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ABSTRACT: 14 

Determining accurate counts and size distributions for biological particles (bioparticles) is 15 

crucial in wide-ranging fields, but current ensemble methods to this end are susceptible to bias 16 

from polydispersity in size. This bias can be mitigated by incorporating a separation step prior to 17 

characterization. For this reason, asymmetrical flow field-flow fractionation (AF4) with on-line 18 
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multiangle light scattering (MALS) has become an important platform for determining particle 19 

size. AF4-MALS has been used to report particle concentration, particularly for complex 20 

biological particles, yet the impact of light scattering models and particle refractive indices (RI) 21 

have not been quantitatively assessed. Here, we develop an analysis workflow using AF4-MALS 22 

to simultaneously separate and determine particles sizes and concentrations. The impacts of the 23 

MALS particle counting model used to process data and the chosen RI value(s) on particle counts 24 

are systematically assessed for polystyrene latex (PSL) particles and bacterial outer membrane 25 

vesicles (OMVs) in the 20-500 nm size range. Across spherical models, PSL and OMV particle 26 

counts varied up to 13% or 200%, respectively. For the coated-sphere model used in the analysis 27 

of OMV samples, the sphere RI value greatly impacts particle counts. As the sphere RI value 28 

approaches the RI of the suspending medium, the model becomes increasingly sensitive to the 29 

light scattering signal-to-noise ultimately causing erroneous particle counts. Overall, this work 30 

establishes the importance of selecting appropriate MALS models and RI values for bioparticles 31 

to obtain accurate counts and provides an AF4-MALS method to separate, enumerate, and size 32 

polydisperse bioparticles. 33 

INTRODUCTION    34 

The measurement of physicochemical properties of polydisperse, complex biological 35 

particles (bioparticles) is an essential step towards understanding their function and harnessing 36 

their properties. Characteristics such as size and particle concentration are key attributes yet there 37 

lacks a standardized way to measure and report these values among different research areas. 38 

While much attention has focused on developing reproducible and accurate sizing techniques for 39 

< 500 nm diameter particles, lesser attention has been given to particle counting until recently. 40 
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This interest has been driven by the realization that bioparticles can play important roles in 41 

processes such as cell-cell signaling via exosomes1, function as biomarkers2,3, and be used as 42 

therapeutic tools.4 In these scenarios, particle size distribution and concentration are important 43 

primary characteristics that are relatable to observed function, stability, potency, and batch-to-44 

batch or biological reproducibility. 45 

Multiple orthogonal techniques rooted in different principles have been used to determine 46 

particle size and/or concentrations of extracellular vesicles, lipid nanoparticle drug carriers, etc.5 47 

Current ensemble methods include tunable resistive-pulse sensing (TRPS)6, Coulter counter (CC)7, 48 

dynamic light scattering (DLS)8, flow cytometry (FC)5, nanoparticle tracking analysis (NTA)9, and 49 

multiangle light scattering (MALS).10 However, ensemble methods such as these only provide 50 

averages and do not capture information regarding size distributions within the sample. Further, 51 

TRPS, CC, and FC are not sensitive enough to analyze small particles (e.g., < 30 nm in diameter) 52 

and all methods except for FC often cannot readily accommodate large particle size distributions 53 

within a sample set (e.g., 20-500 nm). The latter is because of either instrumental constraints (e.g., 54 

needing multiple apertures (CC), buildup of particles around tunable pores (TRPS), camera setting 55 

sensitivities (NTA)) or larger particles disproportionately impacting light signal intensities 56 

(MALS).  57 

Particle separation can mitigate ensemble biases by creating more monodisperse sample 58 

subpopulations prior to sizing and quantifying. Two of the techniques mentioned previously, NTA 59 

and MALS, have been coupled to size exclusion chromatography (SEC) and asymmetrical flow 60 

field-flow fractionation (AF4) and NTA has been also been utilized as an offline, post-61 

fractionation counting technique.11–13 NTA estimates particle size and count by optically tracking 62 
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the Brownian motion of particles in solution; however, the results of NTA measurements are often 63 

influenced by instrumental parameters.14,15 MALS measures the light scattering intensity from 64 

particles at different known angles and fits these intensities to light scattering formalisms or shape-65 

specific models to obtain size and count information. Incorrect use of the formalisms or shape-66 

specific models, however, may introduce significant errors in reported values such as molar mass, 67 

size, and particle count.16  68 

AF4-MALS has been increasingly used to determine particle concentration particularly for 69 

bioparticles such as virus-like particles, lipid-based nanocarriers,5,10,17–19 and extracellular 70 

vesicles.20–22 In the absence of certified particle standards, comparisons between multiple 71 

techniques are the means to a better understanding of methodological robustness and 72 

accuracy.5,12,23 Comparisons with AF4-MALS have not examined the impact of accurate analyte 73 

parameters and data processing (e.g., refractive index values and light scattering model, 74 

respectively) on the reported particle concentration and warrants additional investigation.    75 

To address this knowledge gap, an analytical AF4-MALS method suitable for dilute sample 76 

suspensions of 20 nm to ~500 nm size particles was developed. The effect of light scattering model 77 

and refractive index on particle counts was then systematically evaluated for polystyrene latex 78 

(PSL) standards and bacterial outer membrane vesicles (OMVs). OMVs were chosen as an 79 

exemplary bioparticle for this study as they are polydisperse (e.g., 25 to 500 nm24–26) and have a 80 

core-shell structure with a varying shell composition based on differing ratios of lipoproteins, 81 

phospholipids and proteins,27 all of which affect RI. The AF4-MALS method we present provides 82 

simultaneous size-based separation and particle concentration of PSL standards and OMVs. 83 

Overall, this study provides foundational knowledge necessary to acquire accurate bioparticle 84 
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counts via MALS and presents an AF4-MALS method for the separation and enumeration of 85 

bioparticles such as bacterial OMVs. 86 

MALS PARTICLE COUNTING THEORY 87 

The basic principles of MALS originate from fundamental equations defined by Maxwell28, 88 

then later simplified by Rayleigh in the case of particles with a radius less than one tenth of the 89 

wavelength of radiation. The Rayleigh-Gans Debye (RGD) approximation was developed as an 90 

extension of Rayleigh’s original theory to better understand light scattering for larger 91 

macromolecules, yet still contained some size limitations and assumptions that will be discussed 92 

in the following section.29,30 To overcome this, the Mie theory was developed to rely on the exact 93 

mathematical solutions to Maxwell’s equations for a spherical particle interacting with polarized 94 

light.31 A more detailed explanation of these two theories are described elsewhere.32,33 Regarding 95 

the use of these theories for particle counting, there are subtle differences in their particle counting 96 

equations34,35 and it is important to understand the assumptions for data analysis and interpretation. 97 

Mie Theory 98 

The use of MALS as a particle sizing and counting technique is based on measuring the light 99 

scattering intensities at different angles.16 Depending on the size of the analyte of interest, more 100 

intense scattering can be measured at the lower, more forward detectors (< 90°) thus giving rise to 101 

some angular dependence in measuring particle size.  The intensity of scattered light from a 102 

spherical particle for measurements made in the θ plane with incident light polarized 103 

perpendicularly and at some known angle can be represented as: 104 

 𝐼𝐼𝜃𝜃𝜃𝜃 = 𝐼𝐼𝑜𝑜𝑁𝑁∆𝑣𝑣
(𝑘𝑘𝑘𝑘)2 𝑖𝑖(𝜃𝜃)                (1) 105 
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where 𝑁𝑁 is the total number of particles/mL, ∆𝑣𝑣 is a pre-determined scattering volume, 𝑘𝑘 = 2π𝑛𝑛𝑜𝑜/ 106 

𝜆𝜆𝑜𝑜 where 𝑛𝑛𝑜𝑜 is the refractive index of the solvent and 𝜆𝜆𝑜𝑜 is the wavelength of the laser, 𝑟𝑟 is the 107 

length to the detector, and 𝑖𝑖(𝜃𝜃) is the differential intensity or single particle scattering function 108 

(Eq. 2). The most important analyte-dependent parameters in Eq. 2 are the volume of the sphere 109 

or size (V), the refractive index of the analyte (𝑛𝑛𝑎𝑎), and form factor (𝑃𝑃(𝜃𝜃)).  110 

𝑖𝑖(𝜃𝜃) = � 1
4𝜋𝜋
� 𝑘𝑘6𝑉𝑉2 �𝑛𝑛𝑎𝑎

𝑛𝑛𝑜𝑜
− 1�

2
𝑃𝑃(𝜃𝜃)               (2) 111 

To solve for N, Eq. 1 can be substituted into the Rayleigh ratio (𝑅𝑅(𝜃𝜃) ∝ 𝐼𝐼𝜃𝜃𝜃𝜃/𝐼𝐼0) and simplified 112 

leading to the following equation: 113 

            𝑁𝑁 = 𝑘𝑘2𝑅𝑅(𝜃𝜃)
𝑖𝑖 (𝜃𝜃)

              (3) 114 

It is shown in Eq. 3 that the particle count is impacted by the measured light scattering 115 

intensity, but inversely proportional to the analyte-dependent parameters mentioned above. The 116 

angular dependence on particle size and the incorporation of size into Eq. 2 suggests that the 117 

measured light scattering intensities and detector selection during data analysis may be a crucial 118 

component in data analysis. Particle counting using Mie theory can be applied to particles spanning 119 

a range of 20-500 nm in diameter (depending on instrumental limitations)34, but the reliability of 120 

using this model is greatly influenced by RI values. 121 

Rayleigh-Gans-Debye (RGD) Approximation 122 

While Mie theory is modeled as a direct solution to light interacting with a spherical particle, 123 

the RGD approximation is ideally satisfied by measuring the light scattering intensity at the 0° 124 

scattering angle. The relationship of the scattered light intensity, concentration, and molar mass is 125 
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simple at this angle, yet measuring the intensity at that location is impossible due to the placement 126 

of the MALS laser. To overcome this, experimental data is typically extrapolated back to the 0° 127 

during data analysis and the use of lower angles closer to 0° can be critical in assessing accuracy 128 

of the measurement for size and molar mass.16 For the RGD approximation, it is known that: 129 

       𝐾𝐾
∗𝑐𝑐

𝑅𝑅(𝜃𝜃) ≈
1

𝑀𝑀𝑤𝑤�𝑃𝑃(𝜃𝜃)�
 where 𝐾𝐾∗ = 4𝜋𝜋2𝑛𝑛02

𝑁𝑁𝐴𝐴𝜆𝜆0
2 �

𝑑𝑑𝑛𝑛
𝑑𝑑𝑐𝑐
�
2
                            (4, 5) 130 

Where 𝑅𝑅(𝜃𝜃) is the Rayleigh ratio, c is the analyte concentration, Mw is the molar mass of the 131 

analyte, 𝑃𝑃(𝜃𝜃) is the form factor, and K* contains the refractive index of the solvent (𝑛𝑛𝑜𝑜 ), dn/dc of 132 

the analyte, and wavelength of the laser (𝜆𝜆0). If the limit 𝜃𝜃 → 0 is considered, then 𝑃𝑃(0) = 1. 133 

Inserting this value into Eq. 4, the RGD approximation can be rewritten as: 134 

𝑅𝑅(0) ≈ 𝐾𝐾∗𝑐𝑐 𝑀𝑀𝑤𝑤 ≈ 𝐾𝐾∗𝑛𝑛𝑖𝑖  𝑀𝑀𝑖𝑖
2                  (6) 135 

The concentration can be considered as 𝑐𝑐 = 𝑛𝑛𝑖𝑖 𝑀𝑀𝑖𝑖
2 and assuming the analyte has a mass (Mi), 136 

can occupy a volume (Vi) and thus a uniform density (𝜌𝜌) so that 𝜌𝜌 = 𝑀𝑀𝑖𝑖/𝑉𝑉𝑖𝑖. If this holds true, the 137 

following proportionality can be made: 138 

 139 
𝑁𝑁 ∝ 𝑅𝑅(0)

𝑉𝑉𝑖𝑖
2              (7) 140 

The upper size limit for using the RGD approximation is roughly 100 nm in diameter, 141 

prohibiting the use of the RGD approximation for a more polydisperse sample (20-500 nm)36.  It 142 

is also important to note the assumptions for Eqs. 3 and 7 are the following: 1) particles are 143 

monodisperse in size, 2) there are zero contributions of scattering from solvent, giving an absolute 144 

Rayleigh ratio (R(θ)) (𝑅𝑅(𝜃𝜃𝑖𝑖) = 𝑅𝑅𝑠𝑠(𝜃𝜃𝑖𝑖) − 𝑅𝑅𝑓𝑓(𝜃𝜃𝑖𝑖) where 𝜃𝜃𝑖𝑖 = known angle, 𝑅𝑅𝑠𝑠= Rayleigh ratio of 145 
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the solution and 𝑅𝑅𝑓𝑓 = Rayleigh ratio of carrier fluid), 3) real and imaginary refractive index (RI) 146 

values are known, and 4) the RGD approximation can be used when particle refractive index is 147 

close to the RI value of the suspending fluid (𝑛𝑛𝑎𝑎/𝑛𝑛𝑜𝑜 − 1 ≪ 1).  35,37 148 

MALS Particle Count Models 149 

Sphere models for particle counting are the focus of this work. Three different spherical 150 

models can be used to analyze particles and the underlying theories that they are formed from 151 

follow either Mie theory or the RGD approximation. The “Lorenz-Mie” and “coated sphere” 152 

models use Mie theory while “sphere” model uses the RGD approximation.  153 

To successfully use these models, all three require sphere radius information which can be 154 

determined by online MALS along with the analytes’ absolute and imaginary RI values. The 155 

sphere and Lorenz-Mie models require only one RI value whereas the coated sphere model needs 156 

two RI values (sphere and shell RI) and knowledge of the shell thickness.  157 

EXPERIMENTAL SECTION 158 

Materials and Methods 159 

Duke polystyrene latex (PSL) particles with sizes of 22, 100, and 496 nm (Thermo Fisher 160 

Scientific, Waltham, MA) were used in the AF4 method development and were suspended in 161 

0.02% sodium azide (Sigma-Aldrich, St. Louis, MO) and 0.05% FL-70 surfactant (Thermo Fisher 162 

Scientific, Waltham, MA) in deionized 18.2 MΩ·cm water for the carrier fluid. For OMV 163 

separation, 150 mM phosphate buffered saline (PBS) was prepared with sodium chloride (Thermo 164 

Fisher Scientific, Waltham, MA), potassium chloride (Mallinckrodt Chemical, St. Louis, MO), 165 

sodium phosphate dibasic (Thermo Fisher Scientific, Waltham, MA), and potassium phosphate 166 

monobasic (Mallinckrodt Chemical, St. Louis, MO). 167 
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Production and isolation of OMVs 168 

Pseudomonas putida KT2440 (P. putida) was inoculated into 50 mL of M9 minimal media 169 

(6.78 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl, 2 mM MgSO4, 100 μM CaCl2, 170 

and 18 μM FeSO4) supplemented with 5 g/L glucose ("lignin-free” condition) or 5 g/L glucose 171 

plus 25% (v/v) alkaline liquor from corn stover pretreatment with NaOH (“lignin-rich” condition) 172 

in biological triplicate. These cultivation conditions were selected based on a previous study that 173 

suggested that OMV sizes depend on the media composition.38 All chemicals other than ‘the 174 

lignin-rich’ liquor, which was made in-house as has been described previously,39 were purchased 175 

from Sigma-Aldrich (St. Louis, MO). Cultivation conditions and OMV isolation and purification 176 

were performed as previously described.38 177 

Asymmetrical flow field-flow fractionation (AF4) and multi-angle light scattering (MALS) 178 

All experiments were performed using an AF2000 system (Postnova Analytics, Salt Lake 179 

City, UT) coupled to a SPD-20A UV/Vis detector (Shimadzu, Columbia, MD), multi-angle light 180 

scattering (MALS) DAWN HELEOS II (Wyatt Technology Corporation, Santa Barbara, CA). The 181 

channel was formed with a tip-to-outlet length of 27.5 cm, breadth at channel inlet of 2 cm, breadth 182 

of channel outlet of 0.5 cm, and a spacer with a nominal thickness of 350 µm. The accumulation 183 

wall was a 30 kDa molecular weight cutoff regenerated cellulose membrane (Postnova Analytics, 184 

Salt Lake City, UT). A 0.1 µm inline filter (Merck Millipore Ltd, Darmstadt, Germany) between 185 

the HPLC pump and the AF4 channel was used to filter 0.02% sodium azide and 0.05% FL-70 186 

surfactant along with 150 mM PBS as the two carrier fluids used in this study.   187 

The initial AF4-UV-MALS method had a focusing time of either 10 or 15 minutes, the 188 

injection flow rate was 0.2 mL/min, the detector flow rate was 0.5 mL/min, and the sample 189 
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injection volume was either 200, 500, and 1000 µL. The crossflow rate was programmed to start 190 

at 1.0 mL/min during focusing, then decreased linearly to 0.1 mL/min over 10 minutes, held at 0.1 191 

mL/min for 20 minutes, and then turned off. For OMV fractionation, the isocratic hold at 0.1 192 

mL/min was shortened to 2.5 minutes after testing the methods with the different OMV samples 193 

used in this study. 194 

Particle Counting Analysis using MALS 195 

Data acquisition and particle counting analysis were performed using ASTRA 7.3.2.21 196 

(Wyatt Technology Corporation, Santa Barbara, CA). The MALS detector was normalized using 197 

bovine serum albumin (BSA) (Sigma-Aldrich). For each PSL size, triplicate runs were injected 198 

into the AF4 using a 200 µL sample loop and the AF4 method described in the previous section. 199 

The 22 and 100 nm PSL particles were diluted by 200, 400, 1,000, or 2,000x and 90% of the 200 

MALS laser power was used. The 496 nm particles were diluted by 1,000, 2,000, 4,000, and 8,000x 201 

and the MALS laser power was set to 25% to prevent saturation of the low-angled detectors 202 

(detectors 1-8). Using the ASTRA software, the sphere and Lorenz-Mie models and RI = 1.58 for 203 

PSL were used. Detectors 2-18, 5-18, and 9-18 were used for the 100 and 496 nm PSL. 204 

Corresponding detector angles can be seen in Table S2. 205 

For OMV particle counting, the MALS laser power was set to 90%, and ‘Heavy’ was 206 

chosen as the despiking level for the MALS signal. In addition to the sphere and Lorenz-Mie 207 

models used in the PSL analysis, the coated sphere model was also examined. A RI range of 1.35-208 

1.65 was used to encompass the varying composition of the OMVs. Detector selection was 209 

determined by examining the best R2 value at the peak maximum for each sample. For lignin-free 210 

samples, detectors 8-17 were selected while detectors 7-17 were chosen for the lignin-rich samples. 211 
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Additional details regarding the RI range and detector selection and will be discussed more in the 212 

following section. 213 

For both PSL and OMVs, the number of particles were obtained from the summary report 214 

from the ASTRA software. The particle concentration or number of particles per milliliter was 215 

obtained using the volume of the analyte peak. The volume was determined from the area under 216 

the peak multiplied by the detector flow rate.  217 

RESULTS AND DISCUSSION 218 

AF4-MALS Method for Size-Based Separation and Enumeration 219 

Adaptation of AF4 Method with PSL Standards 220 

Current AF4 separations for bioparticles or macromolecules use injection volumes that 221 

span 10-150 µL.40,41 While these volumes are suitable for characterization, they may not be 222 

suitable for fraction collection and further offline analyses due to significant sample dilution. This 223 

may also lead to low light scattering intensities thereby impacting size and count analysis.5 To 224 

increase the measured light scattering intensity and decrease the number of AF4 runs needed to 225 

produce sufficient quantities of subpopulations for further analysis, injection volumes of 200, 500, 226 

and 1000 µL were investigated. A PSL mixture of 22, 100, and 496 nm particles was chosen due 227 

to the size range of the bacterial OMVs (25-500 nm). Experiments contained the same sample 228 

mass, which was adjusted to accommodate the larger injection volumes, and retention time and 229 

sample recovery were evaluated across the different sample loops.  230 

As injection volume increased, consistent retention times and peak areas were observed for 231 

each species in the PSL mixture showing successful separations (Figures 1 and S1). Sample 232 

recovery, assessed by comparing the UV peak areas of the separated mixture (or with crossflow) 233 
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from the area of the peak observed without the crossflow (Figure S1), was slightly higher than the 234 

accepted sample recovery of >70% across the three sample volumes.42 For the 22, 100, and 496 235 

nm PSL standard mixture, the total sample recovery was estimated to be 81, 83, and 75% for the 236 

200, 500, and 1000 µL loops, respectively. Thus, the AF4 method used here is amenable to scale-237 

up without significantly reduced sample recovery, and therefore 1000 µL was used for separation 238 

of the OMVs to maximize the amount of sample processed per run.  239 

 240 

 241 
Figure 1. AF4-MALS separation of a 22, 100, and 500 nm polystyrene latex mixture using 200, 242 
500, and 1000 µL sample loops. The dashed line and right y-axis show the crossflow rate 243 
program. 244 
 245 

MALS Particle Counting: Utilization of Spherical Models with PSL Standards 246 

To understand the limitations (model, particle size, etc.) associated with MALS particle 247 

counting, it was of interest to utilize the PSL standards used in the AF4 method development for 248 

particle counting. Expanding beyond the AF4 method, PSL has a known spherical shape and well-249 

known RI value (1.58).  Currently there is no absolute count standard (< 1 µm) or count standard 250 
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for biological particles, which would provide a better model for assessing MALS particle counting 251 

for OMVs. As discussed in the MALS Particle Counting Theory section, the sphere and Lorenz-252 

Mie models can be used to examine spherical particles. Since the 100 nm PSL particles are at the 253 

upper limit of the sphere model, this size was used to examine changes in particle count between 254 

the two models. The 22 nm PSL sample could not be fit to either the sphere or the Lorenz-Mie 255 

models. This could be due to the lower size limitations of the MALS or the lower light scattering 256 

signal of this species. The Lorenz-Mie model could only be utilized for the 496 nm PSL because 257 

of that upper size limitation of the RGD approximation. Two additional assumptions are 258 

considered: PSL stock solutions are 1% solids based on the manufacturer’s certification of analysis 259 

(CoA) and 100% recovery is achieved in the AF4 separation. Based on this estimated value and 260 

diameter of the particle, one can calculate a particle count using Eq. 8, where 𝑊𝑊𝑣𝑣% is the percent 261 

solids based on the CoA, 𝜌𝜌𝑝𝑝 is the polymer microsphere density, and 𝐷𝐷 is the diameter of the 262 

particle. 263 

𝑁𝑁𝑝𝑝 = 𝑊𝑊𝑣𝑣% ×6𝑥𝑥1010

𝜋𝜋𝜌𝜌𝑝𝑝𝐷𝐷3
         (8) 264 

Experimental particle counts compared to nominal values for the 100 nm PSL are shown 265 

in Figure 2. Both the sphere and Lorenz-Mie models have linear trends with good R2 values 266 

(0.999). This linear trend demonstrates that we see the appropriate response to changes in particle 267 

counts with an increase in injected sample concentration and suggests that if the calculated particle 268 

count was accurate and 100% sample recovery was achieved and there is no aggregation of the 269 

analyte43, the slope of the line would reach unity. Between the two models, the Lorenz-Mie model 270 
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has consistently larger particle counts compared to the sphere model by 11-12%, raising the 271 

question as to which is the more accurate model.  272 

 273 
Figure 2. Comparison of experimental and nominal particles counts using the sphere and 274 
Lorenz-Mie models for PSL standards. The nominal counts are based on a 200 µL injection 275 
volume and 1% solid suspension of 100 nm PSL. Detectors 5-18 were used in this analysis. 276 

One contribution to this consistent difference between the two models could lie within the 277 

measurement of the particle size or volume. In both Eqs. 2 and 7, the volume is a squared term, 278 

and inversely proportional to the number of particles per milliliter. Upon further investigation, 279 

online radius data showed minimal differences in size or changes in the uncertainty in the 280 

measurement (< 2 %). The other potential reasoning for this consistent difference is centered 281 

around the assumption (𝑛𝑛𝑎𝑎/𝑛𝑛𝑜𝑜 − 1 ≪ 1). While the RI value for PSL is known (1.58), the 282 

differences in particle count values between the two models can be examined by changing the RI 283 

value for PSL during data analysis. Figure 3 shows an increasing percent difference between the 284 

two models as the analyte’s RI increases. Between RI values of 1.55 and 1.6, the percent difference 285 

ranges between 10.1 and 13.3 %, correlating to differences seen in Figure 2. This suggests that 286 

the Lorenz-Mie model may be a more well-suited model for samples with higher RI values.  287 
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 288 
Figure 3. Changes in particle concentration as a function of refractive index for 100 nm PSL 289 
particles using the sphere and Lorenz-Mie models. 290 
 291 

In addition to the two different models, another component of data processing is the 292 

selection of the different MALS detectors during the analysis. It is suggested that the smaller angles 293 

should be selected during data analysis to better satisfy the RGD approximation to help extrapolate 294 

the fitted data to the 0° angle. Larger angles may also be selected as it is suggested that the more 295 

detectors selected would provide the best representation of the sample. 296 

Effects of selected detectors during analysis of the 100 nm PSL can be seen in Figure S2. 297 

Three detector ranges were investigated (2-18, 5-18, and 9-18) based on their R2 values at the peak 298 

maximum of the sample. There were no significant changes in particle counts between selecting 299 

detectors 2-18 and 5-18 for either sphere or Lorenz-Mie models; however, the fits were drastically 300 

different with detectors 2-18 and 5-18 having R2 values of 0.05-0.07 and 0.6-0.7, respectively. 301 

While the smallest angles (detectors 2-4) should satisfy the RGD approximation, they do not 302 

contribute to significantly different particle counts due to poor fitting of the analyte to each sphere 303 

model. Across the two models there is a difference between the use of detectors 5-18 and 9-18. 304 

https://doi.org/10.26434/chemrxiv-2024-rc3dw ORCID: https://orcid.org/0000-0003-1030-801X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-rc3dw
https://orcid.org/0000-0003-1030-801X
https://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 
 

This suggests that detectors 5-8 may be crucial to using MALS to calculate particle counts, yet 305 

linearity of the data suggests both detector and model choice having significant contributions to 306 

changes in experimental counts. 307 

Revisiting the assumptions made for the calculated particle counts in Figures 2 and S2, it 308 

was assumed that PSL stock is 1% solids. To assess how the slopes of each data set would change 309 

if this information was not completely accurate, calculated particle counts assuming 0.8 and 1.2 % 310 

solids were investigated. Between the two other sets of nominal counts, the data is still represented 311 

linearly, but there is a 22 % increase in slope for assuming 0.8 % solids and 18-19 % decrease in 312 

slope for 1.2 % solids (Figure S3). These trends are consistent where 0.8 % solids should have 313 

less particles compared to what we see with MALS, therefore a larger slope and the opposite effect 314 

with 1.2 % solids. 315 

The 496 nm PSL particles were also examined considering the influences of calculated 316 

counts, detector selection and model choice. One major hindrance with a larger-sized population 317 

is that because light scatters more in the forward direction and to the diameter to the sixth power, 318 

saturation of the lower angled detectors (< detector 8, θ= 64°) is easily achieved at low 319 

concentrations. To mitigate this, the laser power of the MALS had to be decreased to 25 %, and 320 

lower concentrations had to be utilized. This could make particle counting analysis of large 321 

particles, that scatter light more intensely, more challenging. Additionally, because of the larger 322 

diameter, only the Lorenz-Mie model could be assessed. Similar to Figures 2 and S2, the 496 nm 323 

PSL show a linear trend, but with much larger slopes (Figure S4). Again, the linear trends suggest 324 

that MALS can provide a good correlation between increased concentration and increased particle 325 

counts, but absolute particle counts cannot be determined. 326 
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Separation and Enumeration of P. putida OMVs using AF4-MALS 327 

Size-Based Separation of P. putida OMVs 328 

Given the methodological validation with a polydisperse mixture of PSL standards, we 329 

next sought to apply the AF4-MALS method to bioparticles and evaluate the effect of key 330 

parameters, such as model and RI, on counts. To generate OMVs, P. putida was cultivated in 331 

lignin-free or lignin-rich media, and bulk OMVs were harvested at 24 h from biological triplicates. 332 

OMVs harvested from both types of media were projected to contain both a small (�̅�𝑑 = 17 and 28 333 

nm) and large (�̅�𝑑 = 120 and 307 nm) OMV populations in lignin-free and lignin-rich cultivations, 334 

respectively.38 For OMV separation, an AF4 method with 1000 µL sample volume was applied to 335 

accomplish the following: (i) remove small particles (d ≈ 4-6 nm, approximately the size of a single 336 

protein) in the focusing step, (ii) elute small OMVs rapidly thereafter, and (iii) elute the large 337 

OMVs with intra-population separation.  338 

AF4 separation, MALS signal, and radius were similar for the lignin-rich and lignin-free 339 

OMVs (Figure 4c). The total OMV populations for lignin-free samples display a lower light 340 

scattering signal and a lower size range (d=40-138 nm, both populations) compared to the lignin-341 

rich OMVs (d=32-404 nm, both populations), which is similar yet slightly larger than each 342 

anticipated size range.38 Close alignment between technical replicates demonstrates the AF4 343 

method is reproducible. Within the larger OMV population, the continuous increase in the radius 344 

demonstrates intra-population separation is achieved (Figure 4c).29 To the presence and 345 

characterize the smaller OMV population (d < 30 nm), AF4 experiments using an isocratic 346 

crossflow rate of 0.1 mL/min were completed using the lignin-rich samples (Figure 4b). The 347 

retention times and MALS signal were then used to calculate the OMV size using AF4 theory to 348 

be 20-50 nm in diameter between 1.7 and 3.8 minutes, and particle size was confirmed using batch 349 
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DLS (Figure 4b, shaded region), confirming the smaller population presence and size. OMV 350 

sizes across biological replicates is of interest to understand how size distributions vary. Finally, 351 

AF4-MALS was conducted on the biological replicates for both the lignin-free and lignin-rich 352 

samples. AF4 retention times, MALS signal (LS 90° Response), and radius distributions were 353 

consistent across the triplicates in both media conditions (Figure 4d and 4e). The higher signal-354 

to-noise within the lignin-rich samples is due to the presence of larger particles, as light is scattered 355 

~d6. 356 

 357 

Figure 4. (a) AF4-MALS fractogram of lignin-rich OMVs overlayed with a modified AF4 358 
crossflow program (dotted line) used to fractionate vesicles (b) AF4-MALS fractogram of lignin-359 
rich OMVs separated using an isocratic crossflow of 0.1 mL/min (c) MALS responses and radius 360 
distributions across the AF4 separation of P. putida OMVs isolated from lignin-free and lignin 361 
rich cultivations. Technical duplicates are shown. Reproducibility of three biological replicates of 362 
P. putida OMVs grown in (d) lignin-free and (e) lignin-rich media. Each MALS fractogram and 363 
radius distribution is an average of two AF4 injections. Estimation of OMV RI Values using the 364 
Coated-Sphere Model 365 
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Despite PSL being a simple system to evaluate MALS particle counting, the structure and 366 

composition of OMVs are more complex. Thus, how to best represent these vesicles during 367 

analysis needs to be considered. The current understanding of P. putida OMVs suggests they 368 

should be modeled as a core-shell structure: compositionally the shell contains a mixture of 369 

lipopolysaccharides (LPS), phospholipids (PL), and transmembrane proteins while the core is 370 

filled primarily with water and protein, suggesting the core and shell may have different RIs. One 371 

major challenge with examining OMVs and other biological particles is the lack of experimentally 372 

determined RI values or methods to easily obtain this information.44,45 Few studies have utilized 373 

experimental data from other techniques like NTA or flow cytometry scatter ratios (Flow- SR) of 374 

mammalian EVs to estimate RI values spanning 1.35-1.40.44 One drawback is that these values 375 

may not effectively represent the OMVs used here due to differences in composition.  376 

Taking a more calculated approach, the RI for OMVs could be determined based on the 377 

weight percent, partial specific volume of a sphere, and dn/dc values of the individual components 378 

to propose how composition changes the overall RI values (Table S1).18 Using this approach, a 379 

range of RI values were determined for both the ‘shell’ and ‘core’ of the P. putida OMVs. For the 380 

RI value of the shell, it is understood that there is an LPS and PL bilayer in which transmembrane 381 

proteins can embed. Shell RI values were determined for a sliding ratio of LPS, PL, and protein 382 

from no protein in the OMV shell (50:50:0 LPS:PL:protein) to having more than half of the surface 383 

being protein (20:20:60 LPS:PL:protein). Similarly, core RI values for ranging water:protein 384 

content were determined (Table 1). Shell and core RIs ranged from 1.49-1.52 and 1.33-1.58, 385 

respectively. While this range appears to be broad, it encompasses a similar range of RI values 386 

determined for mammalian EVs.46–50 In lieu of having compositional ratios of the OMV 387 
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components it is important to not only consider how RI changes particle counts, but also how this 388 

may affect compositional heterogeneity in these biological systems, discussed in the next section.  389 

Table 1. Calculated dn/dc and RI values for the OMV core-shell structure (coated-sphere model) 390 
based on varying composition ratios.  391 

 392 

Impacts of RI and LS Model on OMV Particle Counts 393 

After verifying the AF4 separation was reproducible across all biological replicates, and 394 

estimated RI values were determined, the impact of RI and light scattering models on particle 395 

counts were then examined. While both populations are present, the larger vesicle populations 396 

ranging from 8-17 min. (lignin-free) and 15-40 min. (lignin-rich) were used in evaluating the 397 

particle count method. The coated sphere model is considered to most closely approximate the 398 

OMV structure; additionally, the sphere and Lorenz-Mie models were assessed to identify trends 399 

in particle counts and sensitivities in the models. Despite the sphere model having an upper size 400 

limit, it was of interest to observe if there were any major changes between the counts determined 401 

with sphere and Lorenz-Mie models for the lignin-rich OMVs. Moving forward, the RI values for 402 

the “core” of the coated sphere model will be termed “sphere RI.” 403 
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For lignin-free OMVs, the coated sphere model gives rise to unrealistic particle counts (> 404 

1016 particles/mL) (Figure 5a), likely owing to poor signal-to-noise observed (Figure 4c and 4d). 405 

When looking at particle counts across the entirety of the peak within the ASTRA software, these 406 

erroneous counts greatly influence the total particle count. The sphere and Lorenz-Mie models 407 

show similar particle count; however, across the RI range of 1.35 to 1.65, a two order of magnitude 408 

change in particle counts is observed and is consistent between both OMV samples. 409 

 410 

Figure 5. Effect of RI values and light scattering model on particle counts for results for (a) 411 
lignin-free and (b) lignin-rich samples. Light scattering models include sphere, Lorenz-Mie, and 412 
coated sphere. For the coated sphere model, the sphere RI value was kept constant at 1.33, 1.43, 413 
or 1.53 while the shell RI value (x-axis) was changed. The shell thickness was held constant at 6 414 
nm. Data corresponds to fractograms shown in Figure 4c. 415 

Unlike the lignin-free OMVs, the lignin-rich OMVs do not exhibit the higher particle 416 

counts for the coated sphere model (Figure 5b) likely as lignin-rich samples exhibited a much 417 

larger signal-to-noise ratio owing to larger particle size (Figure 4e). Instead, there is a trend where 418 

at low sphere RI values (1.33), the coated sphere model behaves similarly to the sphere and Lorenz-419 

Mie model but gives rise to larger number of particles. With sphere RI values held constant 1.43 420 

or 1.53, the particle counts are stabilized across the changing shell RI values and at a constant shell 421 

thickness. These trends hint at the sphere RI in the coated sphere model having a greater influence 422 

https://doi.org/10.26434/chemrxiv-2024-rc3dw ORCID: https://orcid.org/0000-0003-1030-801X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-rc3dw
https://orcid.org/0000-0003-1030-801X
https://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 
 

on particle counts. The difference in magnitude of the particle counts between sphere RI values of 423 

1.43 and 1.53 can be attributed to the ratio of analyte and solvent refractive index that is seen in 424 

the single particle scattering function (i (θ), Eq 2). While this change in counts can be attributed 425 

to the sphere RI, this trend does not hold for the sphere RI of 1.33 and can be examined more 426 

closely via the shell RI and shell thickness. With respect to using the sphere model for the lignin-427 

rich samples, the overall trend in counts matched those using the Lorenz-Mie model which is 428 

unexpected. Despite the upper size limit being lower than the sizes measured for the lignin-rich 429 

OMVs, the sphere model may not be showing major differences in particle counts due to the 430 

influence of detector selection as discussed earlier.  431 

Impacts of Shell Thickness on OMV Particle Counts 432 

As the sphere RI approaches or equals the RI value of the suspending fluid using the coated 433 

sphere model, particle counts appear to increase significantly (Figure 5b, red trace). Because this 434 

trend deviates from the higher sphere RI values, the shell thickness and RI values could be 435 

influencing the magnitude of the particle counts. When examining different shell thickness values 436 

of 2, 4, and 6 nm across the different sphere RI values, a sphere value of 1.33 shows significant 437 

variation in the magnitude of particle counts with respect to shell refractive index and shell 438 

thickness51 (Figure 6a).  439 
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 440 
Figure 6. Effect of shell thickness on particle counts for the peak in the MALS fractogram of the 441 
lignin-rich samples using the coated sphere model. The sphere RI was kept constant at (a) 1.33, 442 
(b) 1.43, or (c) 1.53 while changing shell RI value. For each sphere and shell RI value 443 
combination, the particle counts were calculated for shell thicknesses of 2, 4, and 6 nm. 444 
 445 

Based on the results from Figures 5b and 5c, it can be concluded that the counts are not 446 

affected by either the shell RI or thickness (Figure 6b and 6c). This reiterates the dominating 447 

parameter in the coated sphere model is the sphere RI. In the case of unknown shell thickness and 448 

RI values, there is more leniency in the estimation of shell thickness compared to sphere RI values. 449 

Despite being a better representation of the OMVs, the sensitivity of the coated sphere model does 450 

not allow accurate particle counting for the smaller OMVs due to the low signal-to-noise. 451 

Therefore, particle counts in lignin-free and lignin-rich media cannot be compared directly using 452 

this model. 453 

CONCLUSIONS 454 

This work presents an AF4-MALS method for the simultaneous separation and enumeration 455 

of polydisperse bioparticles, including bacterial OMVs. Key analyte-dependent parameters that 456 

impact MALS particle counts were identified to include light scattering theory/model, RI, and 457 

signal-to-noise ratio (S/N). Bioparticle counts via MALS was found to be most suitable when 458 

shape and RI are known, and good signal intensity at all angles is achieved. In sum, AF4-MALS 459 
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can be used as a separation, enumeration, and purification method for bioparticles such as OMVs 460 

but relies on careful consideration of key MALS parameters. 461 

The effect of light scattering theory was systematically evaluated for PSL standards and 462 

OMV bioparticles using sphere, Lorenz-Mie, and coated sphere models. Between the three 463 

spherical models studied, the coated sphere model is most sensitive to noise in the measured signal 464 

intensity; samples with S/N > 800 returned reasonable particle counts but were greatly influenced 465 

by the inner sphere RI. The sphere and Lorenz-Mie models are less sensitive to S/N, but a small 466 

RI range yields up to a 200% variation in OMV particle counts. Deviations between results from 467 

the sphere and Lorenz-Mie models can be attributed to assumptions within the light scattering 468 

theory and warrant special consideration when working with materials that strongly scatter light. 469 

To address this, improved model fits utilizing lower detector angles would provide more accurate 470 

particle counts for both sphere and Lorenz-Mie models. Moreover, the trends observed with PSL 471 

standards demonstrate appropriate and expected MALS responses, however only relative particle 472 

counts can be achieved. To determine absolute particle counts, a particle count standard with a 473 

closer refractive index to water (RI =1.33) would satisfy the assumptions made with the RGD 474 

approximation. 475 

RI selection also greatly impacts particle counts regardless of model, and therefore should 476 

be carefully and independently considered for each bioparticle’s analysis. While biochemical 477 

analyses can inform the compositional ratio of biological particles and aid in calculating an RI, 478 

this remains a time-intensive process and is not a standard practice in the field. Thus, new methods 479 

for RI determination of bioparticles could aid in improving the accuracy of MALS particle counts 480 

and could impact other data analyses such as DLS. 481 
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