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ABSTRACT: We reported a Pd/NBE cooperative catalyzed ortho C−H methylation and trideuteromethylation of arylthianthrenium 

salts, enabling the efficient synthesis of a wide variety of (trideutero)methylated arenes in moderate to good yields. The method 

demonstrates excellent tolerance towards functional groups, scalability, and potential extension to the late-stage functionalization of 

biorelevant molecules. In combined with C−H thianthrenation of arenes, this approach provides an effective method for the site-

selective C−H (trideutero)methylation of arenes. Additionally, this reaction represents the first example of a Catellani reaction in-

volving aryl sulfonium salts.

The "magic methyl" effect has attracted significant attention 

in medicinal chemistry due to the notable pharmacological ef-

fects that are observed when a C−H bond is converted to a 

C−Me bond.1 The methyl group can influence the molecular 

conformation, metabolism and lipophilicity of medicinal candi-

dates, thereby impacting pharmacokinetic parameters, biologi-

cal activities and pharmacodynamic effects (Scheme 1a).2 For 

example, the incorporation of a methyl group to p38α MAP3 

kinase resulted in a 200-fold increase in the binding affinity (Ki). 

In addition, methylated arenes, as a commonly occurring struc-

tural motif, are prevalent in drugs and natural products (Scheme 

1b). Therefore, the development of an efficient strategy for the 

rapid construction of methylated arenes would significantly en-

courage pharmaceutical chemists to investigate the "magic me-

thyl" effect in medications and expedite the discovery of new 

drugs.3 

Sulfonium salts have captivated chemists for over a century 

due to their significant chemical reactivity.4 Among these, thi-

anthrenium salts have recently garnered significant attention 

from chemists due to their similarity to organic halides, their 

ability to undergo oxidative addition to transition metals, and 

their easy single-electron reduction.5 In recent years, Ritter,6 

Wang,7 Zhao8 and others9 have demonstrated the significant 

synthetic potential of arylthianthrenium salts, which are gener-

ated through the thianthrenation of C−H bonds, in various reac-

tions. However, the reactivity observed in all reactions is the 

ipso-functionalization of arylthianthrenium salts. To date, there 

are no reports on achieving functionalization at the ortho-posi-

tion (Scheme 1c). The Pd/NBE cooperative catalysis, known as 

the Catellani reaction,10 allows for the ipso-ortho difunctionali-

zation of arenes, offering a unique opportunity to address the 

aforementioned challenge. We expect that the regioselective 

C(sp2)−H thianthrenation of the arene, followed by ortho-func-

tionalization, will enable the introduction of functional groups 

at positions that complement the results of C(sp2)−H thi-

anthrenation (Scheme 1c). 

Since its discovery by Catellani in 1997,11 the Catellani reac-

tion is now recognized as a potent method for the modular syn-

thesis of highly substituted arenes. In recent decades, Lautens,12 

Dong,13 Zhou,14 Liang,15 and other researchers16 have made sig-

nificant advancements in this field, establishing this methodol-

ogy as a reliable route for synthesizing complex arenes. In con-

trast to the diverse variations of nucleophilic and electrophilic 

reagents, the substrates used in Catellani-type reactions have 

been mainly confined to aryl halides (triflates),11,17,18 aryl thioe-

sters,19 aryl diazonium salts,20 aryl boronic acids,21 vinyl halides 

(triflates),22,23 indoles,24 carbazoles,25 arenes with directing 

groups,26 and the exploitation of arylthianthrenium salts has re-

mained elusive (Scheme 1d). In this paper, we reported the first 
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ortho C−H methylation and trideuteromethylation of arylthi-

anthrenium salts enabled by Catellani reaction (Scheme 1e). 

Moreover, ipso C−H methylation has also been demonstrated. 

These methods have enabled the rapid synthesis of a wide vari-

ety of methylated or trideuteromethylated arenes, ensuring 

complete control of site-selectivity. Importantly, the byproduct 

thianthrene (TT) can be recovered and further oxidized to thi-

anthrene 5-oxide (TTSO) for the next thianthrenation cycle, 

thus contributing to environmental sustainability in chemistry.

Scheme 1. Background and design. 

A model study was initially conducted using aryl thi-

anthrenium salt 1a, which could be readily prepared through re-

gioselective C(sp2)-H thianthrenation of m-xylene (Table 1). To 

our delight, the reaction of 1a with CH3I 2a and ethyl acrylate 

3a was performed in the presence of Pd(OAc)2 (10 mol %), P(4-

CF3-C6H4)3 (25 mol %), N1 (1.0 equiv), and Cs2CO3 (3.0 equiv) 

in PhCF3/MeCN (1:1) at 80 °C for 12 h to afford the desired 

ortho-methylation/ipso-alkenylation product 4a in 96% isolated 

yield (entry 1). The utilization of alternative NBE (N2-N5) led 

to diminished reaction performance (entry 2). Moreover, other 

ligands such as TFP and PPh3 showed comparatively reduced 

effectiveness compared to P(4-CF3-C6H4)3 (entry 3). Substitu-

tion of Cs2CO3 with K2CO3 or CsOAc resulted in unsatisfactory 

yields in both cases (entry 4). Additionally, the utilization of 

other solvents, such as toluene, CH3CN, and PhCF3 led to di-

minished yields (entry 5). Notably, the reaction can proceed 

smoothly at room temperature, but the reaction time needs to be 

extended to 48 h (entry 6). Control experiments unequivocally 

demonstrated the essentiality of both Pd(OAc)2 and N1 for the 

desired transformation (entry 7). The scalability of this process 

has been demonstrated, with the desired product 4a obtained in 

a 90% yield when the reaction was conducted on a 2.0 mmol 

scale (entry 8). 

Table 1. Effects of reaction parameters.a 

 

Entry Deviation from “standard conditions” 4ab 

1 none 96% 

2 N2-N5 instead of N1 Listed below  

3 TFP, PPh3 instead of P(4-CF3-C6H4)3 72%, 80% 

4 K2CO3, CsOAc instead of Cs2CO3 36%, 29% 

5 Toluene or MeCN or PhCF3 as solvent 41%, 84%, 88% 

6 Run at 30 oC for 48 h 89% 

7 No Pd(OAc)2 or N1 0%, 0% 

8 Run at 2.0 mmol scale 90% 

 

a Reaction conditions: the reactions were conducted using 1a (0.2 mmol), 2a (0.4 

mmol), 3a (0.4 mmol), Pd(OAc)2 (10 mol %), P(4-CF3-C6H4)3 (25 mol %), N1 

(0.2 mmol), Cs2CO3 (0.6 mmol) in 2.0 mL PhCF3/MeCN (1:1) under a nitrogen 

atmosphere for 12 h. b Isolated yields. 

Upon identifying the optimized reaction conditions, we pro-

ceeded to investigate the scope of the reaction (Scheme 2). A 

series of commercially available (hetero)arenes were converted 
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into the corresponding aryl thianthrenium salts, and then further 

transformed into the ortho-methylation products 4a-4c (71-96%) 

under the optimal conditions. Furthermore, a range of acrylates 

were effectively integrated into the target products (4d-4g) with 

reasonable to satisfactory yields. Notably, α-fluoro-substituted 

acrylates and cyclic acrylates could also be utilized to give the 

corresponding products 4h and 4i in 60% and 53% yield, re-

spectively. Additionally, various acrylamides could be success-

fully incorporated into the desired products (4j-4m) in 71-92% 

yields, demonstrating that the acidic proton was not problematic. 

Apart from acrylates and acrylamides, other electron-deficient 

olefins, including vinyl sulfone (4n), vinyl ketone (4o), and vi-

nyl phosphonate (4p), could be readily introduced at the ipso 

position. Furthermore, phenyl diene could successfully afford 

the corresponding target product 4q in 62% yield. It is important 

to highlight that unactivated alkenes are also compatible with 

this reaction system, producing the corresponding products 4r 

and 4s with yields of 70% and 53%, respectively. 

Scheme 2. Substrate scope of ortho-monomethylation.a,b 

 
a Reaction conditions: the reactions were conducted using 1 (0.2 mmol), 2a (0.4 

mmol), 3 (0.4 mmol), Pd(OAc)2 (0.02 mmol), P(4-CF3-C6H4)3 (0.05 mmol), N1 

(0.2 mmol), Cs2CO3 (0.6 mmol) in 2.0 mL PhCF3/MeCN (1:1) under a nitrogen 

atmosphere for 12 h. b Isolated yields. c 3 (0.2 mmol). 

Additionally, the practicality of this methodology was further 

demonstrated through the modular assembly of various ortho-

bimethylated arenes using 4.0 equivalents of CH3I (Scheme 3). 

When ortho-unsubstituted aryl thianthrenium salts were used as 

substrates, the corresponding ortho-dimethylation products 4a, 

4t-4z, 4m, 4n, 4aa-4ad could obtained in 53-81% yields. Broad 

functional groups such as isopropyl (4t), cyclohexyl (4u), meth-

oxyl (4v), phenoxyl (4w), difluoromethoxyl (4x), aryl (4y), 

fluoro (4z), chloro (4aa), iodo (4ab), and amino (4ac) groups 

were all well-tolerated. Significantly, this conversion exhibited 

good tolerance towards halogen atoms (Cl or I), offering nu-

merous possibilities for subsequent derivatization via cross-

coupling reactions. Moreover, acrylamide, vinyl sulfone and 4-

phenyl-1-butene were identified as suitable substrates, furnish-

ing the corresponding ortho-dimethylation products 4m, 4n and 

4ad in 63%-81% yields. 

Scheme 3. Substrate scope of ortho-dimethylationa,b 

 
a Reaction conditions: the reactions were conducted using 1 (0.2 mmol), 2a (0.8 

mmol), 3 (0.4 mmol), Pd(OAc)2 (0.02 mmol), P(4-CF3-C6H4)3 (0.05 mmol), N1 

(0.4 mmol), Cs2CO3 (0.6 mmol) in 2.0 mL PhCF3/MeCN (1:1) under a nitrogen 

atmosphere for 12 h. b Isolated yields. c 3 (0.2 mmol). 

Incorporating a trideuteromethyl group into a drug candidate 

can significantly enhance its key pharmacokinetic, physico-

chemical, and metabolic properties. Hence, it is crucial to de-

vise an alternative method for the direct and site-selective C−H 

trideuteromethylation. Next, we further investigated the poten-

tial of employing this methodology for the selective introduc-

tion of the trideuteromethyl group at the ortho-position of ar-

ylthianthrenium salts (Scheme 4). We were delighted to find 

that employing CD3I as a trideuteromethyl source under stand-

ard conditions resulted in the formation of the corresponding 

ortho-trideuteromethylated products in moderate to good yields. 

Moreover, both activated and unactivated alkenes were suitable 

as terminating reagents in this transformation. Significantly, no 

deuterium-hydrogen exchange was observed under the reaction 

conditions, ensuring that the products were fully deuterated at 

the methyl groups. 

Scheme 4. Substrate scope of ortho-trideuteromethylation.c 
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a Condition A: 1 (0.2 mmol), 2b (0.4 mmol), 3 (0.4 mmol), Pd(OAc)2 (0.02 

mmol), P(4-CF3-C6H4)3 (0.05 mmol), N1 (0.2 mmol), Cs2CO3 (0.6 mmol) in 2.0 

mL PhCF3/MeCN (1:1) under a nitrogen atmosphere for 12 h. b Condition B: 1 
(0.2 mmol), 2b (0.8 mmol), 3 (0.4 mmol), Pd(OAc)2 (0.02 mmol), P(4-CF3-

C6H4)3 (0.05 mmol), N1 (0.4 mmol), Cs2CO3 (0.6 mmol) in 2.0 mL 

PhCF3/MeCN (1:1) under a nitrogen atmosphere for 12 h. c Isolated yields. d 3 

(0.2 mmol). 

Encouraged by the aforementioned experimental results, we 

proceeded to explore the compatibility of drugs and natural 

products (Scheme 5). Alkenes derived from biorelevant mole-

cules, such as D-Menthol, Sesamol, Fenchol, Vitamin E, Iso-

vanillin, Triclosan, Diaceton-α-D-mannofuranose, Cholesterol, 

and Dehydroabietylamine, could efficiently produce the corre-

sponding ortho-methylation, ipso-alkenylation products 4ae-

4am in 73-95% yields. The structure of 4af was definitively 

confirmed via single-crystal X-ray diffraction analysis.27 In ad-

dition, we were pleased to observe the favorable compatibility 

of biorelevant molecules in the ortho-methylation and ortho-

trideuteromethylation reaction systems, affording the respective 

products 4ak, 4am-d3, 4al-d3, and 4af-d6 in satisfactory yields. 

Scheme 5. Synthetic Applicability.a,c 

 
a Condition A: 1 (0.2 mmol), 2 (0.4 mmol), 3 (0.2 mmol), Pd(OAc)2 (0.02 mmol), 

P(4-CF3-C6H4)3 (0.05 mmol), N1 (0.2 mmol), Cs2CO3 (0.6 mmol) in 2.0 mL 

PhCF3/MeCN (1:1) under a nitrogen atmosphere for 12 h. b Condition B: 1 (0.2 

mmol), 2 (0.8 mmol), 3 (0.2 mmol), Pd(OAc)2 (0.02 mmol), P(4-CF3-C6H4)3 

(0.05 mmol), N1 (0.4 mmol), Cs2CO3 (0.6 mmol) in 2.0 mL PhCF3/MeCN (1:1) 

under a nitrogen atmosphere for 12 h. c Isolated yields. 

In response to the pressing challenges of efficiency and envi-

ronmental sustainability in chemistry, we investigated the one-

pot C-H thianthrenation/ortho-methylation process and the re-

coverability and recyclability of thianthrene (TT). It was satis-

fying to achieve the desired product 4a in 85% yield, while re-

covering TT in 95% yield, which can be further oxidized to 

TTSO for the subsequent thianthrenation cycle (Scheme 6a). 

Subsequently, various competitive experiments were conducted 

separately (Scheme 6b). An assessment of the reactivities of 

CH3I and CD3I resulted in the corresponding products 4a and 

4a-d3 in 43% and 33% yield, respectively. Furthermore, we in-

vestigated the competitive reactions of activated and unacti-

vated alkenes, revealing that activated alkenes exhibited a 

higher reaction rate. The "meta constraint" typically presents 

the primary challenge in Catellani reaction.28 It is noteworthy 

that meta-substituted arylthianthrenium salts could yield the or-

tho-methylated product 4an in 76% yield (Scheme 6c). 

Scheme 6. Control experiments. 

 

Besides ortho-C−H methylation of arylthianthrenium salts 

with CH3I, the ipso-C−H methylation also proceeded smoothly 

using MeB(OH)2 as a nucleophile (Scheme 7). Under the opti-

mal conditions, the ortho-trideuteromethylation and ipso-meth-

ylation product 5 was obtained in 78% yield (Scheme 7a), while 

the ortho- and ipso-trimethylation product 6 was obtained in 65% 

yield (Scheme 7b). To further demonstrate the feasibility of this 

protocol, we conducted an ortho-amination/ipso-methylation 

cascade of arylthianthrenium salts, resulting in the formation of 

7 in 52% yield (Scheme 7c). Remarkably, apart from CH3I, 

other alkylating reagents, such as nBuI, were suitable electro-

philes for producing the ortho-butylation and ipso-methylation 

product 8 in 86% yield (Scheme 7d). 

Finally, to showcase the practical application of this protocol, 

we performed late-stage functionalization of drugs (Scheme 8). 

Pyriproxyfen and Flurbiprofen were chosen as representative 

models for modification. The corresponding (trideutero)meth-

ylated derivatives 4ao, 4ap, 4aq-d6, 4ar, 4as, 4as-d9 were read-

ily obtained in 48-85% using alkenes or MeB(OH)2 termination. 
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These examples demonstrated the potential of our strategy for 

the rapid synthesis of methylated bioactive molecules, which is 

expected to facilitate the exploration of structure-activity rela-

tionships in drug discovery. 

Scheme 7. Further developments. 

 

Scheme 8. Late-Stage Modification of drugs. 

 

In conclusion, we have developed the first Pd/NBE coopera-

tive-catalyzed ortho C−H methylation and trideuteromethyla-

tion of arylthianthrenium salts. Numerous readily available 

arenes were smoothly transformed into the desired (trideu-

tero)methylated arenes through sequential C−H thianthrenation 

and Catellani reaction. This approach is more atom-economic 

and less wasteful due to the recovery of thianthrene. Further-

more, the practical application in medicinal chemistry was 

demonstrated through late-stage functionalization of relevant 

biorelevant molecules and synthetic applications. 
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