including 20 standard amino acids and others, 
after converting non-standard amino acids to similar standard 
amino acids. The distance from the pocket centroid coordinate of 
the amino acid residue is input directly as a numerical value. 
The edge feature is the weight using the distance between the co-
ordinates of the amino acid residues, adopting $

$%&
 (distance= 𝑥) 

as the weight.  
Labeling. The label of  a protein structure graph is defined based 
on its conformational changes between apo and holo structures. 
We use the root mean square distance (RMSD) of c-alpha atoms 
of pocket residues and define the labels as follows: 
l Negative: Proteins with a pocket RMSD in the range of  

0.0Å ≤ Pocket RMSD< 1.5Å are considered to have 
small conformational changes. 

l Positive: Proteins with a pocket RMSD in the range of  
1.5Å ≤ Pocket RMSD< 10Å are considered to have large 
conformational changes. 

Proteins with a pocket RMSD of 10Å or more are excluded be-
cause such large-scale conformational changes often involve 
OPEN/CLOSE conformational changes and it is not the scope of 
this research. 
Data Splitting and Augmentation. To demonstrate that the pro-
posed method can be applied to apo proteins whose holo struc-
tures are not known to have high sequence similarity, we divided 
the data so that proteins with high sequence similarity to the Test 
data are not included in the Train data. Specifically, we defined 
protein groups with sequence similarity (using BLAST+21) of 
50% or more as groups with high sequence similarity and divided 
the 830 groups with high sequence similarity into Train, Test, and 
Validation data so that the protein units do not overlap across the 
data and the ratio is close to 8:1:1. 
To address the imbalance between Positive and Negative classes 
in the Train data, we employed “Random OverSampling” from 
the imbalanced-learn library in scikit-learn22 to equalize the 
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number of samples in each class. Additionally, we applied the 
random edge augmentation technique described in the Feature Ex-
traction section to increase the size of the Train dataset by tenfold, 
enhancing the diversity of the training data and potentially im-
proving the robustness of the model. 
Performance Evaluation. For performance evaluation, we 
adopted the Area Under the Curve (AUC) of the Receiver Operat-
ing Characteristic (ROC) curve as a generic and balanced perfor-
mance metric for the prediction model, which is a binary classifi-
cation problem that determines whether the structural change in 
the binding pocket is large or small. AUC is a reliable evaluation 
compared to Accuracy, especially for imbalanced datasets, as it 
considers the trade-off between false positive rate and true posi-
tive rate. Additionally, the ROC curve visually represents the per-
formance trade-off of the model, facilitating comprehensive com-
parison and analysis between different models and settings. 
Deep Learning Model. We chose a simple Graph Convolutional 
Neural Network (GCNN)23 that requires relatively few features, 
can efficiently generate necessary data, and is effective for learn-
ing with a small amount of data, as the dataset is small, and it is 
necessary to use the entire protein as input data. The GCNN 
model uses graph data with amino acid residues of the apo protein 
as nodes and the bonds between residues as edges. The optimiza-
tion method is Adam24, and the loss function is Binary Cross En-
tropy Loss. 
The model configuration was set using Optuna25, a Python library 
for automating hyperparameter optimization. The parameters and 
their search ranges explored with Optuna are shown in Table 1. 
The shapes of the convolutional layers are pyramid, rhombus, and 
uniform, with the channel number increasing in the first layer and 
decreasing towards the output layer in the pyramid, the channel 
number reaching the maximum in the middle layer in the rhom-
bus, and all layers having the same channel number in the uni-
form.

 
Table 1. Hyperparameters and their search ranges used in the opti-
mization process with Optuna.  

Parameter Search Range 

Number of Convolu-
tional Layers 3, 4, 5, 6, 7, 8, 9, 10 

Shape of Convolu-
tional Layers 

pyramid, rhombus, uni-
form 

Number of Channels 1 to 512 
Pooling Layer mean, max, add 

Dropout 0.1 to 0.7 
Batch Normalization using or not using 

Learning Rate 
1e-5 to 1e-2  

(searched on a log scale) 
 

 

RESULTS 
Dataset generation. We obtained 19,444 holo proteins from the 
PDBbind version 2020 database26,27 and 3,535 corresponding apo 
proteins. Defining proteins with sequence homology of 99% or 
more as identical, we identified 1,480 unique proteins. No pro-
teins with multiple pockets were found in this dataset. 
Data Splitting. The data was split so that groups with high se-
quence similarity (groups with sequence similarity of 50% or 
more) did not overlap between the Train, Test, and Validation 

data. The splitting was done at the protein level in a ratio close to 
8:1:1. Specifically, groups with a number of proteins equal to or 
less than one-tenth of the number of proteins allocated to the Test 
and Validation data were randomly assigned to the Test and Vali-
dation data, and the remaining data was assigned to the Train data. 
After random splitting, manual adjustments were made to the Test 
and Validation data to ensure that the ratio of Positive to Negative 
labels did not significantly deviate. The results of the data split-
ting are shown in Table2 

 
Table 2. Results of Datasets Splitting 

data type label Groups with High 
Sequence Similarity Proteins 

Apo Pro-
tein 

Binding 
Pockets 

Train 
Negative 185 359 901 
Positive 476 852 2205 

Test 
Negative 83 87 95 
Positive 26 45 124 

Validation 
Negative 71 74 91 
Positive 36 57 116 

 

 
Performance Evaluation. Using the parameters determined by 
Optuna, where the convolutional layer shape was uniform, the 
number of channels was 34, the pooling layer was mean, dropout 
was 0.634, batch normalization was applied, and the learning rate 
was 3.836e-5, we constructed the GCNN model. The model was 
trained with the dataset, and the performance was evaluated on the 
Test data. 
The ROC curve for the test data is shown in Figure 2. The AUC 
was 0.58. It shows that the model's learning was better than ran-
dom prediction. Especially, the true positive rates at the low false 
positive rate regions are relatively better and it indicates that large 
conformational change of protein pocket would be predictable. 

 

 
Figure 2. An ROC curve of the proposed method for the test da-
taset. The AUC = 0.58. 

 
Case Study. We examined cases where the model accurately pre-
dicted proteins with large conformational changes in the pocket 
and cases where predictions were significantly off. For accurately 
predicted cases, we found that the model could distinguish 

https://doi.org/10.26434/chemrxiv-2024-tp6nl ORCID: https://orcid.org/0009-0007-7435-0475 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-tp6nl
https://orcid.org/0009-0007-7435-0475
https://creativecommons.org/licenses/by-nc/4.0/


 

proteins with large conformational changes relatively well but had 
low accuracy for proteins with small conformational changes. Ad-
ditionally, even among correctly predicted apo proteins, the 
pocket structural change and the predicted value were not propor-
tional, indicating that the model was not capturing features that in-
fluence the pocket's structural change. In the case study (Figure 
3), among the examples where predictions were significantly off, 
there were some proteins that were incorrectly predicted to have 
large conformational changes. Notably, within this group, some 
proteins had structural similarities to proteins that were correctly 
predicted to have large conformational changes. This suggests that 
the learning process may become challenging due to being influ-
enced by partial structural similarities. For instance, Example A in 
Figure 3 shows a protein that was correctly predicted to have a 
large structural change, whereas Example B shows a protein that 
was incorrectly predicted to have a large structural change but 
shares some structural similarities with Example A. 

 

 

Figure 3. This figure illustrates examples from the case study 
where the deep learning model was used to predict large confor-
mational changes in protein pockets due to ligand binding. The 

red highlighted areas indicate the pocket regions. The model's pre-
dictions are compared to the actual maximum pocket root mean 

square deviation (RMSD) to assess its accuracy.
 

DISCUSSION 
Analysis of Dataset Distribution Using t-SNE. The dataset was 
constructed such that protein pairs with sequence similarity of 
50% or more do not overlap between the Train, Test, and Valida-
tion data. However, protein pairs with sequence similarity below 
50% exist across the different data sets. By visualizing the se-
quence similarity relationships of the dataset using t-SNE28 (Fig-
ure 4), it was observed that some protein pairs across the data sets 
have higher sequence similarity compared to pairs within the 
same dataset. 

This study aims to learn the features of apo proteins that undergo 
conformational changes in the pocket due to ligand binding 
through deep learning. Since the input includes amino acid resi-
due information, it is likely that features from proteins with high 
sequence similarity are more easily learned. However, depending 
on the bias of the dataset and not achieving generalization perfor-
mance is undesirable, as it would mean being heavily influenced 
by proteins with high sequence similarity. Therefore, as a compar-
ison, we generated a distance matrix from sequence similarity and 
performed predictions using the k-nearest neighbors method29. 
The results for different k values on the Validation and Test data 
are shown in Table 3. From the results, it can be inferred that 
learning is occurring from information other than sequence simi-
larity, as the proposed method has higher accuracy on the Valida-
tion data. On the other hand, the k-nearest neighbors method has 
higher accuracy on the Test data than the proposed method, indi-
cating that there is a different trend in the Test data despite the 
high sequence similarity proteins not having the same correct la-
bels in the Validation data. The inclusion of such differently char-
acterized data may make learning more challenging. Moreover, 
when compared based on Validation Accuracy, the model has bet-
ter accuracy, so this method is not selected, and the proposed 
method is superior from the perspective of generalization perfor-
mance. 
 

 

 
Figure 4. t-SNE by sequence homology of datasets. .

 
 

Table 3. Comparison of Validation Accuracy and Test Accu-
racy for different k values 

k value Validation 
Accuracy 

Test Accuracy 

3 0.47 0.60 
5 0.48 0.60 
10 0.52 0.63 
15 0.50 0.62 

Our Method 
(threshold=0.5) 

0.66 0.56 

 
 
Effect of Random Edge Augmentation. In this study, we em-
ployed a unique data augmentation technique called "random 
edges" due to the limited size of our dataset. However, such data 
augmentation has not been used in other studies, and the 
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effectiveness of random edges remains unclear. To assess the effi-
cacy of random edges, we conducted a comparative experiment. 
The ROC curve for the Test data without random edges is shown 
in Figure 5, with the results overlaid with those obtained using 
random edges. The AUC without random edges was 0.48, indicat-
ing a significant drop in accuracy and a result worse than random 
judgment. This decrease in accuracy could be due to the GCNN 
model's parameters being optimized for a dataset increased ten-
fold by random edges. 
We also examined the results when optimizing the parameters us-
ing Optuna without random edges. The results showed a Valida-
tion AUC of 0.70 and a Test AUC of 0.54. Although the Valida-
tion AUC was higher than that obtained with random edges, the 
Test AUC remained low. This suggests that the dataset is too 
small for the learning method without random edges, leading to 
low generalization, and that random edges have a certain effect. 
However, the use of random edges also has its drawbacks. As 
shown in the supporting information (Figure S2 and Figure S3), 
the prediction accuracy is higher when random edges are used, but 
the difference between the training and validation data caused by 
random edges leads to increased adverse effects of overfitting as 
learning progresses. 
In conclusion, while random edges contribute to improved predic-
tion accuracy, they also introduce challenges in terms of overfit-
ting, highlighting the need for careful consideration when using 

data augmentation techniques in machine learning models for pro-
tein structure prediction. 

 

 
Figure 5. Comparison of ROC curves with and without random 
edge augmentation.

 

CONCLUSIONS 
In this study, we proposed a method that involves creating a new 
dataset that considers the pocket conformational changes between 
apo proteins and their corresponding multiple holo structures. We 
hypothesized that by training with this dataset, we could discrimi-
nate proteins with large conformational changes in the pocket due 
to ligand binding. We conducted experiments to build the dataset 
and improve the model. The results showed that the AUC for the 
Test data of the constructed dataset was 0.58, indicating superior 
performance to random guessing. This suggests that the proposed 
method has some learning effect, especially in accurately identify-
ing proteins with large conformational changes in the pocket due 
to ligand binding. 
However, the results of this study are not sufficient for practical 
application as a preprocessing step for the holo structure predic-
tion problem. One possible reason for the lack of improvement in 
the model's prediction accuracy is the insufficient size of the da-
taset. 
Furthermore, as an additional experiment, we generated a distance 
matrix from sequence similarity and conducted predictions using 
the k-nearest neighbors method. By comparing these results, we 
demonstrated that the model could learn without depending on se-
quence similarity. However, the apparent differences in the prop-
erties of the Validation and Test data suggest that the differences 
in properties due to groups with high sequence similarity may be 
larger than expected, indicating that the learning results may de-
pend on the data splitting. 
The dataset created in this study is larger compared to existing da-
tasets, but considering the experimental results, it can be said that 
it is not sufficiently large. There is also a problem of bias in the 
number of apo protein structures included in the constructed da-
taset. Specifically, there are 2 proteins with more than 100 apo 
structures, 4 proteins with more than 50, and 9 proteins with more 
than 20, which may have caused biased learning if these proteins 
are included in the Train data. Furthermore, proteins with many 
experimentally obtained structures may contain unintended biases, 
posing a problem from the perspective of diversity. Searching for 

proteins with sequence similarity of 80% or more within the da-
taset resulted in only proteins that are already present in the da-
taset, indicating that the construction of the dataset using 
PDBbind, while including more proteins than existing studies, 
may not be utilizing specific proteins effectively. One solution is 
to increase the amount of data. As a method to increase the diver-
sity and volume of the dataset, utilizing all pairs of holo and apo 
proteins present in the PDB can be considered. However, it is nec-
essary to clearly define ligands, holo proteins, and apo proteins 
and filter protein structures from the collected PDB that are valua-
ble as a dataset. The number of proteins included in the PDB is 
constantly increasing, and as of January 2024, 215,092 structures 
are registered30. The cost of constructing such a large-scale da-
taset is a significant problem. 
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