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Abstract
We introduce the third installment of the COM-
PAS Project – a COMputational database of
Polycyclic Aromatic Systems, focused on peri -
condensed polybenzenoid hydrocarbons. In
this installement, we develop two data sets
containing the optimized ground-state struc-
tures and a selection of molecular properties
of ∼39k and ∼9k peri -condensed polyben-
zenoid hydrocarbons (at the GFN2-xTB and
CAM-B3LYP-D3BJ/cc-pvdz//CAM-B3LYP-
D3BJ/def2-SVP levels, respectively). The
manuscript details the enumeration and data
generation processes and describes the infor-
mation available within the data sets. An
in-depth comparison between the two types
of computation is performed, and it is found
that the geometrical disagreement is maxi-
mal for slightly-distorted molecules. In ad-
dition, a data-driven analysis of the structure-
property trends of peri -condensed PBHs is per-
formed, highlighting the effect of the size of
peri -condensed islands and linearly annulated
rings on the HOMO-LUMO gap. The insights
described herein are important for rational de-
sign of novel functional aromatic molecules for
use in, e.g., organic electronics. The generated
data sets provide a basis for additional data-
driven machine- and deep-learning studies in
chemistry.

Introduction
Polybenzenoid hydrocarbons (PBHs) are poly-
cyclic aromatic systems (PASs) that contain
only fused benzene rings. PBHs can be con-
sidered as cutouts from a graphene sheet and
can be further divided into cata-condensed and
peri -condensed PBHs (cc-PBHs and pc-PBHs,
respectively; see Figure 1). The difference lies
in the way the benzene rings are fused to one
another. While in cc-PBHs, any carbon atom
can be shared by at most two adjacent rings,
in pc-PBHs, a single carbon can be shared by
up to three rings, which leads to the forma-
tion of “2D” structures. Because they con-
tain only benzene–the prototypical aromatic
system–PBHs are sometimes considered the
prototypical PASs and serve as model systems
for investigating chemical concepts such as aro-
maticity1 and reactivity.2 In addition to their
importance for fundamental studies, PBHs are
pervasive in both the natural and man-made en-
vironments, and play key roles in multiple areas
of research, including the formation of stars,3–6

human health,7 environmental impact,8 and—
more recently—as promising materials for or-
ganic electronics.9 PASs in general, and PBHs
in particular, have been used for a variety of
electronic and optoelectronic technologies, in-
cluding field effect transistors,10–14 solar cells,15

chemical sensors,16 anode and cathode materi-
als,17–21 and anolytes22 for redox-flow batteries.
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Figure 1: Representative examples of PBHs on a background of a hexagonal grid. pc-PBHs are
colored in blue and cc-PBHs are colored in light blue.

Thanks to the decades of intensive compu-
tational and experimental research into PBHs,
a great deal has already been discovered about
them (e.g., edge effects)23–25 and several models
have been developed to understand and predict
their behavior (e.g., Clar’s sextet theory,26–28

the Y-rule,29–31 annellation theory,32 and our
own additivity approach).33,34 Nonetheless, cer-
tain aspects of their structure-property re-
lationships remain poorly understood, which
impedes rational design of improved PBH-
based candidates. Recent reports on the syn-
thesis35–38 and characterization of challenging
PBHs and on computational developments39–42

aimed at further elucidation of their properties
underline the ongoing interest in PBH systems
and the importance of obtaining reliable and
useful data for them.

Data-driven investigations, which have be-
come increasingly accessible due to advances
in computational abilities, have the poten-
tial to address these knowledge gaps, thus
both deepening our chemical understanding
and enabling practical molecular design. Such
tools have already been applied in the chem-
ical space of PASs, including studies focused
on spectra prediction,43 performing brute-force
high-throughput screenings for organic elec-
tronics,44,45 active discovery of organic semi-
conductors,46 and design of organic electronic
materials with generative models.47 As a re-

sult, several databases have been constructed
that include PASs, which focus on general
chemical data,48,49 computational benchmark
data,50 spectroscopic data for astrochemical
studies,51–56 aromaticity,57 and organic elec-
tronic materials.58,59 However, most of these
databases focus on extant molecules, or gener-
ate molecules that are biased towards certain
functionalities, thus neglecting large swaths
of chemical space that may contain promis-
ing new structural motifs. Furthermore, they
either contain too few data (less than 1000
entries), are not consistently curated, and/or
include an unsystematic mixture of PASs from
different subclasses. To overcome this prob-
lem a large, systematically constructed, and
well-curated database of PAS compounds is
needed. To address the paucity of PAS data,
our group conceptualized and initiated the first
COMputational database of Polycyclic Aro-
matic Systems—the COMPAS Project. The
COMPAS Project is designed to house several
data sets, each comprising a carefully curated
and methodical enumeration of the chemical
space of a certain subclass of PASs, calcu-
lated at a uniform level of theory. The first
installment, COMPAS-1,60 focuses on ground-
state cata-condensed Polybenzenoid Hydrocar-
bons; the second installment, COMPAS-2,61

focuses on ground-state cata-condensed hete-
rocyclic PASs. COMPAS-1 and COMPAS-2
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have already been used to provide the first
examples of interpretable machine and deep-
learning models for PASs62,63 and to demon-
strate the first generative design of PASs with
targeted properties.64 Both data, as well as
all future installments, are freely available for
use, according to the FAIR65 principles of data
sharing. Herein, we report on the third install-
ment, COMPAS-3, which expands the COM-
PAS database to peri -condensed PBHs (pc-
PBHs) in the ground state. Similarly to the
previous two installments, COMPAS-3 con-
tains two computationally-generated data sets:
(1) COMPAS-3D—8,844 peri -condensed PBHs
comprising 1–10 rings, calculated with den-
sity functional theory (DFT) at the CAM-
B3LYP-D3BJ/aug-cc-pVDZ//CAM-B3LYP-
D3BJ/def2-SVP level of theory; (2) COMPAS-
3x—39,482 peri -condensed PBHs comprising
1–11 rings, calculated with xTB using GFN2-
xTB.

The manuscript is divided into three main
sections: a) a description of the data generation
workflow and the contents of each of the data
sets; b) a comparison between the two data sets
and discussion of the differences between the
two levels of computations; and c) an analysis
of the data, showcasing structure-property re-
lationships that are revealed from the trends in
the data.

Data Generation Workflow
The third installment of the COMPAS database
focuses on peri -condensed PBHs (pc-PBHs,
also known as perifusenes). The data genera-
tion workflow is depicted in Figure 2. In the
following sections, we describe in detail each
step of the workflow.

Step 1. Structure Enumeration

We began by enumerating the chemical space
of pc-PBHs containing up to 11 rings. We
emphasize that, by design, our COMPAS-3
data sets contain only closed-shell PBHs and,
therefore, do not represent exhaustive enumer-
ations (i.e., do not contain all possible pc-

Unoptimized geometries

74,724

xTB-optimized geometries

74,724

xTB-optimized geometries

39,482

DFT-optimized geometries

8,844

COMPAS-3x

COMPAS-3D

> Filtering out “bad” structures
> Filtering out open-shell 

structures (xTB NFOD < 1.3)

> Using only up to 10 rings

1

4

2

3

Figure 2: Flowchart of the data-generation pro-
cess. (1) CaGe66 was used to generate un-
optimized geometries of pc-PBHs containing
up to 11 rings. (2) xTB was used to opti-
mize all geometries. (3) The data were filtered
to remove invalid and/or unwanted molecules.
The geometries and properties of the remain-
ing molecules comprise the COMPAS-3x data
set (39,482 molecules). (4) DFT was used to
further optimize the pc-PBHs containing up
to 10 rings. The geometries and properties of
these 8,844 molecules comprise the COMPAS-
3D data set.

PBHs). We deliberately excluded all systems
with (poly)radical/(poly)radicaloid character.
Though such systems are undoubtedly of inter-
est for both fundamental and practical reasons,
we believe they are distinct from closed-shell
molecules and should be computed and ana-
lyzed separately.

We differentiate between three cases of open-
shell character in the ground state (Figure
3): a) an odd number of hydrogens/carbons
(e.g, phenalenyl radical, C13H9, is a three-ring
pc-PBH with a single unpaired electron); b)
non-Kekuléan structures, i.e., PBHs for which
no classical closed-shell valence structure can
be drawn67,68 (e.g., triangulene, C22H12, is a
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non-Kekuléan six-ring pc-PBH with two un-
paired electrons in the ground state); and c)
molecules that possess a closed-shell resonance
structure, but have appreciable diradical char-
acter, which is a relatively common occurrence
in pc-PBHs, due to their extended conjugation
(e.g., zethrenes).68

Figure 3: Representative examples of the
three cases of (poly)radical/(poly)radicaloid
molecules that were discarded from COMPAS-
3

The first case can be dealt with quite eas-
ily. pc-PBHs containing the same number of
rings may or may not be isomers (i.e., they
may contain differing numbers of carbon and
hydrogen atoms, despite having the same num-
ber of rings). Hence, in contrast to cc-PBHs,
for pc-PBHs various molecular formulae exist
per family (“families” are separated according
to and referred to by the number of rings in
the isomers). Since all formulae containing an
odd number of hydrogens/carbons describe ob-
viously radical systems, these cases were easily
identified and discarded prior to structure enu-
meration. The remaining molecular formulae
and corresponding numbers of isomers for each
family are detailed in Table 1.

We then used the Chemical & abstract Graph
environment (CaGe) software66 to obtain the
initial (unoptimized) xyz coordinates of the
74,724 structures corresponding to the chemical
formulae in Table 1 (Figure 2, step 1). We im-
plemented subsequent filtering steps to identify

and discard the non-Kekuléan structures and
the molecules with open-shell character (vide
infra). Table 1 details the initial (generated by
CaGe) and final (following filtering) numbers
of isomers predicted for each family and each
chemical formula of pc-PBHs.

Table 1: Overview of the COMPAS-3 data set.

No.
Rings

Molecular
Formula

Initial No.
Isomers
(CaGe)

Final No.
Isomers

4 C16H10 1 1
5 C20H12 3 3
6 C22H12 3 2

C24H14 14 13
7 C24H12 1 1

C26H14 10 9
C28H16 67 58

8 C28H14 9 8
C30H16 67 57
C32H18 340 264

9 C30H14 4 3
C32H16 55 44
C34H18 398 308
C36H20 1,710 1,182

10 C32H14 1 1
C34H16 42 32
C36H18 547 180
C38H20 2,439 1,594
C40H22 8,561 5,084

11 C36H16 26 17
C38H18 333 216
C40H20 2,874 1,683
C42H22 14,598 7,662
C44H24 42,621 21,060

74,724 39,482

Step 2. xTB Optimization

The 74,724 molecules enumerated by CaGe
were optimized with the GFN2-xTB method,69

xTB70 version 6.2. Harmonic vibrational fre-
quencies were calculated after structure opti-
mization to ensure true minima on the poten-
tial energy surface (i.e., Nimag = 0; Figure 2,
step 2). Following data filtering (vide infra),
a total of 39,482 molecules were retained. For
each of these, xTB calculations and subsequent
frequencies calculations were performed to op-
timize the cationic and anionic forms as well.
The geometries and properties of these 39,482
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pc-PBHs containing up to 11 rings comprise the
data set denoted as COMPAS-3x (see Table 1).

Step 3. Data Filtering

Following structure optimization with xTB, we
filtered the data to remove two types of un-
wanted molecules: a) those that do not have
a closed-shell ground state (as discussed above)
and b) those that did not converge to valid ge-
ometries during the optimization process.

The first case includes non-Kekuléan struc-
tures and molecules that have non-negligible
open-shell character in the ground state, which
we excluded by design. The second case in-
cludes molecules that, for technical reasons, did
not clearly converge to a PBH structure and
needed to be removed to guarantee data relia-
bility. For example, a structure containing sp3-
hybridized carbons—all carbon atoms in PBHs
should be sp2-hybridized. Such cases can arise
when two carbon atoms, which are not sup-
posed to share a bond, are located very closely
in the starting geometry. Consequently, a spu-
rious bond may be generated between these two
carbons during the optimization process.

To identify the different types of undesired
molecules, we first generated the SMILES
strings of all xTB-optimized structures using
the xyz2mol71 script. Molecules were discarded
in any of the three following cases: a) if a
SMILES string was not generated (an indica-
tion of an invalid chemical structure); b) if it
contained any of the characters ‘@’, ‘=’, ‘[’, ‘]’,
or ‘C’, (an indication of an sp3-hybridized car-
bon); or c) if it contained any of the charac-
ters ‘cH+’, ‘c-’, ‘-’, ‘+’ (an indication of rad-
ical structure, which SMILES often wrongly
denotes with charge). Following this filtering
step, 55,820 molecules remained (i.e., 74.7%
of the initial data set). The majority of
the discarded molecules (16,133 out of 18,904
molecules, or 85.3%) contained ‘+’ and/or ‘-
’ in their SMILES string, which implies non-
Kekuléan structure. Only 14.7% of the dis-
carded molecules were removed due to problems
in the optimization process.

Finally, we used the NFOD metric72 to re-
move any molecules with significant open-

shell/diradical character. We previously bench-
marked methods for identification of diradi-
cal character and established a threshold of
NFOD = 1.3 as the cutoff value (we refer the
reader to the Supporting Information of refer-
ence 63). Thus, molecules with NFOD ≥ 1.3
were removed from the COMPAS-3 data sets,
providing a final tally of 39,482 molecules. It
is notable that, of the initial 74,724 pc-PBHs
generated by CaGe, approximately 44% do not
have a closed-shell ground state.

Step 4. Further Optimization with
DFT

Only the molecules containing up to 10 rings
were subjected to further optimization at the
DFT level. The good linear correlation between
xTB- and DFT-calculated properties (vide in-
fra) demonstrates that, if desired, a linear fit-
ting can be used to estimate DFT-level accu-
racy of larger molecules (see Section Agreement
between xTB and DFT). Thus, it was deemed
unnecessary to perform the more computation-
ally expensive DFT calculations for the largest
molecules.

The geometries of 8,844 molecules were opti-
mized with ORCA version 5.0.373,74 using the
CAM-B3LYP75–79 functional with Grimme’s
D380 dispersion correction with Becke John-
son damping, in combination with the def2-
SVP basis set.81,82 Single-point calculations
were performed on the optimized geome-
tries using the larger aug-cc-pVDZ83–85 ba-
sis set (in short: CAM-B3LYP-D3BJ/aug-cc-
pVDZ//CAM-B3LYP-D3BJ/def2-SVP). These
methods were selected following a literature
search86 and a subsequent benchmarking pro-
cedure (see Section S2 of the SI). The resulting
DFT-optimized geometries and properties form
the data set denoted as COMPAS-3D.

Representations and Properties

The list of properties provided for the molecules
in the two data sets, COMPAS-3x and
COMPAS-3D, is detailed in Table 2.

Table 2 lists the properties contained in the
COMPAS-3x and COMPAS-3D data sets. The
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Table 2: Properties available in the COMPAS-
3x and the COMPAS-3D data sets, respectively.

Properties COMPAS-3x COMPAS-3D
HOMO
LUMO
HLG
SPE (neutral)
SPE (cation)
SPE (anion)
Erel (neutral)
ZPE (neutral)
ZPE (cation)
ZPE (anion)
aIP
aEA
Disp. corr.
Dipole moment
Corrected HOMO
Corrected LUMO
Corrected HLG
Corrected aIP
Corrected aEA
NFOD

y value

common properties are the energies of the high-
est occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO),
the HOMO-LUMO gap (HLG), the dispersion-
corrected single point energy (SPE)—i.e., the
energy of the optimized structure without zero-
point corrections—for the neutral and charged
species, the relative energy (Erel)—i.e., the dif-
ference in SPE between each molecule and its
lowest-energy isomer—for the neutral species,
the adiabatic ionization potential (aIP), the
adiabatic electron affinity (aEA), the disper-
sion correction (disp. corr.), the dipole moment,
and the NFOD. The aIP and aEA represent the
SPE difference between the optimized neutral
species and optimized positively and negatively
charged species, respectively.

COMPAS-3x contains the zero-point energies
(ZPEs) for all species (neutral and charged ±1)
while COMPAS-3D does not (we did not per-
form frequency calculations at the DFT level).
ZPE corrections have been shown to not be
highly method-dependent,87 and thus can be
used across methods, if desired.

For several of the properties, the xTB values
were corrected to DFT-level, using the respec-
tive fitting regressions (see Figure 6 and Ta-

ble 3). These values are labelled as “Corrected”
in the COMPAS-3x data set. The mean abso-
lute relative error (MARE) for each property is
given in Section S3 of the SI. An in-depth com-
parison between the two methods is described
in the following section.

Agreement between xTB and
DFT
We examined the agreement between the two
chosen computation methods in two aspects:
geometry and molecular properties.

Geometries

To compare the optimized geometries, we
calculated the root mean square deviation
(RMSD) between the geometries obtained for
each molecule with the two methods, respec-
tively. Our previous work on cc-PBHs showed
that xTB and DFT do not always agree on
the extent of non-planarity.60 Therefore, we ex-
amined the behavior of the RMSD in relation
to molecular non-planarity, as measured by ∆z
(defined as the difference between the highest
and lowest coordinate on the z axis after plac-
ing the molecules in the xy plane). Overall,
the agreement between the methods is excellent
(Figure 4), with deviations well below 0.015 Å.
We expected to observe that RMSD increases
as ∆z increases, however, Figure 4A-C shows
that the RMSD is relatively stable for ∆z > 2.0
Å with only a subtle increase towards the most
distorted molecules. Much more surprisingly,
we observed that the molecules with ∆z close
to 1 Å have the largest RMSD (notably, this be-
havior repeats itself in the RMSDs between the
neutral and charged species for DFT-optimized
structures, see Figure S5 in the SI). In short,
while xTB and DFT geometries generally agree
very well, their agreement is stronger for notice-
ably non-planar molecules and is weakest for
molecules having only a small deviation from
planarity.

To probe this behavior further, we plotted
the ∆z values from the two methods against
one another (Figure 4D-F) for the neutral,
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Figure 4: Top row: boxplots of the RMSD between xTB- and DFT-optimized geometries for the
A) neutral, B) cationic, and C) anionic species, separated by ∆z values obtained from the DFT-
optimized geometries and rounded to the nearest integer. Bottom row: ∆z from DFT-optimized
versus xTB-optimized geometries for D) neutral, E) cationic, and F) anionic species.

cationic, and anionic species. These plots re-
iterate the conclusion we reached on the basis
of RMSD: the two methods have an excellent
agreement on the extent of non-planarity only
for molecules with ∆z > 2 Å; the agreement
is substantially poorer for molecules that are
less distorted (i.e., more planar). Specifically,
for such molecules, whereas the xTB values are
spread out over the range [0,2] Å, the major-
ity of DFT values are close to 0 Å. Meaning,
DFT predicts almost completely planar geome-
tries for these molecules while xTB predicts dis-
tortion from planarity.

This raises the question: what are the two
methods treating differently, to arrive at these
different geometries? One possible source of
discrepancy could be the dispersion correction:
our DFT calculations included Grimme’s D3
dispersion correction, while xTB uses the D4
correction by default. Nonetheless, this possi-
bility was ruled out, as the two different cor-
rections actually show an excellent agreement,

especially at smaller ∆z values (see Figure S21
in the SI). In principle, polycyclic aromatic sys-
tems should strive for planarity as a conse-
quence of the sp2 hybridization of the compris-
ing carbons. Moreover, planarity ensures better
orbital overlap and therefore increased electron
delocalization and aromatic stabilization. Such
systems distort from planarity only when cove,
fjord, and helix motifs are involved. For such
motifs, the steric hindrance between hydrogens
in the curved area forces the carbon scaffold
out of planarity, incurring torsional strain. The
fact that xTB predicts non-planar geometries
suggests that it estimates this steric hindrance
to be more costly than both the energetic cost
of torsional strain and the stabilization gain of
planarization. Conversely, the fact that DFT
predicts planar geometries suggests that it ei-
ther estimates the cost of torsional strain to be
greater than the cost of the hydrogen-hydrogen
steric hindrance, or estimates the gain of aro-
matic stabilization to be greater than the cost of
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steric hindrance. It is worth noting that previ-
ous results from our group and others have indi-
cated that such small deviations from planarity
have only a minor effect on aromatic stabiliza-
tion.88,89 Thus, we believe the balance between
torsional strain and steric hindrance is the more
influential effect. We discuss this issue further
in the section on Erel.

Molecular Properties

To evaluate the agreement between xTB and
DFT on molecular properties, we generated vi-
olin plots of the kernel density estimate (KDE)
distributions of the xTB- and DFT-calculated
properties (see Figure 5A-E). A marked shift
was immediately apparent, meaning the prop-
erty values provided by the two levels of com-
putation cover distinctly different ranges. The
presence of such shifts, as well as their respec-
tive directions (i.e., higher or lower), are similar
to those we observed for COMPAS-160 and were
also previously noted by Bannwarth et al.69 For
the HOMO, LUMO, HLG, and aEA, xTB un-
derestimates the values by approximately 3 eV,
6 eV, 3 eV, and 5 eV, respectively. In contrast,
for the aIP, xTB overestimates the values by
approximately 5 eV.

Despite these shifts, the KDE profiles of the
xTB- and DFT-calculated properties (with the
exclusion of Erel, which is discussed in further
detail, vide infra) are very similar, as confirmed
by the good linear correlations observed be-
tween the two computational methods (Figures
6A-E). For comparison, these plots detail the
correlations for both COMPAS-1 (blue) and
COMPAS-3 (burgundy). We note, however,
that the slopes of all linear regressions are not
equal to 1 (see Table 3), meaning that the dif-
ference between the methods is not simply a
constant offset. We also note that the individ-
ual fitting equations for the various properties
are very similar for COMPAS-1 and COMPAS-
3, with the exception of the aIP and the aEA.
Additionally, for the latter two properties, the
pc-PBHs show better agreement with the linear
fits. We believe that the pc-PBHs show slightly
better agreement because they tend to be more
planar than the cc-PBHs (less opportunity to

form helical motifs). Nevertheless, it is clear
that for most properties, one equation per prop-
erty is sufficient to “correct” xTB values to DFT
ones for both the COMPAS-1 and COMPAS-
3 data sets, allowing inexpensive generation of
additional data in the future. We refer the
reader to Section S5.2 of the SI for further dis-
cussion on the aIP and aEA calculations, in-
cluding the relationship to non-planarity and
additional analysis of the outliers seen in the
aEA plot.

Table 3: Slopes and intercepts of the linear re-
gressions between xTB and DFT data. All val-
ues are reported in eV.

Properties COMPAS-1 COMPAS-3
slope intercept slope intercept

HOMO 1.618 9.128 1.556 8.554
LUMO 1.256 8.482 1.286 8.740
HLG 1.424 2.519 1.422 2.527
aIP 1.262 -7.441 1.442 -9.578
aEA 1.059 5.509 1.216 6.425
Erel 1.490 0.077 1.513 0.037

The relative energy

We next turned to analyze the behavior of the
relative energy (Erel, Figure 6F). Of all six
properties displayed, Erel has the second high-
est coefficient of determination (R2) and it is
the only property with a negligible intercept
(see Table 3). The fact that the intercept is
negligible is a natural consequence of our defi-
nition of Erel: this property is obtained by iden-
tifying the lowest-energy isomer in each isomer
family and subtracting its energy from all iso-
mers in the family. By defining Erel in such a
manner, systematic and method-dependent er-
rors that affect both the reference and evaluated
molecule are expected to cancel out. Despite
this, a good linear correlation between the two
methods is not necessarily expected, as the sys-
tematic errors could be different between the
two methods. Indeed, this is apparent in the
fact that the two methods span different energy
ranges, with the DFT values being greater than
the xTB values, implying that the relative ener-
gies of the same structures are being estimated
differently.
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Figure 5: Violin plots of xTB-calculated (blue) properties vs DFT-calculated (purple) properties:
A) HOMO; B) LUMO; C) HLG; D) aIP; E) aEA; F) Erel. All values are reported in eV.

Based on our previous RMSD analysis, we can
rule out that the differences in energies stem
from differences in geometries (despite the dis-
agreement around ∆z = 1 Å for a small fraction
of molecules, there is an overall excellent agree-
ment between the xTB- and DFT-optimized
geometries). Nevertheless, the special case of
the close-to-planar molecules discussed above
already hinted at the possible source of discrep-
ancy between the methods.

One can interpret the difference in Erel as the
sum of differences in aromatic stabilization and
differences in strain between any given molecule
and its lowest-energy isomer. Seen in this light,
we may ask if the difference in Erel arises from
a) estimation of strain (steric and torsional), b)
estimation of aromatic stabilization, or c) both?

In this regard, we note that we deliber-
ately chose the CAM-B3LYP functional, which
has been shown not to suffer from over-
delocalization errors;90,91 such errors could lead
to spurious results, including exaggerated pla-
narity and over-estimation of aromatic stabi-
lization. Nevertheless, to try to pinpoint the
source of the discrepancy, we studied the re-
lationship between the size of the molecule
and the difference in relative energy, ∆Erel =
Erel(DFT) − Erel(xTB). We hypothesized that
if the difference stems from the way aromatic
stabilization energy is estimated, then increas-
ing the number of rings/atoms should exac-
erbate the problem, because of the extension
of the conjugated system. In contrast, large

molecules do not necessarily incur strain (in
particular, torsional/helical strain) simply be-
cause they are larger; it depends on their exact
geometry. Our analysis showed that the effect
of the number of rings was found to be mini-
mal, and the effect of the number of atoms was
found to be inconsequential (see Figure S22 in
the SI).

We next investigated whether the issue lies
with the estimation of strain, by probing the re-
lationship between ∆Erel and ∆z (the deviation
from planarity, which corresponds to torsional
strain). Figure 7 presents the obtained corre-
lation, which demonstrates that an increased
deviation from planarity coincides with an in-
crease in ∆Erel. To highlight that the deviation
from planarity is specifically due to the exis-
tence of helical motifs, we colored the individ-
ual data points according to the largest helicene
present in the molecule ([n]Helicenes—where n
represents the number of rings present in the
helical structure). The obvious stratification of
the colored data points shows this effect clearly.

To summarize, although we cannot affirma-
tively identify the source of the discrepancy in
Erel between xTB and DFT, our results suggest
that the issue lies in the estimation of steric hin-
drance versus torsional strain. This rationaliza-
tion is relevant both to the Erel and to the geom-
etry discrepancies described above for close-to-
planar molecules. It is interesting to note that
the two methods, xTB and DFT, have different
areas of agreement when it comes to energies
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Figure 6: Scatter plots of the various molecular properties, calculated with DFT (CAM-B3LYP-
D3BJ/aug-cc-pVDZ) versus calculated with xTB for both COMPAS-1 (blue) and 3 (burgundy):
A) HOMO; B) LUMO; C) HLG; D) aIP; E) aEA; F) Erel. All values are reported in eV. Benzene
(contained in COMPAS-1 data sets) was omitted for clarity.

and geometries. Whereas the geometric differ-
ences are greatest for molecules with small devi-
ations from planarity, the energy differences are
largest for molecules that have much more pro-
nounced non-planarity. This once again high-
lights that obtaining the optimized geometry
for close-to-planar molecules is a subtle balance
of effects.

Data Analysis
In this section, we provide a data-driven chem-
ical analysis of the COMPAS-3 data sets, in-
cluding an overview of structural and property
space and identification of structure–property
relationships.

Figure 7: Scatter plot of ∆Erel vs ∆z, col-
ored by the longest [n]Helicene present in the
molecule (0 indicates no helicene motifs). The
red line shows the trendline of the data.
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Overview of COMPAS-3

Structurally, COMPAS-3 is very similar to
COMPAS-1—both contain molecules made of
up to 11 benzene rings. However, as explained
above, they differ in the manner of conden-
sation. While cc-PBHs contain only cata-
condensed carbons, pc-PBHs can be further
divided into two categories: a) “strictly peri -
condensed”, which contain only peri -condensed
carbons (also known as nanographenes); and b)
“not-strictly peri -condensed”, contain a mixture
of peri -condensed and cata-condensed carbons.
Given the combinatorial possibilities, there ex-
ist many more of the latter category (99%) than
of the former (1%). Representative examples of
molecules from each of the two categories are
shown in Figure 8A. For such molecules, we
use the term peri-island to refer to the peri -
condensed component(s) and the term cata-
moiety to refer to their cata-condensed compo-
nent(s) (colored in gray and white, respectively,
in Figure 8A).

The most prevalent peri -island (53%) is the 4-
ring island, i.e., pyrene, which is also the small-
est Kekuléan pc-PBHs. As the numbers of rings
in the molecules grow, larger peri -islands can
form (Figure 8B, left). At the same time, be-
cause the total number of rings is limited, larger
peri-islands also preclude the existence of mul-
tiple cata-moieties (Figure 8B, right).

Considering the structural similarity between
the COMPAS-1 and COMPAS-3 molecules, it is
not surprising that the ranges of properties for
the two datasets are similar, as seen in the violin
plots in Figure 9 (COMPAS-1 is shown in light
blue and COMPAS-3 is shown in burgundy).
Nevertheless, they are not identical. For exam-
ple, Figures 9A-C show that the distributions
of the cc-PBHs are more heavily weighted to-
wards lower HOMO values, higher LUMO val-
ues, and higher HLG values than the pc-PBHs.
COMPAS-1 also shows broader distributions
for both aIP and aEA (Figures 9D, E), as well
as a shift of the distribution peaks towards
higher values in both cases. We note that,
to facilitate the comparison, we recalculated
the COMPAS-1D data set at the same level
as COMPAS-3D (in the original publication

of COMPAS-1D we used B3LYP-D3BJ/def2-
SVP;60 for comparison between the two levels
of theory for COMPAS-1, see Section S4 in the
SI).

Thus, it is apparent from these data that de-
spite the general similarity between the cc-PBH
and pc-PBH sub-classes, the inclusion of peri -
condensed components does have an affect on
the molecular properties. In the following sec-
tions, we investigate these effects.

Trends within the data

pc-PBHs have long held the interest of chemists
and materials scientists, and have been investi-
gated thoroughly both experimentally and com-
putationally (vide supra). Nevertheless, to the
best of our knowledge, a large-scale data-driven
investigation has never before been reported.
The COMPAS-3 data sets provide a unique op-
portunity to conduct such a study and uncover
new chemical insights and structure-property
relationships. In this section, we focus on
COMPAS-3D, containing the DFT-calculated
properties.

We began by analyzing the relationship be-
tween molecular size and molecular properties.
To avoid ambiguity, we opted to use the ring
count as the measure of size. This means that
several molecular stoichiometries are contained
in the same “size” category. Also, under this
classification, coronene is considered part of the
7-ring family (it contains 6 peripheral rings and
1 central ring), even though its molecular for-
mula assigns it as a 6-ring isomer.

Figure 10 presents boxplots of the HLG, sep-
arated and colored according to multiple differ-
ent structural features.

Figure 10A presents the effect of size on the
range of HLG values, showing a trend whereby
the distribution of values shifts to smaller gaps
as the molecules grow larger. The differences
between families become smaller as the size in-
creases, and for the larger families (7- to 10-
ring systems) the property ranges covered are
highly overlapping. This is not unexpected; it
is known that extending conjugation in fused
polycyclic oligomers reduces HLGs in a 1/n
manner (where n is the number of double
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Figure 8: A) Representative examples of peri -condensed PBHs, separated into “strictly” and “not
strictly” peri -condensed groups. Rings of peri -islands are filled in gray, rings of cata-condensed
moieties are filled in white. B) Left: breakdown of the molecules in each family according to the
largest contained peri -island. Right: breakdown of molecules according to the number of contained
cata-moieties, separated by the largest contained peri -island.

Figure 9: Violin plots of the COMPAS-1D (blue) and COMPAS-3D (burgundy) data set distribu-
tions for A) HOMO, B) LUMO, C) HLG, D) aIP, E) aEA, and F) Erel. cc-PBHs with fewer than
4 rings were omitted for clarity.

bonds).92 To ensure that subsequent analyses
were not tainted by this size dependency, the
remaining plots B–E show only data for family
10 (i.e., 10-ring systems).

Increasing the size of the largest peri -island
(Figure 10B) demonstrates a similar size-
dependency, whereby larger islands lead to
smaller HLG values. However, in contrast
to the previous trend, in this case all of the
molecules are of the same size, thus this effect
is clearly due to the size of the island itself,
not of the overall molecule. Notably, all of the

groups have a large degree of overlap, with the
exception the 4-ring systems (i.e., pyrene-based
pc-PBHs), which tend to have a higher range
of values than the other groups.

Conversely, increasing the number of cata-
moieties appears to have a minimal effect on
the HLG (Figure 10C). Among the not strictly
pc-PBHs, there is barely any differentiation.
However, the strictly peri -condensed molecules
(i.e., number of cata-moieties = 0) have notice-
ably smaller gap values. In other words, adding
the first cata-moiety makes a significant change,
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Figure 10: Boxplots of the DFT-calculated values of the HLG, colored by: A) number of rings,
B) number of rings in the largest peri -island, C) number of cata-moieties, D) longest contained
[n]Helicene, and E) longest stretch of linearly annulated rings. Plot A presents the data from all
molecules in families 5–10. Plots B–E present data from family 10 only.

but subsequent additions do not.
To further probe the effect of different cata-

moieties, we differentiated between helical and
linearly annulated cata-condensed components.
In Figure 10D we examine the effect of the
longest helical stretch in the molecule. As
mentioned above, the longer the contained
[n]Helicene, the more distorted from planarity
the molecule becomes. Hence, this analysis can
also be viewed as an indirect measure of non-
planarity in the molecules. We observe a slight
trend, whereby elongating the helicene leads to
an increase in the HLG. Once again, however,
there is a large degree of overlap between the
groups. The effect of the longest linear stretch,
which we found to be dominant in cc-PBHs.60

is shown in Figure 10E. We find that, for the
pc-PBHs as well, elongating the linear stretch
beyond 3 rings (i.e., a stretch of at least 4 rings)
dramatically decreases the value of the HLG
and substantially narrows the spread of possi-
ble HLG values. Of all features examined, this
structural component also shows the best differ-
entiation between groups, i.e., the least amount
of overlap. Thus, it appears to be a dominant
structural feature in pc-PBHs.

Conclusions
In this work, we introduced the third install-
ment of the COMPAS Project, COMPAS-3,
which focuses on the subclass of peri -condensed
PBHs. We generated two separate data sets:

(1) COMPAS-3x, and (2) COMPAS-3D. The
former contains ∼39k PBHs consisting of 4–
11 rings, with geometries and properties cal-
culated with xTB (using GFN2-xTB). The lat-
ter contains ∼9k pc-PBHs consisting of 4–10
rings, with geometries and properties calculated
with DFT at the CAM-B3LYP-D3BJ/aug-cc-
pVDZ//CAM-B3LYP-D3BJ/def2-SVP level of
theory. In addition to the generation and cu-
ration of both data sets, we compared the
two computational methods, and performed
a structure-property analysis on the collected
data.

The main conclusions of our comparison be-
tween xTB and DFT are as follows: In general,
the agreement between the methods is excel-
lent, for both optimized geometries and calcu-
lated properties, meaning that DFT-level ac-
curacy can be reliably obtained from xTB cal-
culations. However, the molecular properties,
with the exception of Erel, cover vastly differ-
ent ranges of values. xTB-Erel and DFT-Erel

have an excellent linear correlation, but DFT-
Erel is consistently greater. Furthermore, for
the specfic subset of close-to-planar molecules,
we found that DFT flattens molecules that xTB
predicts to have a deviation from planarity of
approximately 1 Å. For both of these findings,
our analysis suggests that the the underlying
cause of the discrepancy is linked to the differ-
ent estimation of steric hindrance and torsional
strain made by each of the methods. Specifi-
cally, DFT estimates the torsional strain to be
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more costly than the hydrogen-hydrogen steric
hindrance; the opposite is true for xTB. We also
emphasize that all of our observations are in line
with what we previously showed for COMPAS-
1. While this may appear trivial, it is not obvi-
ous that cata- and peri -condensed PBHs should
show similar tendencies and trends, nor that the
two chosen levels of theory should have similar
correlations for them, given the the complexity
inherent in large conjugated systems

The main conclusions of our structure-
property analysis are as follows: For several
of structural motifs we examined, there are ap-
parent trends for the HLG. Namely, the HLG
decreases with an overall increase in molecule
size, but it also decreases with an increase only
in the size of the largest contained peri -island.
The number of cata-moieties does not appear to
have marked effect, with the exception of going
from strictly peri -condensed to not strictly peri -
condensed. However, the type of cata-moiety
does have an effect—elongation of helical mo-
tifs shows a slight tendency to increase HLG
while elongation of the longest linear stretch
shows a strong tendency to decrease the HLG.

Despite these trends, the individual groups
have a large extent of overlap and cannot be
easily differentiated. The two exceptions are
the pyrene-based pc-PBHs, which appear to
have noticeably larger HLGs, and pc-PBHs con-
taining linear stretches of four or more rings. In
both of these cases, these structural motifs sep-
arate the molecules from the distributions of the
rest of the data. Thus, our analysis has helped
to pinpoint promising directions for further de-
velopment of design principles. In the future,
we plan to continue investigating these two ef-
fects, including their interplay, and how they
can be used to tune the molecule properties of
pc-PBHs.

To conclude, this work provides two new data
sets that can assist in further data-driven inves-
tigations and inverse design of promising func-
tional molecules. Moreover, the insights gained
from our analysis deepen our understanding of
these prevalent and important molecules, and
can inform future rational design of PBH-based
systems.
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