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Abstract 

The number of studies that apply machine learning (ML) to materials science has been 

growing at a rate of approximately 1.67 times per year over the past decade. In this review, 

I examine this growth in various contexts. First, I present an analysis of the most commonly 

used tools (software, databases, materials science methods, and ML methods) used within 

papers that apply ML to materials science. The analysis demonstrates that despite the 

growth of deep learning techniques, the use of classical machine learning is still dominant 

as a whole. It also demonstrates how new research can effectively build upon past research, 

particular in the domain of ML models trained on density functional theory calculation 

data. Next, I present the progression of best scores as a function of time on the matbench 

materials science benchmark for formation enthalpy prediction. In particular, a dramatic 

improvement of 7 times reduction in error is obtained when progressing from feature-based 

methods that use conventional ML (random forest, support vector regression, etc.) to the 

use of graph neural network techniques. Finally, I provide views on future challenges and 

opportunities, focusing on data size and complexity, extrapolation, interpretation, access, 

and relevance.  

1 Introduction 

The use of machine learning techniques in materials research has grown in the last decade 

from a small niche topic to an entire subfield within materials science & engineering. 

Indeed, there have been over 2000 papers on the topic of materials machine learning in the 

year 2023 alone, and over the past decade there has been a 1.67 times yearly growth in the 

number of papers (Figure 1). A 2020 review by Morgan and Jacobs1 found that not only 

were the number of papers on the topic exponentially increasing, but that the number of 

review papers per year on the topic had already reached nearly 40 by 2019. Indeed, there 

already exist many excellent reviews on various aspects of materials machine learning, 

including its applications in simulation and modeling2–4, synthesis and characterization5–7, 

manufacturing8,9, and literature mining10. Reviews also exist for specific topics such as 

structural materials11 or best practices for research reporting12. 
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Figure 1 The number of publications per year on the topic of machine learning in materials science. 
Data was retrieved on Jan 23, 2024 via http://api.elsevier.com and http://www.scopus.com using 
the pybliometrics Python library. See Code and Data Availability for data collection code and 
extracted information. 

This review both looks back and looks ahead. Looking back, it examines what has enabled 

the field of machine learning to advance so rapidly. Indeed, about five years ago it was 

unclear whether the field would enter a "trough of disillusionment" or an "AI winter"13. 

However, the development of the Transformer architecture14 in the computer science 

domain and the crystal graph neural network15,16 in the materials science domain around 

the same time revitalized much research and led to major advancements in performance. 

More recently, materials machine learning is rapidly building upon advances in natural 

language processing, and in particular large language models such as Generative Pre-

trained Transformer (GPT) models17 (e.g., GPT-3, GPT-4, and ChatGPT). Thus, the field 

has largely avoided any periods of stagnation thus far and the pace of innovation appears 

to only be increasing. 

One factor for the rapid growth of the field is the ability for materials machine learning 

research to rapidly build upon past work such as databases, software, ML methods, or 

domain-specific techniques. New research papers can build upon data sets from prior 

papers – bypassing expensive data collection and focusing on method development – or 

transfer methods developed by the computer science community to the materials domain. 

Such methods, packaged in reusable software libraries, can then be applied directly to 

tackling specific materials problems, often with minimal additional method development, 

data collection, or software programming. 

This review is divided into three sections. In the first section, it presents an analysis of the 

cross-fertilization between machine learning methods, materials science methods, data and 

software by analyzing common citations between papers. The second section presents a 
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quantitative analysis of the amount of progress achieved in a particular subfield of materials 

machine learning – structure-based property prediction. The final section presents 

remaining challenges and opportunities, particularly in the areas of data size and 

complexity, extrapolation, interpretation, access, and relevance. 

 

Figure 2 Progress in machine learning in materials science is stimulated by advances in software, 
materials databases, materials science methods, and machine learning methods.  

2 Rapid growth by building upon prior work 

The rapid rise in publications on the topic of machine learning in materials science is fueled 

by advancements in software, material databases, domain-specific materials science 

methods, and domain-agnostic machine learning methods (Figure 2). To examine this 

relationship further beyond a simple publication count increase, I compiled a data set of 

6795 research papers on the topic of materials machine learning and subsequently analyzed 

the citations for each of these papers using the Scopus API and pybliometrics15 Python 

library. I then analyzed the data set to determine all papers that were cited at least 100 times 

within materials science machine learning papers to determine commonly used tools and 

techniques within this subdomain. We note that this method only counts citations within 

the set of 6795 materials machine learning papers, and therefore is lower than a full citation 

count which may include citations from many domains or study types. 
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Figure 3 Analysis of papers with >100 citations within the collection of 6795 research papers 
collected on the topic of materials machine learning. Data was retrieved on Jan 23, 2024 via 
http://api.elsevier.com and http://www.scopus.com using the pybliometrics Python library. See 
Code and Data Availability for data collection code and extracted information. 

First, I focust on the results for software (Figure 3a). The most commonly used software 

and the mostly highly cited work within the data set overall is the scikit-learn18 Python 

package. This may stem from several reasons. First, scikit-learn implements a variety of 

techniques that can be useful for many different types of materials machine learning. For 

example, it can be applied to predict the band gaps of solids19, to predict the strength of 

cement composites20, to associate processing conditions with final properties in batteries21, 

to predict the fatigue life of powder metallurgy components22, or for many other materials 

tasks. Furthermore, although scikit-learn is missing the capability to implement more 

complex deep learning models, the small data set sizes of many materials problems often 

make it practical to use more conventional machine learning algorithms that have fewer 

parameters to train. Overall, it is interesting to note that the most commonly cited paper 

within the entire data set is a general-purpose machine learning tool rather than a domain-

specific tool. 

Following scikit-learn, the next most highly cited work is the VASP software (Figure 3a). 

Indeed, the next five software libraries (VASP23, pymatgen24, Phonopy25, matminer26, and 

AFLOW27) are generally used to calculate (VASP, Phonopy) or analyze (pymatgen, 

matminer, AFLOW) materials properties through density functional theory (DFT). The 

final software, OVITO28, is also used to visualize simulation results  The high presence 
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these software libraries within the group of materials machine learning papers suggests that 

a large fraction of materials machine learning is being performed on simulation data. 

Analysis of top databases cited within MSE-ML papers (Figure 3b) supports this trend: all 

three databases (Materials Project29, OQMD30, and AFLOWLib.org31) focus primarily on 

density functional theory generated data sets. 

When examining the most popular domain-agnostic machine learning methods that are 

applied to the materials domain (Figure 3c), traditional tree-based machine learning 

techniques are found to be the most dominant. The top two cited works are related to tree-

based methods (random forest32 and XGBoost33), and the third (Gradient Boosting34) is 

also frequently applied to tree-based methods. The use of deep learning35 is becoming more 

popular; nevertheless, the larger data sets needed to train these algorithms likely inhibits 

more widespread usage. Finally, methods for interpreting machine learning methods, 

including SHAP model explanations36 and t-SNE37, are also popular in the materials 

community. 

Finally, I examine commonly used methods developed for the domain of materials science 

(Figure 3d). As with software and databases, simulation methods (DFT-GGA38, Molecular 

Dynamics39, DFT-Monkhorst Pack40, and Ab Initio Molecular Dynamics–AIMD41) make 

up much of the list. The next category of methods are descriptors for materials – i.e., 

methods that use crystal structure or composition as an input and produce a library of 

features that describe the input for use in machine learning techniques. Popular methods 

include Magpie descriptors42, SOAP descriptors43, Coloumb matrix44, moment tensor 

potentials45, Atom-centered symmetry46, and PL fragment descriptors47. A third category 

is methods for ML force fields, including Behler-Parrinello potentials48, GAP potentials49, 

SNAP potentials50, and Deep potentials51. Finally, two of the results are separate from the 

categories of simulation method, materials descriptor, or force field. The first is the crystal 

graph neural network15 which popularized a neural network based approach to structure-

property relationships by solving the problem of crystal representation as a periodic graph. 

The second is Gaussian Processes for iterative exploration52, which is becoming an 

increasingly popular technique as machine learning is being integrated into for materials 

discovery campaigns. 

Overall, what conclusions can we draw from such analysis? First, it is worth pointing out 

that despite the seeming dominance of deep learning techniques in achieving good 

performance in tasks like language modeling or image generation, in the materials domain 

such techniques are still overall less popular than conventional techniques. As found in the 

matbench study53, deep learning becomes much more attractive for larger data sets (a 

threshold of approximately 10,000 data points was found in that study). Many materials 

ML problems simply do not have the data to make effective use of deep learning 

techniques. A second conclusion is that common databases, software libraries, and 

techniques are now readily available for simulation-based machine learning. However, 

there still remains a need for similar large and concerted efforts in other domains of 

materials science such as synthesis, characterization, and materials processing data. 

Although such databases have been developed54–56, they do not factor heavily in our 

literature review of materials ML and are still in the process of realizing a large, 

coordinated research community. This may potentially be due to complexity and 

heterogeneity of data in experimental domains, making data preprocessing (e.g., cleaning 
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and standardization) cumbersome for subsequent ML. It is possible that the push for 

automation in experiments may help in this endeavor, however the complexity of 

describing materials samples in experiments makes this far from straightforward. 

3 Steady gains in accuracy 

The ability of materials machine learning to draw upon prior work has led to steady gains 

in accuracy for a variety of tasks. In particular, the degree of improvement can be quantified 

for the field of materials property prediction from crystal structures. As we will later show, 

the state-of-the-art-models today can outperform those from 7 years ago by over a factor 

of 7 improvement in accuracy. With the remarkable gains in accuracy comes the potential 

to do more science with greater confidence using machine learning models. 

 

Task name Samples Algorithm Verified MAE (unit) 
or ROC-AUC 

Structure 
Required 

matbench_steels 312 MODNet (v0.1.12) 87.763 (MPa) 

 

matbench_jdft2d 636 MODNet (v0.1.12) 33.192 (meV/atom) 

 

matbench_phonons 1265 MegNet (kgcnn 
v2.1.0) 

28.761 (cm-1) X 

matbench_expt_gap 4604 MODNet (v0.1.12) 0.333 (eV) 

 

matbench_dielectric 4764 MODNet (v0.1.12) 0.271 (unitless) 

 

matbench_expt_is_metal 4921 AMMExpress 
v2020 

0.921 

 

matbench_glass 5680 MODNet (v0.1.12) 0.960 

 

matbench_log_gvrh 10987 coNGN 0.067 (log10(GPa)) X 

matbench_log_kvrh 10987 coNGN 0.049 (log10(GPa)) X 

matbench_perovskites 18928 coGN 0.027 (eV/unit cell) X 

matbench_mp_gap 106113 coGN 0.156 (eV) X 

matbench_mp_is_metal 106113 CGCNN v2019 0.952 X 

matbench_mp_e_form 132752 coGN 0.0170 (eV/atom) X 

Table 1 Current snapshot of matbench leaderboard (Jan 23, 2024). 

To study the improvement of structure-property models in greater detail, I make use of the 

matbench53 leaderboard (https://matbench.materialsproject.org). The leaderboard 
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measures the performance of various algorithms on a series of benchmark tasks. The 

current top performers for each of the 13 tasks is presented in Table 1. The tasks are ordered 

by the number of samples (i.e., data points) in the task. There is a clear delineation in the 

leading algorithms based on the number of samples in the task. The MODNet algorithm57 

is the clear leader on tasks with <10,000 samples, leading 5 out of 7 tasks in this category. 

However, these particular tasks do not have a structure provided and only chemical 

composition is known. Meanwhile, for tasks with >10,000 samples, the (related) coNGN58 

and coGN58 algorithms lead 5 out of 6 tasks. This separation based on sample size (with 

different leading algorithms at that time) was observed in the original matbench paper53. 

However, a more careful interpretation of the data shows that today, in all tasks where a 

structure is provided (even the phonons task with only 1,265 samples), some form of crystal 

graph neural network is the dominant algorithm. Algorithms such as MODNet57 and 

AMMExpress53 come into play only in tasks in which the structure is not provided, for 

which the crystal graph neural networks cannot be applied at all. 

 

 

Figure 4 Progress made on a smaller data task (elastic constants) and a larger data task (formation 
enthalpy) by various machine learning models. 

We next examine progress over time for one of the matbench tasks. In Figure 4, we plot 

the improvement in mean absolute error over time in predicting formation enthalpies of 

compounds as calculated by density functional theory simulations and tabulated in the 

Materials Project database. The most significant feature of Figure 4 is the sharp drop in 

mean absolute error when progressing from the random forest model with Magpie 

descriptors42 to the crystal graph neural network15 (CGCNN). The switch from more 

conventional machine learning techniques with a series of hand-tuned features to that of a 

neural network architecture with features that are largely learned on-the-fly led to a 

tremendous, immediate jump in performance (from >100 meV/atom to <35 meV/atom). 

Indeed, for large data tasks, it is generally the case that hand-tuned features are not 

necessary for good performance59. Subsequently, various extensions and improvements to 

the CGCNN architecture have steadily reduced the error further. State-the-art-models today 
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can reproduce formation enthalpies of compounds within the Materials Project database to 

<20 meV/atom, which is in most cases lower than the error of the density functional 

calculations as compared to experiments60 and of various experiments amongst 

themselves61. At this point, the matbench task can likely be considered "solved" and more 

difficult tasks need to be designed. 

 

Figure 5 Overview of major challenges and opportunities in materials ML. Current progress and 
future needs for each area are discussed in the main text. 

 

4 Future challenges and opportunities 

Next, I briefly review progress and outline challenges in 5 areas that are outlined in Figure 

5: data size and complexity, extrapolation, interpretation, access, and relevance. 

Data size and complexity: Data is the essential raw material for machine learning. 

Unfortunately, materials data can be limited in quantity and high in complexity. 

Nevertheless, new advancements may help make progress in this area. The use of natural 

language processing techniques to parse the scientific literature has resulted in many new 

structured data sets being compiled from previous literature62. New advancements in large 

language models may allow researchers to extract data sets by simply providing a few 

examples of structured output from unstructured text63. Nevertheless, even though 

algorithmic improvements are rapid, gaining access to the raw literature data for parsing 

remains difficult. In parallel, researchers continue to compile data sets outside the materials 

modeling domain through user contributions54,55,64. From the analysis side, progress on 

small data remains more challenging as compared to large data sets. A previous study has 

generally found a power law scaling of performance with respect to data size for various 

graph neural network models65. Such scaling relies on larger data and is often ineffective 
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for small data sets. Therefore, techniques such as multi-fidelity modeling66,67, hybrid 

featurization and neural networks57, and transfer learning68 may be needed to leverage big 

data sets when analyzing small data. While we are likely still far away from true "few shot" 

learning on general and extrapolative materials science tasks, progress has been reported 

in using large language models in this manner69,70. It is possible that foundational models, 

trained on large materials data sets and with general purpose "understanding" of materials 

science, will be able to serve as the basis for training more targeted machine learning 

algorithms using smaller data sets. 

Extrapolation: No clear standard has emerged for how to quantify the extrapolative limits 

of machine learning models. Standard cross-validation is designed for interpolation; 

alternate methods such as LOCO-CV71 are needed to ensure that the test set is significantly 

different than the training set for evaluating extrapolation. For example, several reports 

have indicated that the current set of crystal graph neural network algorithms, despite 

performing well on the matbench data set, may have issues generalizing out of 

distribution72,73. To this end, extensions like matbench-discovery74 attempts to test on out 

of sample (i.e., not in Materials Project29) structures to better test extrapolation. 

Nevertheless, the issue is far from solved. As training data sets grow in size and scope, it 

becomes more difficult to find and evaluate samples that are significantly outside the 

training domain. More fundamentally, evaluating ML models for open-ended exploration 

(e.g., as in iterative machine learning or generative models) remains a fruitful area of 

research because standard performance metrics do not translate directly to these areas75,76 

and validating each new prediction for every algorithm can be expensive. Thus, many 

opportunties remain to better investigate the extrapolation capability of ML models. 

Interpretation: Interpretable models are desirable because they may help uncover 

physical insights and relations rather than simply make predictions.77,78 Interpretability can 

also clarify the domain under which the model is valid. Unfortunately, the general situation 

today is that the most accurate models also tend to be the most opaque. There exist many 

model-agnostic interpretation methods that can be applied on top of such models, such as 

partial dependence plots, individual conditional expectation plots, Shapley additive 

explanations36, or surrogate modeling. Nevertheless, these methods do not fully capture 

nor do they explain the decision-making of the underlying model. As an alternative, some 

recent work has focused on building interpretation within the model itself79 or in restricting 

models to symbolic regression80. Unfortunately, without a clear metric for quantifying the 

interpretability of a model, it remains difficult to measure progress in this area. 

Access: Access is increasingly becoming an issue; the popularity of proprietary models 

trained on proprietary data sets such as OpenAI's GPT have made it difficult to conduct 

open science using such models. Worse, such models can sometimes only be accessed by 

an API with the underlying performance and results of the "same" model changing over 

time81. Thus, researchers publishing a certain set of results at the beginning of a project 

may find that the results have changed when running the same analysis on ostensibly the 

same model towards the end of that project. Such behavior clearly poses issues for the 

reproducibility requirements of published scientific research.  It is at present unclear what 

role such models have in the future of science. It is possible that studies incorporating such 

models are inadmissible outright, or it may be that the models may be considered as black 
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boxes (similar to human intuition or manual data processing) and can form part of the 

procedure so long as their output is independently verifiable by some other means. 

The issue of access is not limited to large language models. For example, Google recently 

reported a breakthrough in the journal Nature for models to predict energies and forces 

from crystal structures82. However, neither the model nor the full data set required for 

training that model was made available, and attempting to reproducing the data would 

require exorbitant amounts of computing. As the resources needed to produce a state-of-

the-art result increases, the issue of who will be able to access data and models becomes of 

greater concern. 

Relevance: Finally, as the performance of machine learning models improves, it is worth 

keeping in mind that these models are intended to be a means to an end rather than the end 

in themselves. There are many examples where ML was helpful to an outcome even if it 

was not perfectly optimized83. Conversely, there are also examples where ML models 

obtain good scores on one metric that does not always translate to seemingly related 

metrics. Examples include formation enthalpy scores not translating to phase stability84 or 

MAE scores not translating to materials discovery acceleration factors74. Furthermore, 

materials or design suggestions are not valuable unless they are eventually made and tested. 

To that end, machine learning in the "virtual" world needs to be more closely integrated 

with automated laboratories85,86 and more attention should be paid to ways in which 

computational predictions might be validated. 

5 Conclusion 

The application of machine learning to materials research has seen remarkable 

transformations in a relatively short amount of time. Not too long ago, machine learning in 

materials was considered a niche field with relatively few publications. Today, with many 

thousands of articles being published yearly, keeping track of the various developments 

has become a major challenge. The citation analysis presented in this article provides clues 

as to the fuel behind the rapid advancements. New publications are built upon algorithms 

and tools not only from within the materials science community but also from the computer 

science community. This has led to rapid advancements in performance on benchmark 

tasks such as those in the matbench protocol. 

Despite the challenges, outstanding challenges and questions still remain. In an age where 

model size and data set size translates directly to performance, what will be the role of 

individual research labs? The situation today is that few academic groups have the 

resources to reproduce state-of-the-art results from industry in many areas of machine 

learning, making the issue of access and reproducibility particularly concerning at the 

current moment. Furthermore, challenges related to data set size and complexity, 

extrapolation, interpretation, and relevance still require innovative solutions. Nevertheless, 

researchers continue to make progress in all areas, marking the current time as a 

particularly exciting era for machine learning in materials research. 

6 Data and software availability 

Data and analysis scripts for the literature analysis can be found at Github: 

https://github.com/computron/pybliometrics_ml. 
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Data for the matbench analysis is derived from the archived benchmark data found in: 

https://github.com/materialsproject/matbench. 

The raw data table used to derive the literature analysis plot is provided in the 

supplementary Excel file titled: "pybliometrics_ml_analysis.xlsx". 
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