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ABSTRACT: The development of robust methods for the synthesis of chemically recyclable polymers with tunable properties is 

necessary for the design of next-generation materials. Polyoxazolidinones (POxa) – polymers with five-membered urethanes in their 

backbones – are an attractive target because they are strongly polar and have high thermal stability, but existing step-growth syntheses 

limit molar masses and chemical recyclability to monomer is rare. Herein, we report the synthesis of high molar mass POxa via ring 

opening metathesis polymerization of oxazolidinone-fused cyclooctenes. These novel polymers show <5% mass loss up to 382–411 

°C and have tunable glass transition temperatures (14–56 °C) controlled by side chain structure. We demonstrate facile chemical 

recycling to monomer and re-polymerization despite moderately high monomer ring strain energies, which we hypothesize is facili-

tated by the conformational restriction introduced by the fused oxazolidinone ring. This method represents the first chain growth 

synthesis of POxa and provides a versatile platform for the study and application of this emerging subclass of polyurethanes.  

Synthetic polymers have revolutionized every aspect of modern 

life, but current mass polymer production is unsustainable as 

common materials generate tremendous amounts of waste1–3 

and pollution4–6 after their intended use. Therefore, next-gener-

ation materials require both competitive properties and de-

signed end-of-life strategies to mitigate their environmental im-

pact. Polyoxazolidinones (POxa) are an emerging class of pol-

yurethanes with competitive properties for high temperature ap-

plications7,8 due to the five-membered oxazolidinone rings im-

parting high thermal stability7,9–13 and glass transition tempera-

tures (Tg).
7,8,11–15 Despite their promise, POxa have been limited 

to low molar masses (Mn ≤ 32 kDa8,13,15,16) for decades due to 

the step-growth nature of previous syntheses (Figure 1A) and 

very little work has been reported on sustainable approaches for 

their end-of-life.17 We sought to break this paradigm by using 

chain growth polymerization to access high molar mass POxa 

while enabling chemical recycling to monomer via depolymer-

ization.18–21  

We chose ring opening metathesis polymerization (ROMP) be-

cause (1) it is a powerful chain growth method for strained cy-

cloalkenes22–24 and (2) ROMP-based polymers obtained from 

low ring strain monomers (~5.2 kcal/mol) are known to depol-

ymerize at elevated temperatures via ring closing metathesis 

(RCM)25–29 (Figure 1B). This RCM strategy has recently resur-

faced in the design of new polymers due to its promising con-

tribution to chemical recycling.27,28,30–32 Chemical recycling to 

monomer is ideal for a circular polymer economy because this 

approach can minimize the net mass loss during recycling21 

compared to other strategies, such as mechanical recycling,2,33–

35 biodegradation,36,37 and upcycling of commodity plastics to 

value added products.38–47 Recently, Wang and co-workers 

showed that the addition of trans-fused cyclobutene or ace-

tonide rings to cyclooctene lowered the monomer ring strain en-

ergy (RSE), which they hypothesized was the critical factor that 

enabled the depolymerization of the resulting polymers.28,30  

 

Figure 1. (A) Traditional POxa from step growth polymerization 

(SGP) (A, B = reactive functionality). (B) Reversibility of ring-

opening metathesis for monomers with different ring-strain ener-

gies (RSEs). (C) Design of chemically recyclable POxa. 

Herein, we utilize ROMP for the first chain growth synthesis of 

POxa with the oxazolidinones (Oxa) in the backbone of the pol-

ymer using trans-Oxa-fused cyclooctene monomers (Figure 

1C). We demonstrate access to POxa with high molar mass, 

moderate dispersity, and control over molar mass by using a 
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chain transfer agent (CTA). These novel POxa show <5% mass 

loss up to 382 °C and have tunable Tg via side chain alteration 

and post-polymerization hydrogenation. Furthermore, we show 

clean depolymerization back to monomer, despite higher RSE 

than cis-cyclooctene (COE) calculated by density functional 

theory (DFT). This method provides access to POxa with higher 

molar masses than previous methods, which will enable future 

structure-property relationship studies and the addition of a 

broad-spectrum of new Oxa monomers for ROMP and chemical 

recycling to monomer.  

We began our investigation by synthesizing the Oxa-fused COE 

monomers M1–M4 in 4–5 steps from 1,5-cyclooctadiene 

(Scheme 1, see Supporting Information Section S3A for full 

synthetic details). Gratifyingly, M1 readily polymerized using 

G2 (see Figure S1 for all catalyst structures) in dichloromethane 

(DCM) to yield POxa P1 with a number-average molar mass 

(Mn) of 23.9 kDa; however, P1 precipitated out during the 

polymerization due to poor solubility in DCM and was only sol-

uble in N,N-dimethylformamide (DMF) and dimethyl sulfoxide 

(DMSO), which are incompatible with metathesis catalysts.48–

50 Therefore, we focused on the N-alkylated monomers M2–M4 

which yielded polymers (P2–P4) that were soluble in common 

metathesis solvents (e.g., DCM, CHCl3, THF). 

Scheme 1. Oxa-fused COE monomers from cyclooctadiene.  

 

Using M2 as a model substrate, we optimized the polymeriza-

tion conditions (Table 1).  Except for G1 (entry 1), common 

metathesis catalysts (i.e., G2, G3, HG2, see Figure S1) all re-

sulted in high conversions and molar masses (Mn = 118–487 

kDa, entries 2–4). We selected G2 as the standard catalyst be-

cause it resulted in the lowest Ɖ and is relatively inexpensive. 

Increasing the initial monomer concentration from 1.0 to 2.0 M 

decreased conversion in 20 min and resulted in a bimodal dis-

tribution with high Ɖ (entry 5), whereas lowering the concen-

tration to 0.5 and 0.25 M progressively decreased both conver-

sion and molar mass (entries 6 and 7). Therefore, our standard 

polymerization conditions consisted of 1.0 M monomer in 

DCM using G2 as the ROMP catalyst at 24 °C. M3 and M4 

were similarly polymerized to access high molar mass POxa 

(Mn = 112.3 and 88.1 kDa for P3 and P4, respectively) in 1 h 

with variable side chains (see Section S3B for synthetic details). 

Because these Oxa-fused COE monomers are unsymmetrical, 

we characterized the regioregularity of enchainment for M2–

M4 using IR and NMR spectroscopies. While the side chain 

does affect regioregularity to some extent, all polymers had 

over 88% head-to-tail enchainment (see Section S2E for more 

details).  

As expected for ROMP of COE derivatives,51–56 we observed 

evidence of slow initiation: Mn is initially very high and de-

creases (i.e., approaches Mn,theo) by extending the reaction time 

(entry 2 vs. 8–9 and Figure S5) and there was a non-linear trend 

between Mn and [M]:[Ru] ratio (Figure 2A). To improve control 

over Mn, we added cis-1,4-diacetoxy-2-butene as a chain trans-

fer agent (CTA) (Figure 2B). CTAs are known to decrease the 

difference between Mn,theo and Mn,
57,58 enable the use of cata-

lytic Ru,55,59–64 and – for this CTA – result in homotelechelic 

polymers that can be deprotected to the corresponding diol for 

further functionalization.57,58 Despite requiring longer reaction 

times due to the slower rate of polymerization (78% conv. in 3 

h vs. 90% without CTA), Mn had a linear relationship with 

[M]:([CTA]+[G2]) and was within 1–37 kDa of Mn,theo for a 

wide range of molar masses, demonstrating improved control 

over POxa molar mass.  Secondary cross-metathesis helps dis-

persity remain relatively constant (Ð ≈ 1.5–1.6) with and with-

out the CTA (when t = 3 h). 

Table 1 Optimization of ROMP conditions. 

 

entry [Ru] conc. (M) conv. (%)a Mn (kDa)b Ɖb 

1 G1 1.0 9 – – 

2 G2 1.0 82 487 1.20 

3 G3 1.0 85 118 1.41 

4 HG2 1.0 81 384 1.27 

5c G2 2.0 62 203 2.35 

6 G2 0.5 69 168 1.40 

7 G2 0.25 48 – d – d 

8e G2 1.0 86 42.7 1.20 

9f G2 1.0 86 34.4 1.55 

aDetermined by 1H NMR analysis of the crude reaction mixture. 
bCrude Mn and Ɖ were determined by size exclusion chromatog-

raphy with multi-angle light scattering (SEC-MALS) in DMF. 
c[M2]:[Ru] = 50:1. dSEC peak is overlapping with small molecule 

peaks, but Mn of oligomers is < 1 kDa. ePolymerization was run for 

1 h. fPolymerization was run for 3 h. See Figure S1 for catalyst 

structures. 

 

Figure 2. Plots of Mn (black circles), Mn,theo (open circles), and Ɖ 

(red triangles) as a function of (A) [M2]:[G2] and (B) 

[M2]:[CTA]+[G2]. Polymerization time = 3 h.  

Having established the synthesis of POxa via ROMP, we next 

investigated the thermal properties of P2–P4. Thermogravimet-

ric analysis (TGA) showed P2–P4 had high decomposition tem-

peratures at 5% mass loss (Td,5%) of 382–411 °C (Figure 3A), as 

expected for POxa.7,9–13 Differential scanning calorimetry 

(DSC) indicated the POxa were amorphous with glass transition 

temperatures (Tg) tuned by the N-substituent (Figure 3B). In-

creasing the substituent length from methyl (P3) to n-butyl (P4) 

lowered the Tg from 29 to 14 °C whereas the benzyl substituent 

in P2 increased the Tg to 56 °C. These results indicate that our 
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modular platform for monomer synthesis enables the synthesis 

of POxa with tunable Tg’s while maintaining high Td,5%. 

 

 

Figure 3. Thermal data – (A) TGA and (B) DSC thermograms – of 

P2–P4 and (C) hydrogenated [H]P2. 

To explore the range of properties accessible via this method, 

we hydrogenated the backbone olefins of P2 to form polyeth-

ylene-like polymer [H]P2 that still contains embedded polar 

Oxa rings (Figure 3C). Such polar-functionalized polyeth-

ylene65 often exhibit excellent ionic conductivity,66–68 surface 

hydrophilicity,69,70 and antimicrobial properties71,72 while main-

taining the mechanical strength of polyethylene. We speculated 

common olefin hydrogenation catalysts (e.g. Pd/C) would 

deprotect the benzyl group from the Oxa nitrogen73 and thus 

used in situ-generated diimide from N-tosyl hydrazide for hy-

drogenation,56,74 resulting in 92% conversion of the olefins via 
1H NMR spectroscopy after 16 h. The Td,5% increased slightly 

after hydrogenation (436 °C for [H]P2 vs. 408 °C for P2) 

whereas the Tg decreased from 56 to 42 °C due to increased 

backbone flexibility,75–78 indicating that post-polymerization 

modification provides an additional handle to tune thermal 

properties. 

Because we are interested in the end-of-life for these materials, 

we explored the depolymerization of the non-hydrogenated P2 

via RCM. After a brief optimization of the depolymerization 

conditions (Table S4) we observed quantitative depolymeriza-

tion of the polymer to M2 using G2 in chloroform-d (20 mM) 

at 70 °C for 4 h (Figure 4). No oligomers or side reactions were 

observed. The recovered monomer (90% by mass) behaved 

identically to fresh monomer when re-polymerized using our 

standard conditions (see Figure S32), demonstrating the facile 

circular recyclability of these materials. Detrembleur and co-

workers recently reported mechanical and chemical recycling 

of POxa-containing covalent adaptable networks,17 but this 

RCM approach is the first example of chemical recycling for 

linear POxa.  

 

 
Figure 4. 1H NMR spectra (CDCl3) of (A) M2, (B) P2, and (C) the 

crude reaction mixture of P2 depolymerization. Depolymerization 

conditions: G2 (1 mol %), CDCl3 (20 mM), 70 °C, 4 h. 

Because low monomer RSE (≤5.3 kcal/mol) has been reported 

as the key factor in the depolymerization of ROMP-based pol-

ymers,28,30 we expected M1–M4 to have lower RSE than COE, 

which does not readily depolymerize.24,79 However, the calcu-

lated RSE values were actually higher for M1–M4 (7.2–8.2 

kcal/mol) than COE (6.6 kcal/mol) (Table S5), indicating that 

RSE is not the most important factor governing the depolymer-

ization of these polymers. (Note that due to inconsistencies in 

the reported RSE of COE in the literature,28,51,80,81 we calculated 

this value using the same method as M1–M4 at the B3LYP/6-

31G (d,p) level of theory.) On the basis of the rich small-mole-

cule literature using RCM to construct medium-sized (5–9 

membered) fused rings (RSE > 7 kcal/mol),82–88 we hypothesize 

the favorable depolymerization of P2 is facilitated by the con-

formational restriction introduced by the fused Oxa ring helping 

to bring the adjacent alkenes together (conceptually similar to 

the Thorpe-Ingold effect89 that has previously been invoked for 

polymer depolymerization30,90). 

In summary, we successfully developed the first chain growth 

synthesis of POxa. We designed and synthesized novel Oxa-

fused COE monomers with easily diversified side chains. P1 – 

which contains free N-H groups – was insoluble in common 

ROMP solvents, but P2–P4 were accessed with high molar 

mass and moderate dispersity (Mn up to 487 kDa, Ɖ ≈ 1.5) via 

ROMP. We demonstrated that the molar mass could be effi-

ciently controlled using a commercially available CTA. This 

method delivers new POxa with Td,5% > 382 °C and tunable Tg 

by changing the nitrogen substituent. We showed hydrogena-

tion of the olefin backbone of the polymer to give access to pol-

yethylene-like POxa. We furthermore established the quantita-

tive chemical recyclability to monomer of P2 by employing 

RCM to deliver pure monomer that could be readily re-pol-

ymerized. Further studies on controlled copolymerization, 

mechanistic insight, and mechanical properties are underway. 

ASSOCIATED CONTENT  

Additional polymer characterization, including SEC chromato-

grams, TGA and DSC thermograms, tabulated data, experimental 

details, calculation details, methods, reagent sources, synthetic pro-

cedures. This material is available free of charge via the Internet at 

http://pubs.acs.org.  
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