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Abstract

Advances in machine learning have given rise to a plurality of data-driven methods for
estimating chemical properties from molecular structure. For many decades, the cheminfor-
matics field has relied heavily on structural fingerprinting, while in recent years much focus
has shifted leveraging highly parameterized deep neural networks which usually maximize ac-
curacy. Beyond accuracy, machine learning techniques need intuitive and useful explanations
for the predictions of models and uncertainty quantification techniques so that a practitioner
might know when a model is appropriate to apply to new data. Here we show that linear
models built on unfolded molecular-graphlet-based fingerprints attain accuracy that is com-
petitive with the state of the art while retaining an explainability advantage over black-box
approaches. We show how to produce precise explanations of predictions by exploiting the
relationships between molecular graphlets and show that these explanations are consistent
with chemical intuition, experimental measurements, and theoretical calculations. Finally we
show how to use the presence of unseen fragments in new molecules to adjust predictions and
quantify uncertainty.
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1 Introduction

Property prediction from molecular graphs is a
long-established method that has evolved into
a complex discipline, especially so following the
recent revolutions in machine and deep learning
(DL).1–3 DL approaches such as message pass-
ing and graph neural networks have come to
overshadow other machine learning (ML) meth-
ods due to their state-of-the-art performance
across a variety of tasks.4–6 However, these per-
formance improvements have come at the ex-
pense of increased training cost and decreased
model interpretability; addressing these draw-
backs is an active area of research.7–13 Consid-
ering the limitations of DL, we show here that
prediction 2D fragments still has a place in the
modern chemistry-applied ML arsenal by re-
visiting fragment generation, and constructing
new approaches to model building, chemical ex-
planation, and uncertainty quantification.
Model interpretability is often crucial in sci-

entific ML contexts to increase trust in mod-
els, to understand when and why they fail, and
to enhance scientific understanding. Methods
for interpreting ML models for chemistry and
materials problems are reviewed thoroughly in
Refs 12,14, which noted that some models are
intrinsically interpretable (e.g., by examining
the coefficients on each feature in a linear re-
gression model), whereas some models are black
boxes (e.g., neural networks) to which some
post-hoc interpretability method need to be
applied. These post-hoc methods include lo-
cal surrogates that examine the contribution
of input features near a given input point15

and similar local explanations called SHap-
ley Additive exPlanations (SHAP) based on
game-theory.16–18 Methods like SHAP adapted
to DNNs and new methods that explain net-
work predictions through mathematical func-
tions of network gradients have been applied to
molecular prediction to attribute predictions to
atoms,19 bonds,20 and higher-order molecular
subgraphs.21

Some argue that because DNNs often provide
the most accuracy across ML models and that
numerous post-hoc DNN explanation methods
exist, these methods should be favored over in-

trinsically explainable models, which are com-
monly thought to be comparatively weak pre-
dictors.12 However, there is evidence that this
perceived accuracy-interpretability tradeoff is
often over-exaggerated and is sometimes or-
thogonal to observed trends.13 Furthermore,
many of these post-hoc black box interpretabil-
ity methods have theoretical weaknesses that
are empirically borne out by counter-intuitive
and untrustworthy explanations. For exam-
ple Many explanation methods are not locally
Lipschitz continuous, meaning that extremely
small perturbations in model input can yield
large changes in explanations, a phenomenon
which makes explanations appear inconsistent
to a human observer.22 Other post-hoc methods
can be manipulated to produce arbitrary expla-
nations.23 These kinds of findings have lead to
calls to use simpler, explainable models when
possible.13

Intrinsically intrinsically explainable models
often have comparable predictive power to
black box models when constructed carefully.13

This trend has been demonstrated recently
in in a materials context in a set of experi-
ments where interpretable (multi-)linear mod-
els applied material property prediction prob-
lems achieved accuracy close to state-of-the-art
nonlinear approaches.24 One of these models
was constructed by counting atomic n-grams
present in a crystal unit cell lattice and assign-
ing coefficients to their presence inspired by the
cluster expansion. An analogous representation
for organic molecules is what we call the atom-
induced molecular subgraph, or graphlet, rep-
resentation, wherein a molecule is represented
by constituent n-atom connected subgraphs. A
similar representation was recently developed
by Ref 25 and used to sample and characterize
large chemical spaces of more than billions of
molecules.26–28 Here we show that a like repre-
sentation can be combined with linear models
for competitive and interpretable prediction.
Inspired by the many-body expansion

(MBE),29–31 we approximate molecular prop-
erties as functions of molecular graphlets or-
ganized by their body-order, i.e., the number
of atoms in each graphlet. We show that so
consructed linear models perform competitively
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with nonlinear blackbox models across a variety
of structure-property prediction tasks. We then
show that this approach can naturally be used
to produce coherent additive explanations by
projecting higher-order model coefficients onto
atoms or bonds within their molecular con-
text, and empirically find correlation between
these projections and both chemical intuition
and chemical theory. We then examine how
graphlet train and test statistics can be used
to estimate distribution shift32 and thereby
quantify prediction uncertainty.

2 Methods

Using the principle of the many-body expan-
sion (MBE), we aim to write a property of
a molecule as a linear combination of coeffi-
cients associated with all of the graphlets of
the molecule weighted by their number of oc-
currences in the molecular graph. This is illus-
trated in Figure 1. Here we outline the mathe-
matical framework for constructing and count-
ing these fragments (Section 2.2). We then dis-
cuss hierarchical regression (Section 2.3), show
how graphlet coefficients can be combined to
give model explanations (Section 2.4), and fi-
nally, how the presence of unseen fragments in
molecules not seen during training can be used
to both adjust model predictions and quantify
uncertainty (Section 2.5). Finally, we give a few
remarks on our implementation (Section 2.7),
which is open-source and freely available.

2.1 Graphlet Fingerprint Ap-
proach

Graphlets are defined as isomorphism classes
of connected subgraphs induced by choosing
a set of nodes and all of the edges con-
necting those nodes in a graph. We de-
fine a graphlet fingerprint as a vectors of
counts of occurences of graphlets in a molec-
ular graph. This is similar to other finger-
printing approaches, which enumerate molec-
ular subgraphs of a given family up to some
size. For example, so-called Daylight-like fin-
gerprints enumerate linear paths on the molec-

ular graph up to a maximum path length with
optional path branching;33 Extended Connec-
tivity FingerPrints (ECPF or Morgan, the lat-
ter after Morgan’s original formulation34) enu-
merate atom-centered radial subgraphs up out
to a maximum radius.35 In contrast, rather
than restricting the process that generates sub-
graphs, we base our machine learning counts of
all molecular graphlets up to some size N .
Graphlet fingerprints, like other fingerprint

approaches, are built upon pre-defined type la-
bels assigned to the atoms and bonds in a
molecular graph. We label nodes by atomic
species, formal charge, and aromaticity. This
implies that every node type has an precise de-
gree which is constant across all instances in all
molecular graphs. Edges are labeled according
to bond type as either single, double, triple, or
aromatic. As a result, the graphlet statistics
form a weighted version of Dk degree statis-
tics.36 This rich typing scheme helps to model
information more efficiently at lower maximum
graplet size; as an example, with only species
based typing an N+ atom with 4 bonds is not
distinguished from an N atom with 3 bonds un-
til using a graphlet size of at least 5. Including
more information in atom and bond labels al-
lows identification of such chemically distinct
systems at far smaller graphlet sizes (in this
case, a size of one).
Graphlets are enumerated by a recursive al-

gorithm similar to the explicit subgraph enu-
meration routine described in Refs. 37 and 25,
during which we identify and count member-
ship in isomporphism classes through our hash-
ing technique described in Equation 5.

2.2 Graphlet Fingerprint Mathe-
matical Description

More mathematically, we construct graphlet
fingerprints as histograms of members of
induced-subgraph isomorphism classes present
in a molecular graph as follows. We consider
a molecular graph to be set of atoms and
a set of bonds between those atoms, that is
M = (A,B). We label a subgraph of M in-
duced by choosing a a subset of atoms S ⊆ A
and all of the bonds between them as M[S].
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Figure 1: Illustration of graphlet featurization and linear model construction (a) All induced sub-
graphs up to size 2 are counted in a set of 2 training molecules (b) form of a linear model fit to
predict some molecular property from counts shown in (a). (c) The matrix formulation of (b)

We denote the family of sets of atoms for whom
the induced subgraph is connected as

P(M) = {S ⊆ A : M[S]is connected} . (1)

Loosely speaking, one can think of P(M) as
playing the role of a cumulant expansion over
the induced graphs formed by the power set of
A. It will be useful to consider graphlets re-
stricted to a given number of atoms, N , as

PN(M) = {S : S ⊆ A, |S| ≤ N}. (2)

The graphlet fingerprint is is the histogram CN

of the graphlets with respect to isomorphism
classes labeled by H up to subgraph size N .
With the Iverson brackets J· · ·K representing the
indicator function, the components of CN are

CN
H (M) =

∑
S∈PN (M)

JM[S] ∈ HK. (3)

To efficiently track graphlet isomorphism
classes H we build an integer-valued labeling
function H and produce counts of these labels.
That is, we construct a concrete histogram c
with components labeled h as

cNh (M) =
∑

S∈PN (M)

JH(M[S]) = hK (4)

To do so we require pre-defined atom
labels, hatom(M[{i}]), and pair labels,
hbond(M[{i, j}]), as well as a labeling func-
tion hrec, which can identify a histogram ch
by sorting the labels in the histogram, pairing
them with the accompanying count. Finally,
we construct a recursive labeling function H
with hrec using hatom and hbond as base cases:

H(M[S]) =


hatom (M[S]) , |S| = 1

hbond (M[S]) , |S| = 2

hrec

(
c|S|−1(M[S])

)
, |S| ≥ 3.

(5)
In plain words, we label graphlet isomorphism
classes by their own histograms of induced
graphlets: triplets are labeled in terms of bonds
and atoms, and four-point graphlets are labeled
in terms of triplets, bonds, and atoms, etc.
Whether or not the concrete labeling function
H is a faithful realization of the abstract iso-
morphism classes H is a complex question re-
lated to the long-standing Graph Reconstruc-
tion Conjecture,38–41 which is notably true for
some particular classes of graphs, false for oth-
ers, and not settled for a great many cases. For
the molecules and subgraph sizes studied here
we have found no counterexamples.
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2.3 Hierarchical Regression

We explore fitting linear regression models hi-
erarchically, first to subgraphs with |S| = 1,
and then |S| = 2, and so on. Let us think of
the graphlet histograms cN of graphlets up to
|S| = N for a molecule as members of a space
CN . This space can be decomposed as a direct
sum of vector spaces V n

CN =
N⊕

n=1

V n. (6)

where the components of vectors vn ∈ V n are
counts of graphlets of size precisely equal to n.
Using this notation, we construct an order-N
hierarchical model to predict y as

y ≈ FN(c
N) =

N∑
n=1

fn(v
n) (7)

Using Ŷn = Fn(c
n), each constituent model fn

is trained to minimize the same loss function
evaluated against the residual y − Ŷn−1, that is
to minimize L(yn, fn(vn)) with

yn =

{
y, n = 1

y − Ŷn−1, n > 1.
(8)

Put in less mathematical words, using the
graphlet approach, we can build a function
up by first applying regression to the graphlet
counts generated by atoms, and then to the
graphlet counts generated by bonds, and then
to the graphlet counts generated by connected
triples, and so on, up to some graphlet size N ,
where the model at size n learns a correction to
the model at size n − 1. This same hierarchi-
cal approach can be analogously applied to the
other 2D graph fingerprints we examine. For
path-based fingerprints, the hierarchical levels
indexed by n correspond to the number of steps
in the graph walks or, equivalently, the number
of bonds. For circular fingerprints, the hierar-
chical levels n indicate the set of fragment fea-
tures with radius equal to n.

2.4 Interpretation Projections

We produce local (per molecule) interpretations
of our graphlet-based linear models by exploit-
ing the inclusion of smaller graphlets within
larger graphlets. Using the graphlet inclusion
relationships in a particular molecular graph,
we project the linear model coefficients asso-
ciated with each graphlet onto the molecule’s
atoms or bonds. The projected values de-
scribe the contribution of each atom or bond to
the model prediction, given its context within
the molecular graph. These atom- or bond-
projected values sum to the prediction value on
this molecule. A visualization of the inclusion
relationship structure is presented in Figure. 2.
The remainder of this section describes how we
produce the pictured graph and use it to per-
form projections in formal notation.
We consider the directed acyclic graph (DAG)

of inclusion relationships between graphlets of
varying size, defined as

GSS′(M) = {(M[S],M[S ′]) : S ⊂ S ′} (9)

and equivalently described by the adjacency
matrix G with elements given by

GSS′(M) = JS ⊂ S ′K. (10)

For brevity, we will omit the M and write this
matrix as GSS′ , but the matrix remains associ-
ated with a particular molecule.
We principally we deal with the inclusions of

size n graphlets within size n + 1 graphlets,
which form an N -partite DAG with partitions
for each graphlet size from n = 1, . . . , N . Mov-
ing forward, we will call the partitions levels.
Much like in a feed-foward neural network, each
adjacent pair of levels is connected by a set of
edges. These edges are a subset of those in G:
the adjacency matrixGn connecting nodes from
level n+ 1 to level n corresponds to

Gn
SS′ = GJ|S|=nK,J|S′|=n+1K, (11)

where the Iverson brackets J· · ·K subscripts in-
dicate taking only rows and columns of G that
respectively correspond to size n and size n+1
fragments. A column of Gn describes which
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size n graphlets are included in each size n+ 1
graphlet. We use the matrices Gn to perform
our projections from higher to lower levels of
the DAG. The DAG described by these matri-
ces, and their upward analogs to be introduced
shortly, is visualized for a ficticious molecule in
Figure
We want our projections onto atoms or bonds

to sum to the prediction of the linear model, so
we want each Gn to be sum conserving. To
accomplish this, when projecting contributions
from a size n+1 graphlet to its size n graphlets,
we evenly distribute this contribution across all
of the size n graphlets. Mathematically, we can
ensure this by normalizing the columns of Gn

to sum to 1. We write the column-normalized
adjacency matrix as Ĝn with columns defined
as

ĝn
S′ =

1

1 · gn
S′
gn
S′ (12)

where 1 is the vector of ones.
A linear model with weights β acting on

graphlet histogram cN to estimate y is written
as,

ŷ = β · cN . (13)

Here, every model coefficient β is associated a
graphlet isomorphism class and is multiplied by
the number of occurences of that graphlet class
in a molecule being summed. We can think of
this model as a sum over the coefficients as-
sociated with every individual occurrence of a
graphlet induced by S in a molecule, written as

ŷ =
∑

S∈PN (M)

β[S]. (14)

When projecting “downwards” from larger to
smaller fragments, denote the projection value
on a set of atoms as α[S]. We write the vector
of these α and β values associated with all S of
size n in a molecule as α⃗n and β⃗n. With this no-
tation, we define the projection from level n+ 1
to n as

α⃗n = β⃗n + Ĝ
n · α⃗n+1 (15)

with the recursive base case

α⃗N = β⃗N . (16)

Equation 15 is sufficient to produce atom-level
explanations by computing α⃗1

For bond-level explanations, we introduce the
reverse “upwards” projection from level n − 1
to n. To do so, we reverse the direction of the
edges in the DAGs described above. The edges
are weighted by the total“valence” (in graph
terms, the total edge weight) of one graphlet
within another. Loosely speaking these valence
weights are the counts of bonds subsumed in
the larger graphlet. More formally, the matrix
K with elements given by

KS′S = JS ′ ⊆ SK
∑
b∈B

Jb ∈ SKJb /∈ S ′Kwb (17)

where wb gives the weight of an ordinary edge
(bond) in the molecule, b. Note that the spar-
sity structure of K is the same as G⊤ (an-
other way of observing that the DAG is re-
versed) and only only the edge weights differ.
We then define Kn is analogously to Gn to only
have support between levels n and n − 1. We
then column-normalize Kn in the same sense as
Eq. 12, producing K̂n with columns summing to
1. In the case where n = 2, edges toward atom
pairs connected by integral bonds are weighted
by the number of electron pairs, and aromatic
bonds have weight of 3

2
. This allows us to define

natural “upward” projections ω[S] as

ω⃗n = K̂n · (ω⃗n−1 + β⃗n−1) (18)

ω⃗1 = 0. (19)

A diagram of this scheme for interpretability
projections is shown in Figure 2. As a con-
crete realization of this definition, a 2-graphlet
(bond) containing a carbon and nitrogen that
are double-bonded will receive 1

2
of the carbon-

associated β and (2 out of 4 total bonds) and 2
3

of the nitrogen-associated β (2 out of 3 bonds)
in an upward projection.
We combine the upward and downward pro-

jections at level n n, denoted by χ⃗n, as

χ⃗n = α⃗n + ω⃗n. (20)

For any level n,

ŷ = 1⃗ · χ⃗n. (21)
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Figure 2: Illustration of interpretability scheme based on substructure graphs. A linear model asso-
ciates some contribution to each fragment in the molecule. By tracking the inclusion relationships
between subgraphs (red/blue arrows), we can create normalized matrices Ĝn and K̂n which can
be used to move predictions between many-body levels. Of particular interest are interpretability
projections to atoms, n = 1, and bonded pairs, n = 2.

We primarily consider χ⃗1 which corresponds to
breaking up the prediction ŷ into atom-centered
terms and χ⃗2 corresponding ŷ decomposed into
bond-centered terms, although one can com-
pute χ⃗n for any n = 1..N .

2.5 Uncertainty quantification
and prediction adjustment
based on unseen graphlets

When evaluating graphlet-based regression
models on new molecules, it is likely that these
molecules will contain graphlets not present
during training. We can use the presence of
these unseen fragments both to construct un-
certainty quantification (UQ) measures and,
when appropriate, adjust our predictions to ac-
count for systematic biases introduced by the
absence of fitted model coefficients associated
with the unseen graphlets. These uncertainty
metrics can be useful in active learning42 and
Bayesian optimization43 workflows to discover
new molecules and materials.

We examine various methods of constructing
uncertainty metrics based on unseen graphlets.
While yet more approaches are possible, we
explored using the total number of unseen
graphlets, the fraction of unseen graphlets, and
an auxiliary uncertainty regression models to
weight the relative importance of unseen frag-
ments of size s.
We can exploit statistical information in the

distribution of graphlet coefficients to adjust
predictions when a test molecule has unseen
graphlets. We examine this in the context of
predicting energies, where each graphlet is as-
sociated with a coefficient that can be thought
of as the energy contribution of each graphlet.
Ignoring unseen graphlets present in a new
molecule causes the magnitude of molecule’s en-
ergy to be mispredicted. We adjust for this
bias by finding the mean coefficients β̃s for each
size s = 1, . . . , N , constructing a histogram
of counts dNs of unseen all fragments of size
s, regardless of the fragment structure. The
adjusted prediction is then written as ŷadj =
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β · cN + β̃ · dN.

2.6 Overview of data sources

We evaluate models built using graphlet finger-
prints on fifteen molecular datasets from several
sources to assess its general applicability.
To examine regression performance, we first

examine prediction on atomization energies
from the QM944 dataset and compare perfor-
mance against a range of methods applied to
this dataset by Ref. 45. We then evaluate our
method’s performance on solubility prediction
using four datasets from Ref 46 and compare
our results to those therein. Finally, we eval-
uate regression performance on nine drug dis-
covery related quantities in datasets from Ref
47 and compare performance to leaderboards
hosted online.48

To evaluate our interpretability projections,
we qualitiatively examine solubility predictions
on the datasets from Ref 46 and, more quan-
titatively, correlate bond-projected energies to
bond dissociation energies calculated on a set
of molecules from Ref 49.

2.7 Implementation

We implemented our fingerprints using a cus-
tom python code, minervachem, which we have
open-sourced and made freely available [link].
Minervachem uses RDKit50 and networkx51 to
represent molecules and graphlets. Graphlet
counts are represented as scipy52 sparse ma-
trices for model fitting. Linear and hierarchi-
cal modelling procedures in are implemented
with scikit-learn.53 Nonlinear models are im-
plemented with Light Gradient Boosting Ma-
chine (LightGBM) library.54 LightGBM model
hyperparameters were optimized using the Fast
Library for Auto Machine Learning (FLAML)55

and include the number of boosted tree estima-
tors, the maximum number of leaves per esti-
mator, the maximum number of samples per
leaf, the fraction of features considered by each
tree, the learning rate, and L1 and L2 regression
parameters. Visualizing projected coefficients
uses RDKit plotting methods. Visualizing pro-
jection DAGs is done in networkx.

3 Results

Our results show competitive model predictive
performance, strong interpretability, and uncer-
tainty quantification that is well-correlated to
absolute error. In Sec. 3.1, we see that graphlet-
based linear models fit to DFT atomization en-
ergies exceed the performance of both linear
and nonlinear models built on other fingerprints
and exceed the accuracy of these DFT calcula-
tions with respect to experiment. In Sec. 3.2,
we show that projecting coefficients from these
models to bonds gives bond-level attributions
that are correlated with DFT-derived bond dis-
sociation energies. In Sec. 3.3, we see predic-
tive performance on solubilities in various sol-
vents that is competitive with nonlinear models
from the literature, and in Sec. 3.4 that inter-
preting the coefficients from these models pro-
jected to atoms agrees with chemical intuition.
In Sec. 3.6, we use information about unseen
fragments to improve prediction quality on un-
seen molecules by up 38% in a fragment holdout
experiment. Finally, in Sec. 3.7, we use unseen
fragment information to construct uncertainty
quantificaiton metrics that show strong corre-
lation with absolute prediction error.

3.1 High Accuracy on Diverse
Chemical Systems

We present computational experiments on the
QM9 dataset that are designed to evaluate
the performance of graphlet fingerprint-based
linear models compared to other fingerprint-
ing methods and to nonlinear modeling ap-
proaches. We restricted the target QM9 prop-
erty to atomization energy as a case study
to examine our graphlet-based linear model-
ing approach, as our approach was inspired
by many-body expansion energy models. For
linear regression models, we fit L2-regularized
models on graphlet fingerprint representations
with maximum graphlet size s ranging from 1
to 9. For comparison with a nonlinear model,
we included gradient boosting as implemented
by the LightGBM library.54 To compare with
other fingerprinting methods, we included RD-
Kit and Morgan fingerprints as implemented
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in the RDKit library,50 using count-based un-
folded representations with branching allowed
for RDKit fingerprints. We also varied s from
1 to 9 for these fingerprints, where s is the
maximum number of bonds present in an RD-
Kit fingerprint and the maximum radius in a
Morgan fingerprint. At each fragment size,
we performed a hyperparameter optimization
and measured test performance on a .64/.16/.2
train/val/test split. For the ridge regression
model we searched for the L2 strength param-
eter. For the LightGBM we used the FLAML
procedure,55 which aims to intelligently find hy-
perparameters (which are listed in Section 2.7)
given a wall-time budget, which we set to 30min
for each level in the hierarchical models and
s × 30min in the non-hierarchical case. We
also compare our model to the best fingerprint-
based model for the atomization energy task
presented in Ref 45.
Overall, graphlet-based linear models show

stronger performance than both nonlinear mod-
els and models constructed with other finger-
prints, as seen in Figure 3 which summarizes
our QM9 experiments. (Additional learning
curves including training performance are given
in Supplementary Fig.S1 and Fig.S2). First
considering hierarchical models, performance
improves consistently with fragment size to a
mean absolute error (MAE) of less than 5 kcal

mol
for

all models. The best of these models uses
graphlet fingerprints and attains a test MAE
of 1.74 kcal

mol
. Although this is not quite the 1

kcal
mol

widely considered to be chemical accuracy,56

it is less than the error of the DFT used to
calculate ∆Hat.

45 The RDKit fingerprint-based
model closely follows this performance, with an
MAE of 2.15kcal

mol
. The performance of these

fingerprints is likely similar because they cap-
ture similar chemical information, i.e., atom-
induced subgraphs vs. branched-path finger-
prints which can be though of as edge-induced
subgraphs. We hypothesize that this is because
they are a richer representation than the Mor-
gan fingerprints, having many more features at
a given size, whereas the RDKit fingerprints,
being walk-based, include multiple fingerprint
elements that map to identical sets of atoms.
graphlets out-perform the other fingerprints be-

cause they include a more complete represen-
tation of the npossible substructures; Morgan
fingerprints in many cases do not directly cap-
ture. The next best performing hierarchical
model is the LightGBM with graphlet finger-
prints, which is superior to the linear model at
smaller fragment sizes but saturates in perfor-
mance at around 1000 fragments. This is possi-
bly because LightGBM does not capture the ad-
ditivity of energies reflected in the many body
expansion and thus cannot effectively lever-
age large numbers of graphlet fingerprint bits,
a hypothessis that is consistent with the di-
vergence of non-hierarchical LightGBM mod-
els with fragment count. This may also be at-
tributed to the reduced number of fragments
used at each fragment size within the hierar-
chical model compared to fitting on all frag-
ments at once in the non-hierarchical case. Hi-
erarchicality also eliminates feature correlation
induced by the inclusion of smaller fragments
within large ones.
All models constructed here outperform the

best fingerprint-based model performance re-
ported in Ref 45, most by 1-2 orders of magni-
tude, regardless of fingerprint type, highlighting
the importance of carefully selecting fingerprint
parameters. Ref 45 uses binary ECP4 (Mor-
gan) fingerprints out to radius 4 folded to a
fingerprint length of 1024. At radius 4, we find
roughly 500,000 Morgan fragments in the train-
ing set when using unfolded fingerprints (see
Supplementary table S1 for the exact number
of fragments observed at each size for each fin-
gerprint type). This close to 500x ratio between
unique fragments and fingerprint entries likely
explains the limitations of the model from Ref
45.

3.2 Interpreting energy models
on bonds

Energy models built in Sec. 3.1 provides an
opportunity to investigate whether the bond-
level projections χ⃗2 (defined in Eq. 20) of an
energy prediction correlate with bond dissoci-
ation energies (BDEs). We examine the rela-
tionship between χ⃗2 and both experimentally
and theoretically-derived BDEs, in both cases
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Figure 3: Test set performance vs. fragment count by model type, feature type, and hierarchicality
on the QM9 ∆Hattask. The horizontal axis is shown in number of fragments rather than finger-
print size because the size parameter has different meanings across fingerprint types. The dashed
horizontal line at 2.3kcal

mol
indicates the accuracy of the DFT calculations that produced these ∆Hat

values compared to experiment.45 The solid horizontal line at 1kcal
mol

gives a common benchmark of
“quantum chemical accuracy” at 1kcal

mol
. The dotted horizontal line at 84.2kcal

mol
shows the best MAE

attained by fingerprint-based models in Ref 45.

using a linear model fit with graphlet finger-
prints up to size 7 on approximately 128,000
molecules from QM9 (the details of the split
construction are discussed in Section 3.2.2). To
examine these

3.2.1 Experimental BDEs

We first consider a few experimental BDEs
from simple molecules obtained from Ref 57.
Both the bond-projected energy predictions
χ⃗2 and experimental BDEs for three exam-
ple molecules–ethane, ethene, and ethyne–are
shown in Figure 4. Both quantities, reported in
kcal
mol

, appear on the same scale. The expected
trend of increasing C-C bond energy with bond
order is captured. This can be explained largely
in terms of the explicit single, double, and triple
bond fragment coefficients. More interestingly,
the subtle trend in C-H bond energy with C-C
bond order is also partially captured. In this
case, the proximity to the higher energy higher
order bonds through the inclusion with these
bonds in higher order graphlets, raised the val-
ues of χ⃗2

C-H.

Figure 4: Bond-level model interpretability:
The projection of a ∆Hat model onto bonds
(χ⃗2) along experimental bond dissociation en-
ergies (BDE) for Ethane, Ethene, and Ethyne.
Energies are in units of kcal

mol
.

3.2.2 Theoretical BDEs

Though illustrative, recapitulating the relative
strength bonds in only a few simple molecules
is not a sensitive probe of the interpretability
scheme. To ask whether bond-level projections
are well-aligned with BDEs in a statistically
significant sense, we turn to the large theo-
retical BDE dataset presented in Ref 49.This
dataset includes includes single-bond BDEs for
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roughly 40,000 molecules (and 200,000 asso-
ciated BDEs) calculated at the M06-2X/def2-
TZVP level of theory. Of these, approximately
5,000 molecules (with roughly 50,000 associ-
ated BDEs) are present in QM9. For consis-
tency with QM9, we recalculated the dissocia-
tion energies of the bonds in these molecules at
the B3LYP/6-31G(2df,p) level of theory. The
calculations converged for over 99% of these
roughly 50,000 bonds, and serve as a reference
for our bond-projected predictions χ⃗2.
We construct a holdout set of BDEs to eval-

uate whether the correlation between χ⃗2 is
subject to a generalization gap. Half of the
5,000 molecules present in both the theoreti-
cal BDE dataset and QM9 were held out. We
then trained a graphlet-based hierarchical lin-
ear model to all QM9 molecules except those
present in this holdout set, using a maximum
graphlet size of 7.
The bond-projected predictions χ⃗2 from these

models show reasonable agreement with the
theoretically calculated BDEs, especially con-
sidering that only single bond dissociations are
present. On the held out bonds, we attain a
Pearson r of 0.46 over all of the bonds, shown
in Figure 5. (Notably, there is very little gen-
eralization gap in these correlations, as shown
in Supplementary Fig. S3 and Fig. S4) To test
whether this correlation is driven by the relative
strengths of single bonds between each element
pair (an instance of Simpson’s paradox58), we
separate the data by element pairs and compute
the correlations, shown in Table 1. Within the
element pairs, the strength of the relationship
between χ⃗2 and BDE varies widely with rela-
tively strong performance for C-C bonds, weak
performance for H-O bonds, and moderate per-
formance for the remaining element pairs. Thus
our interpretability scheme recapitulates trends
even within (some) individual bond types. In
particular, heavy-atom to heavy-atom bond en-
ergies are better correlated with the BDE in
comparison to hydrogen-heavy-atom bonds; the
variance the bond explanation for hydrogen
atoms is noticeably smaller than the variance
of bond explanations for heavy atoms. When
interpreting these correlations, it is important
to remember that this is a test of empirical cor-

relation between qualitatively similar phenom-
ena; the model was not trained in any way to
predict BDEs - rather, it predicts total energies,
and the bond-wise interpretation of these pre-
dictions is significantly correlated to the BDE.
The model is unaware of open-shell molecules,
radicals, or ions that are produced in breaking
those bonds.

Figure 5: Relationship between Bond Dissocia-
tion Energies (BDEs) computed with DFT and
the bond-level interpretations χ⃗2 for a model fit
to atomization energy on the QM9 dataset.

3.3 Competitive performance
and model interpretation for
solubility prediction

To evaluate the applicability of graphlet-based
linear models beyond energy prediction, we
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Figure 6: Model performance on the solubility datasets from Ref 46. Root mean squared errors
are in units of log molarity. Models from Ref 46 are shown in shades of red in the left hand side
of each panel, models from this work are shown in shades of blue, offset on the right hand side of
each panel.

Table 1: Correlation coefficients between bond-
level interpretations χ⃗2 of the linear model
and theoretical bond dissociation energies by
element pair. Coefficients are calculated on
molecules from the holdout set, and the num-
ber of bonds is denoted by n. Each correlation
is statistically significant, with p < 10−12, ex-
cept for the smallest category of H-O bonds,
for which the correlation is not significant (p >
.05).

Bond n Pearson r
All 24,695 0.4198
C-H 15,980 0.1414
C-C 4,699 0.4968
C-N 1,064 0.3043
C-O 1,440 0.2266
H-N 990 0.2298
H-O 522 -0.0584

evaluate them on a dataset of hundreds of
experimental log solubilities in four solvents:
acetone, benzene, ethanol, and water, as pre-
sented in reference 46. We compare our model
performance directly with ML model perfor-
mance presented in reference 46 using the same
datasets and prediction tasks: Molecular solu-
bilities in each solvent are considered separate
tasks and each have their own ML models, with

the water solubility prediction task broken into
three tasks based on varying logS cutoffs–(1)
“Water”: only molecules with −4 < logS < −1
are included, (2) “Water (wide)”: all molecules
are included, and “(3) Water (wide-narrow)”:
only the test set is filtered to −4 < logS < −1.
We use the same train/test splitting proce-
dure as reported in Ref 46 and further split
the training set into an 80/20 train/val split
to search optimize the maximum graphlet size
and model hyperparameters. For linear models
we searched for the L2 parameter in a range of
10−5 to 102, and LightGBM was optimized with
FLAML with a time budget of 2 min.
Overall, we found that the graphlet fin-

gerprints coupled with linear models predict
small molecule solubility in four solvents com-
petitvely with nonlinear models from reference
46, which were trained on expensive DFT- and
experiment-based features. Figure 6 shows test
RMSE (log molarity) for each model presented
in Ref 46 and for graphlet-based linear and
LightGBM models.
Graphlet-fingerprint-based models are com-

petitive on all datasets save for Benzene, and
are among the best for the Water (wide) and
Water (wide-narrow) sets, while being both
inexpensive and easy to interpret based on
structural motifs (see Figure 7 in Section 3.4).
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Compared to nonlinear LightGBM models, lin-
ear models are unexpectedly strong on these
tasks. This demonstrates that, surprisingly,
our molecular representation coupled with lin-
ear models is useful outside of the context of
predicting extensive properties like energy.
The interesting sub-result of improved per-

formance of the graphlet-based models when
moving from the Water to Water (wide-narrow)
suggests a robustness to overfitting. In the for-
mer task, only molecules of log-solubility rang-
ing from -4 to -1 are included. In the latter task,
the test set is the same, but the training set ad-
ditionally includes molecules in the wider logS
range of -12 to 2. In principle, the test task
is statistically identical, but in the wide-narrow
version, more information is given for training.
Most of the models from Ref 46 nonetheless
perform worse on the test task in the wide-
narrow version; the new information somehow
confounds the models. In contrast, our graphlet
approach behaves intuitively - when given more
data, it makes strictly better predictions on the
same test set.
We note again the relative expense of our

approach to the models in Ref 46; because
these models rely on features that involve Den-
sity Functional Theory and experimental mea-
surements, applying the model to an arbitrary
new chemical can be limited by the speed to
calculate, find, or measure these quantities.
In contrast, a fingerprinting approach such as
graphlet fingerprints can be applied to com-
pletely new molecules in timescales far less than
a second. For these tasks, there are on the order
of hundreds to thousands of graphlet features;
precise counts are given in Supplementary Ta-
ble S2.

3.4 Atom-wise Interpretation of
Solubility Models

Here, we examine the interpretability of
graphlet fingerprints using linear models by
computing the atom-projections of the predic-
tions χ⃗1 and examining the qualitative agree-
ment between structural trends in the projec-
tions and chemical intuition about solubility. In
particular, we choose propyl and benzyl back-

bones, by themselves and in combination with
alcohol, amine, and chloro functional groups.
Figure 7 shows the interpretation χ⃗1, that is,
the atom-level-projected contributions from the
solubility model. Note how how each functional
group contributes to the overall molecular sol-
ubility. As expected, alcohol and amine groups
are shown to be responsible for increasing sol-
ubility, and chloro groups are responsible for
lowering solubility. Supplementary Fig. S5
shows interpretations for additional molecules
selected from the intersection of the Acetone
and Water solubility datasets.

3.5 ADMET Leaderboards

To further assess general applicability of
graphlet-fingerprint-based models, we evalu-
ate their performance on nine drug-discovery-
relevant regression tasks from the Therapeutic
Data Commons (TDC).47,48 These tasks in-
clude the prediction of variety of biochemical
attributes relevant to drug drug design, includ-
ing chemical properties such as lipophilicity and
aqueous solubility along with human-biological
observables such as toxicity and half-life in
blood which are not chemically absolute. These
properties are contained in datasets of roughly
1,000 to 10,000 molecules. We followed the
same train/val/test split recommended by the
TDC. This is a challenging generalization eval-
uation which holds out all molecules built upon
a particular scaffold (molecular backbone) and
conducting training and hyperparemter opti-
mization on the remaining molecules. The
performance is averaged over 5 random train-
ing/validation splits. We fit both the Light-
GBM and Ridge models with graphlet finger-
prints.
Table 2 shows our performance compared to

the existing leaderboard entries. A visualiza-
tion of all of the models performance for all
leaderboard tasks is present in Supplemental
Fig. S6 and Fig. S7. Models using graphlet fin-
gerprints score in the upper half of the leader-
board for seven out of nine of the tasks. No-
tably, all these high-scoring models used the
LightGBM regressor; ridge regression did not
perform impressively in these tests and was in
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Figure 7: Linear model contributions projected to the atom level for selected backbones and func-
tional groups. Colors show the contribution to the predicted log solubility (measured in molarity).
Contributions of the functional groups to the overall solubility agree qualitatively with chemical
intuition.

the lower half of the leaderboard for five of the
nine tasks. This is surprising in the context of
ridge regression’s strong performance on solu-
bility prediction in Section 3.3, but less surpris-
ing in that we expect non-linear, non-extensive
models to perform better on such properties.

3.6 Exploiting interpretability to
account for new information

Here we evaluate the effectiveness of the ad-
justement based on unseen fragments discussed
in Section 2.5. We conducted a series of ex-
periments on the QM9 dataset holding out
molecules with graphlets of size ≤ 2 that ap-
peared in at least 1000 and at most 100, 000
molecules–22 fragments in total. We expect
small graphlets to have large influence on model
performance, as their coefficients tend to be
larger in our models. Visualizations of these
fragments and their counts in QM9 can be
found in Supplemental Fig. S8. For each
held-out fragment, we fit a linear model with
graphlet fingerprints up to size 5 on molecules

that did not contain this held out fragment.
fragment We measured the raw and adjusted
performance on molecules containing the held-
out fragment. Fig 8 shows the aggregated hold-
out molecule predictions from these 22 experi-
ments. Panel (a) shows that models make dras-
tic errors when predicting on molecules with
unseen small fragments, yielding an MAE of
90.20kcal

mol
, and panel (b) shows that the adjuste-

ment reduced error by 52% to 42.96kcal
mol

and
improved R2 by over 38% from 0.67 to 0.93
by exploiting the simple assumption that un-
known fragments are similar in nature to known
ones on average. This proof-of-concept result
demonstrates how an interpretable model can
be readily manipulated to incorporate further
knowledge and intuition.

3.7 Uncertainty Quantification

As discussed in Section 2.5, the presence of un-
seen fragments in new molecules can also be
used to quantify model uncertainty about this
molecule. There are numerous ways one could
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Table 2: Performance of models using graphlet fingerprints compared to those present in the TDC
leaderboards. Ranks are computed after our models are included. For tasks scored with MAE, a
lower score is better and this is reflected in the ranking. The ranking order is reversed for tasks
ranked by Spearman’s ρ, where higher scores are better.

Task LightGBM Perf. LightGBM Rank Ridge Perf. Ridge Rank Perf. Metric
LD50 0.603 3/19 0.632 8/19 MAE
AqSol 0.803 5/16 1.105 15/16 MAE
Lipo 0.519 5/17 0.516 4/17 MAE
PPBR 8.729 6/17 10.699 15/17 MAE
Caco2 0.316 7/19 0.306 6/19 MAE
VDss 0.500 8/17 0.448 13/17 Spearman’s ρ

Half Life 0.217 12/18 0.229 11/18 Spearman’s ρ
CL-Hepa 0.341 13/16 0.349 12/16 Spearman’s ρ
CL-Micro 0.525 14/18 0.600 4/18 Spearman’s ρ

utilize this information for UQ, including 1) us-
ing the count of unseen fragments or 2) us-
ing their frequency. One could also 3) build
an explicit model of uncertainty based on un-
seen fragments. We evaluate all three of these
approaches on a graphlet-based linear model
trained on a small sample of 1,000 random
molecules and their atomization energies from
the QM9 dataset. The remaining molecules are
used as a test set for all three UQ methods.
The explicit uncertainty model is a linear re-

gression mapping the number of fragments of
each size to the absolute residuals. This model
is fit with non-negative least squares, guaran-
teeing non-negative residual prediction and giv-
ing coefficients with a natural interpretation as
the contribution a single unseen fragment of a
given size to the model uncertainty in units of
the regression target. The resulting model co-
efficients are given in Supplementary Table S3.
We measure the performance of these uncer-

tainty quantification methods with both corre-
lation coefficients and confidence curves. Con-
fidence curves (CCs) show how the model er-
ror changes as data points (here, molecules)
with the highest uncertainty are excluded from
the test set.59,60 Confidence curves for differ-
ent UQ metrics are compared quantitatively
by comparing their integrals in the so-named
AUC metric: the less area under the CC the
better the performance of the UQ metric. To
give a more intuitive meaning to the AUC,
the Area Under the Confidence Oracle (AUCO)

metric presented in reference 59 considers the
area between the confidence curve and an oracle
curve, that is the true ordering of the points by
decreasing absolute error and is the best-case
CC for a UQ metric. As AUCO approaches
zero, the confidence curve approaches the ora-
cle curve, so smaller AUCO values are better.
To provide an even more intuitive functional of
the CC, we consider both an oracle and an anti-
oracle which randomly discards points. This
serves as a baseline that any well-performing
UQ metric should outperform. Because the
anti-oracle throws away points randomly, the
anti-oracle has an expected CC equal to the
test set MAE. The area between the anti-oracle
and oracle (ABAO) thus represents a baseline
AUCO. The CCeff metric is then defined as

CCeff = 1− AUCO

ABAO
. (22)

Values of CCeff close to one occur in the best
case when the CC approaches the oracle CC,
values near zero occur when the UQ metric is
no better than random guessing, and negative
values occur when the UQ metric is worse than
random assignment. In this way, we can think
of CCeff as being related to the AUC in the
same way that R2 relates to MSE; A perfect
CCeff is 1, an uninformative CCeff is 0.
All of the proposed measures of uncertainty

based on unseen fragments have moderate
to strong correlation with absolute residuals,
shown in Figure 9. Confidence curves and CCeff
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Figure 8: Performance improvement from ad-
justment based on unseen fragments. Both pan-
els show the predicted and true atomization
energies for every held-out fragment, coalesced
into one figure. The top panel shows the raw
predictions and the bottom shows the predic-
tions after applying the adjustment.

values are shown in Figure 10. The fraction of
unseen fragments performs the strongest under
both correlation coefficients and our confidence
curve efficiency metric.

4 Discussion

Regression on molecular graphlets is a sim-
ple yet powerful technique yielding consistent
strong performance at little computational cost;
even our s = 9 models of QM9 with over 1M
features (graphlet isomorphism classes) were

trained on a single computing node in less than
48 hours, including hyperparameter search.
Many of the datasets examined in this work
can be trained in the order of minutes. When
carefully constructed and utilized, models on
molecular graphlets are also highly locally inter-
pretable via projected-coefficient visualizations,
and the presence of unseen fragments can be
used to adjust for model biases and quantify
model uncertainty. In many cases, linear mod-
els built on graphlets are comparable to non-
linear ones–we prefer the former due to their
stronger interpretability.
Previous work has explored the interpretabil-

itiy of ML models built on fingerprints. Some
research17,18 examines SHAP values on the sub-
graphs corresponding to fingerprint fragmen-
mts. We caution that this has notable disad-
vantages. In addition to the inconsistency of
SHAP discussed in Ref 22, SHAP explanations
can include contributions from the absence of a
particular fragment, effectively saying ”the fact
that this fragment was not present shifted this
prediction from the mean by this much.” Ex-
plaining properties of molecules based on what
they are not is reasonable from a statistical
perspective but does not provide an explana-
tion tied only to the given molecular graph
which we found unintuitive in our own explo-
rations of this approach. Interpreting linear
model coefficients instead focuses only on the
fragments that are present, as the zero-counts
will remove the coefficients of the absent train-
ing fragments from the prediction. We also note
that care must be taken to always use unfolded
fingerprints when attempting to explain model
predictions, or else the a one-to-many corre-
spondence between model inputs and molecu-
lar fragments61–63 significantly complicates in-
terpretation, if not rendering it fully impossible.
We also observed in our initial work that di-
rect interpretation of the contribution of every
molecular graph fragment present in a molecule
is confounded by the inclusion relationships be-
tween graph fragments. This lead us to develop
our method of projecting contributions using
these inclusion relationships to atom- or bond-
level contributions. We note that a similar in-
terpretation method to our projection scheme is
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Figure 9: Correspondence of various metrics for uncertainty with error. a) Number of unseen
fragments in a test molecule b) Fraction of unseen fragments in a test molecule c) Calibrated UQ
model which takes into account both the number of unseen graph fragments and their sizes.

Figure 10: Confidence curves comparing uncer-
tainty metrics to an oracle. Each curve shows
the expected error in the test dataset as a curve
by systematically dropping tests points with the
highest uncertainty values; lower curves are bet-
ter. The “oracle” curve shows the error distri-
bution when points are dropped in order of their
error; this is the best possible confidence curve
for this error distribution.

presented in Ref 64, wherein the SHAP attri-
butions of all of the fingerprint fragments con-
taining a given atom are summed, giving an
atom-level SHAP contribution.
Some similarity may be noted between

our work and that of atom-in-molecule-ons
(AMONs),65 because each involves analysis of
substructures. AMONs constitute a framework
for for the comparison of 3D configurations; in
that lens, they are a composition of a selec-
tive (as opposed to exhuastive) fragmentation
into subgraphs, and molecular similarity ker-
nels.66 3D information about target molecules

is typically used for contexts where the tar-
get property varies with respect to the input
coordinates- for example, conformational en-
ergy variations; the cheminformatics applica-
tions presented in this work are distinct because
they do not depend on conformation.
We note some advantages of graphlet finger-

prints over other fingerprints, some of which are
noted in Ref 25. Graphlet fingerprints may be
considered at once more complete than Morgan-
like fingerprints and more compact or less re-
dundant than RDKit fingerprints. This is visi-
ble in the feature counts in Fig. 3, also shown in
the Supplementary Information, Table 1. Due
to the radial nature, many substructures have
no direct representation in Morgan fingerprints.
Notably Morgan fingerprints do not explicitly
represent bonds, which important chemical and
physical meanings. Bond-level interpretations
like those in 3.2 are impossible with Morgan
fingerprints. Likewise, RDKit fingerprints can-
not directly represent atoms: paths of length
one–bonds–are the smallest fragments in RD-
Kit fingerprints. RDKit fingerprints are also re-
dundant in their representation of fragments in
individual molecules when multiple bond paths
connect the same set of atoms. For example, in
a molecule with a ring containing n atoms, there
is precisely one graphlet-based induced sub-
graph containing exactly those atoms, yet RD-
Kit fingerprints will produce n−1 fingerprint el-
ements containing that same set of atoms, each
one missing one bond from the ring. This leads
to many-to-one correspondence between model
coefficients and atom subsets which presents a
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challenge to directly interpreting these coeffi-
cients. This redundancy may also challenge ma-
chine learning methods as the fingerprint vec-
tors will be highly correlated, even when models
are fit hierarchically by fragment size. Hierar-
chical fitting helps to alleviate this redundancy
by assigning model contributions to the lowest
fragment size possible.
Regarding computational efficiency, we note

that Morgan fingerprints are less costly to com-
pute on large molecules with large fragment
sizes due to their highly restrictive radial frag-
ment definition. Graphlet fingerprints scale
similarly in cost with molecule and fragment
size to RDKit fingerprints. This is unsurprising,
as the latter can be thought of as edge-induced
subgraphs rather than node-induced subgraphs.
We note that identifying and counting

graphlets has long shown promise in other ar-
eas of machine learning. A kernel based on
the number of shared graphlets between graphs
has been used to predict functional residues of
proteins.67 Due to the potentially combinatoric
cost of counting all graphlets on arbitrarily
connected graphs, these methods often incor-
porate random sampling of small graphlets.68

Examining the symmetry relationships between
nodes within graphlets has been exploited to
understand protein-protein interactions69 and
interactions between MicroRNA and small
molecules.70 Various spectral methods based
on graphlets have been developed71 and ap-
plied to problems such as biological network
comparison.72,73 Recently, graphlet substruc-
ture relationships have been used to improve
performance of graph neural networks.40

5 Conclusion

In this manuscript, we have compared the
performance of molecular graphlet fingerprints
coupled with linear and nonlinear regressors
to a variety of molecular featurization tech-
niques from the literature. These include sim-
ilar topological fingerprints such as the RDKit
and Morgan fingerprints on QM9, hand-crafted
DFT and experimental features on solubility
datasets, and a variety of methods, including

deep learning methods such as as attention-
based and graph neural networks on the AD-
MET regression tasks from the Therapeutic
Data Commons. We find that the graphlet ap-
proach fairs better than other topological fin-
gerprint techniques, and is generally compara-
ble in accuracy to the other techniques in the
literature. This result gives counterpoint to re-
cent efforts advocating for the use of black-box
algorithms followed by post-hoc interpretability
algorithms.12

At the same time, we have shown that the
transparent nature of fingerprint techniques
comes with many additional advantages. For
one, we show that hierarchical linear model-
ing in the graphlet approach, using a many-
body expansion hypothesis, produces a some-
what more accurate model which is far more
stable to the maximum graphlet size hyperpa-
rameter. We also show how graphlet inclusion
relationships can be used to assign precise in-
terpretations which decompose the model pre-
diction across the input molecular structure.
This was shown to produce reasonable corre-
lation with chemical theory and chemical in-
tuition in the case of both 2-body (bond) and
1-body (atom) projections. Finally, we showed
how the interpretability of graphlet-fingerprint-
based linear models provides natural methods
for uncertainty quantification as well as model
adjustments which address distribution shift, in
particular, adjustments that estimate the ef-
fect of new topological structures arising in test
molecules.
Future work could take on a variety of direc-

tions. For one, having shown good performance
on a very wide array of tasks, the graphlet
featurization approach is suitable for applica-
tion to new chemical datasets. Methodologi-
cally, the uncertainty quantification and inter-
pretability methods discussed in this work are
but the tip of the iceberg; a variety of more
complex schemes could be explored, and some
of them might prove to produce better inter-
pretations or more well-calibrated uncertainty
estimates. The problem of modeling uncer-
tainty and constructing interpretations when
using these features in combination with exter-
nal features (such as ab-initio properties) re-
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mains unsolved; in some sense, any feature that
is itself a function of the molecular structure
cannot present information that is orthogonal
to the graphlet histogram, and so a method
to project the information gained by models
through these features back onto the molecu-
lar graph would need to be devised in order to
extend the notions of interpretations presented
here. In this work, we have concentrated on
modeling data whose domain is scalar, that is
the prediction target for each molecule is a sin-
gle number. However, the graphlet distribution
can be localized to their location in the graph,
and so the graphlet technique could be modi-
fied to predict information such as the partial
atomic charges within a molecule.
Finally, we remind the reader that we

have released the code for our approach as
an open source package, minervachem, at
github.com/lanl/minervachem, along with tu-
torials outlining how to build models using the
methods described here. We hope that future
work by ourselves and others will be made
available through the library.
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S1 QM9

S1.1 L2 hyperparameter optimization

Following preliminary experiments, we found the below ranges for the linear regression regu-

larization α, and noted that underregularized models are much slower to converge so we did

not use them. For the nonhierarchical linear models, we searched for α in a range of 10−2

to 10−1 for morgan substructures and a range from 10−1 to 102 for graphlet and RDKit fin-

gerprints. The ranges were motivated by slower runtimes for small values of α for the latter

two types of fingerprint. For similar reasons, for hierarchical linear models we searched the

range 10−2 to 102 for fragment sizes s ≤ 4, 100 to 103 for fragment sizes s ≤ 8 and from 101

to 104 for fragment size s = 9.

S1.2 Fragment Counts by fingerprint type

Table S1: Number of fragments identified during training for each fingerprint type, for each
maximum fragment size. For Graphlet fingerprints, size is the maximum number of atoms
included in a fragment corresponding to a fingerprint element. For RDKit fingerprints, it is
the maximum number of bonds. For Morgan, it is the Morgan radius.

Morgan RDKit Graphlet
Fragment Size s # Fragments (Cumulative) # Fragments (Cumulative) # Fragments (Cumulative)

0 25 (25) - - - -
1 1,068 (1,093) 29 (29) 9 (9)
2 68,669 (69,762) 106 (135) 40 (49)
3 329,419 (399,181) 518 (653) 198 (247)
4 99,133 (498,314) 2,530 (3,183) 992 (1,239)
5 2,162 (500,476) 11,998 (15,181) 4,536 (5,775)
6 0 - 50,041 (65,222) 19,524 (25,299)
7 - - 178,608 (243,830) 77,599 (102,898)
8 - - 514,229 (758,059) 270,792 (373,690)
9 - - 1,145,734 (1,903,793) 776,315 (1,150,005)
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S1.3 Learning curves
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Figure S1: Learning curves for all model and fingerprint types by maximum size (substruc-
ture size) for each fingerprint type. For Graphlet fingerprints (ours), size is the maximum
number of atoms included in a fragment corresponding to a fingerprint element. For RDKit
fingerprints, it is the maximum number of bonds. For morgan, it is the morgan radius.

S2 Bond Dissociation Energies
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Figure S2: Learning curves for all model and fingerprint types by number of fragments
identified during training. Each point corresponds to a choice of maximum size in figure S1,
but here the horizontal axis has the same meaning for each curve.
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Figure S3: Relationships between bond-projected coefficients χ⃗2 and bond dissociation en-
ergies by bond type and dataset split.
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Figure S4: Correlation coefficients between bond-projected coefficients χ⃗2 and bond dissoci-
ation energies by bond type and dataset split.
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S3 Graphlet Fingerprint Fragment Counts for Solubil-

ity Tasks

Table S2: Graphlet fingerprint feature counts for solubility tasks

Dataset
Fragment Size Acetone Benzene Ethanol Water Water-wide Water-WN Average

1 25 22 26 24 24 24 24
2 116 101 127 118 125 125 118
3 451 354 514 515 570 570 495
4 0 1222 1932 0 0 0 525

Total 592 1699 2599 657 719 719 1164

S4 Solubility interpretation

Figure S5 shows atom-level coefficient projections constructed following Section 3.3.1 for five

example molecules selected for structural diversity in acetone and water. These projected

coefficients sum to the model prediction on each molecule, and can be thought of as the

contributions of individual atoms to the model prediction after taking account its context

in the molecular graph. By comparing the same molecule under different solvents, one can

examine how structural motifs contribute to solubility in the different solvents. In this

regard, the projections presented in Figure S5 largely agree with chemical intuition, e.g.,

carbon rings (molecules a and b) and chains (molecule d) explicitly lead to lower predictions

of solubility in water than they do in acetone.
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Acetone Water
(a)

(c)

(d)

(e)

(b)

(a)

Figure S5: Linear model contributions projected to the atom level for molecules from the
acetone and water sets presented in Ref 1. Colors show the contribution to the predicted
log solubility (measured in molarity). Each column is based on predictions from the model
fit on the corresponding solvent. Atoms in each row are colored using the same color map.
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S5 Leaderboard Results

Here we show performance results for our models compared to those on the existing TDC

leaderboards2 as bar plots.
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Figure S6: ADMET Performance barplots for leaderboards where task performance is mea-
sured in mean absolute error (MAE) (lower is better)
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Figure S7: ADMET Performance barplots for leaderboards where task performance is mea-
sured using Spearman’s rank-rank correlation coefficient ρ (higher is better)
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S6 Holdout fragments for adjustment experiments

Figure S8: Molecular graphlets and their corresponding counts in QM9 that were used to
construct fragment holdout sets for experiments in section 3.5
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S7 Uncertainty Quantification

S7.1 UQ regression coefficients

Table S3: Error model coefficients for the calibrated uncertainty model.

Fragment Size Error Model Coefficient (eV)
1 0
2 0
3 18.7
4 0
5 0.441
6 1.52
7 0
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