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Evaluating the Interactions Between Vibrational Modes and 
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Vibrations can significantly affect molecular properties, even at 
zero Kelvin. Accounting for these effects when using computational 
modelling is costly, as it requires many calculations at geometries 
distorted from equilibrium. Here, we propose a low-cost method 
for identifying vibrations most strongly coupled to the electronic 
structure, based on using orbital derivatives as a diagnostic. 

Predicting the barriers to electronic excitation and charge 
transfer is essential for engineering materials for solar cells,1 
mimicking redox processes in enzymes,2 and building molecular 
electronic devices.3 Advances in electronic structure theory 
have enabled accurate descriptions of electronic states and the 
couplings between them,4-7 facilitating in silico design and 
screening of potential next-generation molecular devices. 
However, most work on predicting molecular properties such as 
vertical excitation energies, polarizabilities, or single-molecule 
conductances is limited to equilibrium geometries, ignoring 
effects of nuclear motion.4, 5, 8, 9 This approach works well when 
the coupling between electronic states and nuclear motion is 
small and symmetric. In other words, if movement in direction 
+Q and –Q (which can be represented as a linear combination 
of normal modes Qi) changes some property by a small amount 
+δ and –δ, respectively, the effect of nuclear motion can be 
approximated by a mere broadening (proportional to dδ/dQ) of 
the observed property.  
 Recently, Bai et al.10 demonstrated that this naïve 
approximation does not always hold by showing that computed 
vertical excitation energies usually shift to lower energies when 
effects of nuclear motion are included. Alvertis and 
collaborators11 found that this gap renormalization is present 
even at zero Kelvin (zero-point renormalization, or ZPR), and 

estimated its average value to –0.35 eV for Thiel’s set4 of small 
organic molecules, with extreme cases reaching –1.36 eV. They 
also noted that ZPR can often be reduced to the effect of only 
several vibrations. A similar conclusion was reached by 
Lambropoulos et al., who found that ZPR in cyclo[18]carbon can 
be reduced to the effect of a few bond-stretching vibrational 
modes.12 In organic molecular wires, bond stretching and 
backbone torsion play a large role, as the electron and hole 
mobilities are highly dependent on the extend of conjugation 
modulated by these vibrations.13-15 In more general cases, it can 
be challenging to understand which vibrations are important 
and which can be neglected.  
 Here, we provide a straightforward, inexpensive method for 
investigating the effect of individual normal modes on the 
electronic structure, based on calculating derivatives of frontier 
orbital energies with respect to molecular vibrations. We first 
use this method to evaluate how vertical excitation energies are 
modulated by specific vibrations, and then we analyse the effect 
of specific vibrations in a system with strong electron-vibration 
coupling. 
 In the framework of time-dependent density functional 
theory (TD-DFT), the first optical transition can usually be 
attributed to an excitation of a single electron from the highest 
occupied molecular orbital (HOMO) to the lowest unoccupied 
molecular orbital (LUMO). The energy difference between the 
HOMO (EH) and the LUMO (EL) can be taken as a measure of the 
fundamental gap (Egap), which is more rigorously defined as the 
difference between the ionization potential and the electron 
affinity.16 At the equilibrium geometry Qeq = 0, the first vertical 
excitation energy (ES1; also called the optical gap) will differ 
from the fundamental gap (Eg) by the exciton binding energy 
(Ebind), which is a measure of the Coulombic attraction between 
the newly formed electron-hole pair:  

𝐸!""𝑄#$ = 0& = 𝐸%(0) − 𝐸&'()(0) 
                                                   			= 𝐸*(0) − 𝐸+(0) − 𝐸&'()(0)  (1) 
When the geometry is displaced along a normal mode i by some 
amount by Qi, the optical gap changes by:   
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Δ𝐸,"(𝑄-) = [𝐸*(𝑄-) − Δ𝐸*(0)] − [𝐸+(𝑄-) − Δ𝐸+(0)] −
																							[𝐸&'()(𝑄-) − Δ𝐸&'()(0)]      (2) 
which can also be written as:  
Δ𝐸,"(𝑄-) = Δ𝐸%./(𝑄-) − Δ𝐸&'()(𝑄-)      (3) 
In practice, the effect of nuclear motion on the S1 energy ΔES1 is 
determined by performing a series of excited-state calculations 
on geometries displaced by Q, which can either be obtained by 
Monte Carlo sampling (50–100 samples, in which Q for each 
geometry is a random linear combination of Qi) or by finite 
differences (which usually involves displacements by +Qi and –
Qi for each normal mode i). However, if the exciton binding 
energy is much less sensitive to geometric changes than frontier 
orbital energies (i.e. ΔEb << ΔEgap), then the changes in the 
optical gap due to nuclear motion ΔES1 can be approximated by 
the change in the fundamental gap ΔEgap. We call this (ΔES1 ≈ 
ΔEgap) the static binding approximation. It is attractive for two 
reasons. One, it simplifies the evaluation of effects of nuclear 
movement. When the harmonic approximation is valid (small 
Q), ΔEgap can simply be calculated from derivatives of orbital 
energies with respect to normal modes, dEH/dQi and dEL/dQi, 
which can be obtained in a single ground-state calculation;17 in 
contrast, ΔEbind can only be obtained by many excited-state 
calculations. Two, the magnitude of orbital energy derivatives 
enables us to identify the vibrations most strongly coupled to 
the electronic structure.  
 To investigate how well the static binding approximation 
holds, we tested it on the Thiel’s set of small organic molecules 

(Figure 1), for which the ZPR was investigated in ref 11. We 
computed ΔEgap using orbital derivatives and compared it to 
ΔES1 obtained using TD-DFT (B3LYP18/def2-SVP), calculated for 
geometries modulated along each normal mode Qi by the 
standard deviation of the thermal distribution σi(T):11 
𝜎-(𝑇)0 =

"
01!

𝑝-(𝑇)         (4) 

where ωi is the vibrational frequency, T is the temperature, and 
pi(T) is the Bose-Einstein population at T, which is equal to unity 
at T = 0. Equation (4) gives us a way to account for zero-point 
vibrations by looking at only two characteristic geometries 
modulated from the equilibrium by ±σi(0), as shown by Hele et 
al.11  
 We find that the static binding approximation holds 
reasonably well across Thiel’s set (Figures 1 and S1): in 18 out of 
30 molecules (Figure 1a–o and S1a–d; green background), all 
normal modes with a notable ΔES1 can be diagnosed from ΔEgap, 
with most of these points being close to the ΔEgap = ΔES1 
diagonal (usually R2 > 0.8). In 6 further cases (Figure 1p–u), most 
vibrations with a significant ΔES1 can be easily identified from 
ΔEgap, but the importance of a single stretching (~1600 cm–1; 
black arrow in Figure 1p–u) vibration is consistently 
underestimated. Finally, the static binding approximation does 
not hold (Figure 1v–x and S1e–f; orange background) in very 
small molecules due to their tightly bound excitons (e.g. ethene 
or cyclopropane), and it fails in 7H-purin-6-amine (Figure 1v), 
where stretching vibrations modulate the exciton binding in a 
non-trivial way.

Figure 1. Electronic-vibrational coupling calculated using ΔEgap (vertical axis) and ΔES1 (horizontal axis; both in meV) for selected molecules from Thiel’s set, decomposed by normal 
modes (triangles) and evaluated for zero-point vibrations. Black arrows in (p)-(u) correspond to stretching vibrations with a large ΔES1 relative to ΔEgap. Results for remaining molecules 
are given in Figure S1. 
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 Our results (Figure 1) illustrate that in most small organic 
molecules only a few (usually <15%) normal modes are strongly 
coupled to frontier orbitals. ΔEgap can be used to identify the 
vibration most strongly coupled to frontier orbitals with high 
confidence (excluding very small systems), and in the majority 
of cases it correctly identifies vibrations strongly coupled with 
electronic structure, without resorting to excited-state 
calculations. Furthermore, as the exciton binding energy 
decreases with molecular size,19 we expect the static binding 
approximation to be even more accurate in molecules larger 
than those investigated here. Therefore, when a description of 
molecular properties beyond the equilibrium geometry is 
desired, we suggest using ΔEgap to identify normal modes which 
are likely to affect the electronic structure. A limitation of ΔEgap 
is that it is harmonic, i.e. it can only determine the size of the 
orbital coupling, and the calculation of its asymmetry requires 
excited state calculations. 

Accounting for effects of nuclear motion is particularly 
important in cases of strong electron-vibration coupling. 
Usually, in organic molecules the electronic transitions (typically 
vel > 10,000 cm–1) are well-separated from vibrational 
transitions (vn ≤ 3200 cm–1), with much broader and more 
intense signals. In radical cations of π-conjugated porphyrin 
oligomers this distinction is less clear, with both electronic and 
vibrational transitions producing very intense signals in the 
1500–6000 cm–1 region.20-22 These unusually strong vibrational 
transitions can be detected using infrared (IR) spectroscopy, 
and they are usually called IR active vibrations (IRAVs). Recently, 
IRAVs were experimentally found at ~1330, ~1550 and ~2080 

cm–1 (shaded area in Figure 1d–f) in the butadiyne-linked 
porphyrin dimer 1•+ (Figure 2a), and tentatively assigned to 
normal modes shown in Figure 2b. Movement along these 
IRAVs was attributed to the strong coupling of vibrational 
modes with the singly occupied molecular orbital (SOMO) 
orbital.20 Here, we investigate this coupling in more detail by 
analysing how normal modes in 1•+ modulate orbital energies 
(Figure 2c–f). Using the same density functional as in previous 
work (LC-wPBE20, 23), we calculated the couplings between the 
HOMO and SOMO energies and normal modes in 1 and 1•+ and 
compared them with computed dipole moment changes with 
respect to normal modes (i.e. infrared intensities) dD/dQi 
(Figure 2c–d). Our results show that these frontier orbital 
derivatives are indeed larger in 1•+ than in neutral 1 (Figure 
2c,d), in agreement with previous work. However, we also note 
that the contribution of orbitals up to SOMO–3 (Figure 2e) is 
significant in IRAVs at 1390 cm–1 and 2100 cm–1, outweighing 
the contribution of the SOMO. 
 While the dipole moment D only depends on the occupied 
orbitals (within the DFT framework), a proper account of 
electron-vibration coupling should include the unoccupied 
orbitals as well.  In 1•+, we find that the singly unoccupied 
molecular orbital (SUMO) is also strongly coupled to movement 
along several vibrations, resulting in a very large ΔEgap (Figure 
2d) at the IRAV positions. Therefore, a large ΔEgap may be used 
as a diagnostic to identify IRAVs and vibrational modes strongly 
coupled to electronic states, despite being calculated at the 
equilibrium geometry.  

 
Figure 2. (a) Structure of 1. (b) Calculated IRAVs of 1•+.  (c–d) Coupling between the computed IR intensities (positive y axis) and derivatives of frontier orbital energies (negative y 
axis) in (c) 1 and (d) 1•+. Note the different y scales. (e) Contribution of lower-lying orbitals of 1•+. (f) Modulation of the fundamental gap ΔEgap/dQi in 1•+ with molecular vibrations. 
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 An advantage of using ΔEgap instead of the computed IR 
spectrum is that modes with no IR intensity (dD/dQi = 0) due to 
symmetry can also be IRAVs; indeed, some of the first IRAVs 
were observed in Raman-active modes.24 In case of 1•+, the 
symmetric stretch of the butadiyne linker at 2156 cm–1 (see 
Figure 1f and S2) is IR forbidden, but it is strongly coupled to the 
ground electronic state as it decreases the conjugation between 
the two porphyrins. 
 In conclusion, we have presented a simple approach for 
investigating the influence of individual modes on molecular 
properties, based on calculating orbital energy derivatives with 
respect to molecular vibrations. By applying this approach to 
the Thiel's benchmark set of small organic molecules, we 
demonstrated that it can in most cases correctly identify the 
vibrations that are most strongly coupled to the vertical 
excitation energies by using only a ground-state calculation, 
which is significantly more efficient than using many excited-
state calculations.  
Molecules with unusually strong coupling between electronic 
and vibrational states show intense infrared active bands. Using 
a porphyrin dimer radical cation as an example, we showed how 
infrared spectrum can be decomposed into orbital 
contributions, finding a strong coupling between the IRAVs and 
the singly occupied molecular orbital (SOMO), but also a 
significant effect of orbitals up to SOMO–3. Finally, we showed 
that the sensitivity of frontier orbital energies to nuclear 
movement can be used to identify IRAVs.  
 Code for calculating orbital derivatives with respect to 
normal modes and building characteristic geometries at some 
temperature using eq 4 is provided at https://github.com/lisa-
schroeder/mode-resolved-molecular-properties.  
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