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Abstract

In this report, three versions of SCF/KS-DFT orbital optimization are described and

benchmarked. The methods are a modified version of the geometry version of the di-

rect inversion in the iterative subspace approach (which we call r-GDIIS), themodified

restricted step rational function optimization method (RS-RFO), and the novel sub-

space gradient enhancedKrigingmethod, combinedwith restricted variance optimiza-

tion (S-GEK/RVO). Themodifications introduced are aimed to improve the robustness

and computational scaling of the procedures. In particular, the subspace approach in

S-GEK/RVO allows the application to SCF/KS-DFT optimization of a machine tech-

nique that has proved successful in geometry optimizations. The performance of the

three methods is benchmarked for a large number of small to medium-sized organic

molecules, at equilibrium structures and close to a transition state, and a second set

of molecules containing closed- and open-shell transition metals. The results indicate

the importance of the resetting technique in boosting the performance of the r-GDIIS

procedure. Moreover, it is demonstrated that already at the inception of the subspace

version of GEK to optimize SCFwave functions, it displays superior and robust conver-

gence properties as compared to standard state-of-the-art SCF/KS-DFT optimization

methods.

Introduction

The optimization of the orbitals in computer implementations of the Hartree–Fock–

Roothaan procedure1 has been a central issue in computational chemistry for the last 70

years. A similar procedural approach is also at the core of the optimization of the non-

interacting orbital in the the Kohn–Sham approach.2 A plethora of reports has been pub-

lished on suggested improvements – both with respect to efficiency and convergence ro-

bustness. Early improvements include a third-order truncated Taylor expansion of the en-

ergy parameterized in terms of unitary rotations as suggested by Yaffe and Goddard3, the

quadratically convergent SCF (QC-SCF) procedure of Bacskay4, and the use of the direct

inversion in the iterative subspace (DIIS) method as designed by Pulay5,6.
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More recently, a number of variations of the DIIS method have been suggested7–14. The

augmented Roothaan–Hall approach is an alternative approach, sometimes used in con-

junction with the DIIS approach15–19. A number of restricted-step second-order methods

have also been presented and implemented20–25. Alternatively, new hybrid methods have

been devised to utilize the pros of second ordermethods and theDIIS approach26,27. Overall

these methods generally provide satisfactory convergence statistics. However, as the elec-

tronic structure of the target molecule starts to exhibit near-degeneracy effects and open-

shell characteristics, it is not uncommon to experience poor or no convergence at all. Fur-

ther developments of SCF/KS-DFT orbital optimizations procedures are needed to address

these issues.

What all of the approaches mentioned above have in common is the use of a surro-

gate model which is based on a truncated Taylor expansion – usually curtailed after the

second-order term. Variations can depend on the parameterization of the energy expres-

sion in terms of molecular orbital coefficients, elements of matrices representing unitary

rotations of reference orbitals, or one-particle density matrices. Additional contrasts be-

tween suggested schemes are due to ad-hoc procedures for trust region and trust radius

implementations. These procedures are in general efficient and stable, however, plenty of

examples of slow or non-existent convergence are observed in situations where alterna-

tive solutions to the Fock equations are closely packed in the parameter space around the

desired stationary point.

The aim of this paper is to offer improvements of existing optimization techniques and

to introduce new tools in the chase of an efficient and robust orbital optimization proce-

dure. In the latter case the techniques frommachine learning (ML)will be explored. Rather

than to fit data (orbital coefficients and associated one-particle density- and Fock-matrices)

to a fixed surrogatemodel, a flexible surrogatemodel will be fitted to the datawith no loss of

information. In particular, the study will investigate the use of a non-parametric regression

approach using Gaussian process regression (GPR) for the optimization of SCF and KS-

DFT orbitals. The hypothesis is that such an approach is superior to standard andmodified

(quasi-)Newton optimization procedures. To explicitly challenge this hypothesis, the novel
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approach will be benchmarked against two updated standardmethods – the GDIIS28,29 and

the RS-RFO approach, the former with a new resetting approach (r-GDIIS) and the latter

as adapted to SCF optimization. The new ML-based optimization procedure will be built

on a version of the restricted variance optimization (RVO) procedure30 specially adapted

to orbital optimizations and the large parameter spaces in such procedures, the subspace

version of gradient-enhanced Kriging31–33 (S-GEK) approach.

The rest of the paper will be structured as follows. A first section will be devoted to the

theory and improvements of the GDIIS, RS-RFO and the new adapted S-GEK approach.

Another section follows in which an adequate benchmark suite is designed to effectively

test the hypothesis. The results are discussed in the following section, inwhich the acquired

benchmark data is presented and critically analyzed. Finally, the report ends with some

conclusions and perspectives. As additional material, an appendix is included to describe

the startup procedure used in the calculations.

Theory

This section will describe three procedures of SCF/KS-DFT orbital optimizations in

some detail – the direct inversion iterative subspace, the restricted-step rational func-

tion optimization, and the subspace gradient-enhanced Kriging model in association with

restricted-variance optimization. All of them, however, will have in common the param-

eterization of the SCF wave function or the determinant describing the KS-DFT non-

interacting orbitals, which will be briefly described here before the presentation of the dif-

ferent optimization procedures.

Rather than directly minimizing the SCF/KS-DFT energy with respect to the molecu-

lar orbital coefficients, the presented methods will start from a set of orthonormal orbitals

– some being occupied and some virtual. The optimization procedure will subsequently

determine the optimal occupied orbitals via an unitary rotation of the orbitals. It is here

noted that the SCF/KS-DFT energy is invariant to unitary rotations of the occupied or-

bitals among each other. Moreover, the SCF/KS-DFT energy is also invariant to the virtual
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orbitals – they just span a complementary space to the one spanned by the occupied or-

bitals. Henceforth {𝑖, 𝑗, 𝑘}, {𝑎, 𝑏, 𝑐}, and {𝑝, 𝑞, 𝑟}, respectively, will denote occupied, virtual
and general orbital indices. It is noted that the optimization procedure focuses exclusively

on the rotations between the occupied and virtual subspaces of the SCF/KS-DFT orbitals.

Following the description suggested by Jørgensen and co-workers34,35, this parameteriza-

tion starts with a reference function, a Slater determinant, |Ψ0⟩, defining the number of
electrons and the occupied orbitals,

|Ψ0⟩ =∏
𝑖∈0 𝑎†𝑖 |vac⟩ (1)

where 𝑎†𝑖 (𝑎𝑖) is a creation (annihilation) operator creating orbital 𝑖, and∏𝑖∈0 𝑎†𝑖 is an or-
dered product of such creation operators acting on the vacuum state, |vac⟩.

A unitary transformation (restricting it to real rotations) of the orbitals making up the

SCF/KS-DFT Slater determinant is subsequently described as

|Ψ(𝜅̂)⟩ = exp (−𝜅̂) |Ψ0⟩ (2)

where 𝜅̂ = ∑
𝑟𝑠 𝜅𝑟𝑠(𝑎†𝑟𝑎𝑠 − 𝑎†𝑠𝑎𝑟) (3)

where 𝜿 is an antisymmetric matrix and exp (−𝜿) is a unitary matrix.
This renders the SCF/KS-DFT expectation energy to be expressed as

𝐸(𝜿) = ⟨Ψ0| exp (−𝜅̂)𝐻̂ exp (−𝜅̂)|Ψ0⟩ (4)

where 𝐻̂ is the Hamiltonian operator. For the purpose of facilitating the orbital optimiza-

tion the energy is expressed as a Taylor expansion27 (here explicitly expressed up to second

order) 𝐸(𝜿) = 𝐸(𝟎) + 𝒈𝖳𝜿 + 12𝜿𝖳𝑯𝜿 +⋯ (5)
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where the elements of the gradient vector, 𝒈, are expressed as
𝑔𝑖𝑎 = 𝜕𝐸𝜕𝜅𝑖𝑎 = 2𝐹𝑖𝑎 (6)

that is, thematrix elements are,with the exception of a factor of 2, identical to the occupied–

virtual elements of the Fock matrix in molecular orbital (MO) basis (not necessarily the

canonical orbitals). Finally, for the elements of the Hessian matrix,𝑯 (not to be confused

with the Hamiltonian), in a quasi-Newton procedure only a reasonable approximation is

used 𝐻𝑎𝑖,𝑏𝑗 ≈ 2𝐹𝑎𝑏𝛿𝑖𝑗 − 2𝐹𝑖𝑗𝛿𝑎𝑏 (7)

in association with some Hessian update methods.

For practical purposes the occupied–occupied and virtual–virtual subblocks of 𝜿 are

set to zero. Hence, the parameter space of the SCF/KS-DFT orbitals is completely defined

by the occupied–virtual or the virtual–occupied subblocks of 𝜿. It is noted that the or-
bitals generated with the parameterization are not necessarily identical to the canonical

SCF/KS-DFT orbitals. A post-convergence diagonalization of the occupied–occupied and

the virtual–virtual subblocks of the Fock matrix would, however, generate the canonical

occupied and virtual orbitals, respectively.

Direct Inversion in the Iterative Subspace

A number of procedures to optimize the orbitals of a Slater determinant was offered in

the early days of the development of the self-consistent field approach of the Hartree–Fock

single configuration wave function model. Most of these were either slow to converge or

far from robust. This changed to the better in 1980 when Pulay proposed the use of the so-

called direct inversion in the iterative subspace (DIIS)method,5 a combination of a variable

metric update method and a minimization step as a tractable approach. Originally, this ap-

proach was introduced in terms of a parameterization using the occupied–virtual block of

the Fock matrix, while here the developments are parallel to those suggested by Fischer

and Almlöf29. That is, the parameterization is in terms of the occupied–virtual orbital ro-
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tations, as mentioned at the start of this section; the Hessian matrix is not explicitly stored,

but it is implicitly updated as it is multiplied by a trial vector with an on-the-fly version of

the BFGS36–39 (Broyden–Fletcher–Goldfarb–Shanno) method; and the GDIIS28 approach

is employed. The DIIS method has since its introduction been the subject of many pub-

lications and modifications. This report will not dwell into the details of these; however,

it is interesting to note that recent publications40 indicate that the DIIS method of Pulay

actually is a special case of the Anderson mixing-procedure41 from 1965.

The GDIIS procedure (using this name to denote the DIIS variant described by Fischer

and Almlöf29) is a two-step procedure that assumes the presence of a set of 𝑛 parameter
vectors, (𝜿𝑖, 𝑖 = 1, … , 𝑛), and the corresponding set of gradient vectors, 𝒈𝑖, one for each
iteration, 𝑖. First, for parameter sets in the quadratic region an approximated error vector,𝒆𝑖, can be compiled as 𝒆𝑖 = −𝑯−1𝑛 𝒈𝑖 ≈ 𝜿f − 𝜿𝑖 = ∆𝜿𝑖 (8)

where 𝑯𝑛 is the updated approximate Hessian and 𝜿f is the optimal parameter set. The 𝑚
last iterations – the iterative subspace – are presumed to be in this quadratic region and are

used in the first step of the GDIIS procedure,𝑚 is the so-called depth of the DIIS procedure.

An improved set of parameters can be computed as

𝜿∗𝑚+1 = 𝑚∑
𝑖=1 𝑐𝑖𝜿𝑖 (9)

by minimizing the norm of the extrapolated error vector

∆𝜿 = 𝑚∑
𝑖=1 𝑐𝑖𝒆𝑖 ≈ 𝑚∑

𝑖=1 𝑐𝑖∆𝜿𝑖 (10)

under the condition that
∑𝑚𝑖=1 𝑐𝑖 = 1. This is achieved by minimizing the following La-

grangian 𝐿 = ∆𝜿𝖳∆𝜿 − 2𝜆 ( 𝑚∑
𝑖=1 𝑐𝑖 − 1) (11)
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Here, the first term on the RHS is expressed as

∆𝜿𝖳∆𝜿 = ∑
𝑖,𝑗 𝑐𝑖𝑐𝑗𝐵𝑖𝑗 (12)

where 𝐵𝑖,𝑗 = 𝒆𝖳𝑖 𝒆𝑗 are element of the error matrix. Solving this minimization problem cor-

responds to finding the solution to the following set of equations

⎛⎜⎜⎜⎜⎜⎝
𝐵11 ⋯ 𝐵1𝑚 −1⋮ ⋱ ⋮ ⋮𝐵𝑚1 ⋯ 𝐵𝑚𝑚 −1−1 ⋯ −1 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
𝑐1⋮𝑐𝑚−𝜆
⎞⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎝
0⋮0−1
⎞⎟⎟⎟⎟⎟⎠

(13)

which is of the type𝑩𝑎𝒙 = 𝒃, where𝑩𝑎 is the augmented errormatrix. This is trivially solved
as 𝒙 = (𝑩𝑎)−1𝒃. It is noted that as ∆𝜿 converges towards the zero vector, the parameter set
for the next iteration will converge towards the optimal parameter set, 𝜿f. The procedure
now goes into the second step in which the convergence is checked by computing a second

update to the parameter set, now in the full space of the parameter space, 𝛿𝜿𝑛+1, as
𝛿𝜿𝑛+1 = 𝜿∗𝑛+1 − 𝜿𝑛 −𝑯−1𝑛 𝒈∗𝑛+1 (14)

The actual gradient, 𝒈(𝜿𝑛+1), is computed for the new parameter set. If the norm of the

gradient is below the convergence threshold, the procedure is considered converged. Oth-

erwise the GDIIS procedure is repeated in a subsequent iteration, but now with optionally

one more error vector.

Resetting Direct Inversion in the Iterative Subspace

Experience has demonstrated that solving the system of equations of Eq. (13) is prone to

numerical instability. This issue can be addressed in at least three different ways. First, the

linear dependence can be reduced/eliminated by setting𝑚 to a rather small constant inte-

ger value (in the current implementation𝑚max = 5). As the GDIIS procedure iterates, error
8
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vectors from earlier iterations are eliminated – thus reducing the risk of linear dependence.

Second, as suggested by Chupin et al.40, the new error vector is projected onto themanifold

of the𝑚 previous error vectors, and if the norm of the remainder (ameasure of the extent of

linear dependence) is below a threshold,𝑚 is either reset to one, or incrementally reduced

until the condition is no longer fulfilled. This approach is not used in the present bench-

marking. Third, a reformulation of the problem is used, as suggested by Sellers42, which

reduces the numerical problem – the C2-DIIS method. Here the optimization problem is

cast as an eigenvalue problem 𝑩𝒒𝑗 = 𝜆𝑗𝒒𝑗 (15)

which implies a normalization of the eigenvectors according to
∑𝑚𝑖=1(𝒒𝑗)2𝑖 = 1. The selection

of the appropriate eigenvector starts by computing the coefficients of the original formu-

lation of the DIIS procedure, from the renormalization 𝒄𝑗 = 𝒒𝑗∕𝑁𝑗, where 𝑁𝑗 = ∑𝑖(𝒒𝑗)𝑖,
followed by the evaluation of the norm of the extrapolated error vector. In the original im-

plementation the set of coefficients corresponding to the lowest eigenvalue above a specific

threshold – to avoid solutions that are numerically suspect – is kept.However, in the present

benchmark a modification of this selection procedure is introduced as follows. The norm

of 𝒄𝑗, is computed. A large number corresponds to the elements of the coefficient vector

being a series of large numbers with varying sign – a signature of a solution corrupted by

numerical instability, which is also reflected in a small eigenvalue. Hence, in the present

implementation, if 𝒄𝖳𝑗 𝒄𝑗 > 𝛿 and 𝒄𝖳𝑗𝑩𝒄𝑗 < 𝜎, where 𝛿 = 100 and 𝜎 = 10−5, that particular
solution is rejected. Otherwise, the solution corresponding to the extrapolated error vector

with the lowest norm is selected.

This is not, however, the end of the considerations that need to be attended for optimal

convergence. In what follows is a description of conditions which will reset either the DIIS

depth or the BFGS update of the approximate Hessian. This will be coined the resetting

DIIS approach, r-DIIS. It should be noted that the suggested procedure below has had its

precursors in the restarted DIIS method (r-Pulay)12 which on regular intervals resets the

depth of the DIIS, and the method of Fang and Saad9 which resets the DIIS depth if the

ratio of the residuals of the two last iterations exceeds a threshold. The suggested approach
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here, however, contains three conditions which will trigger the resetting mechanism.

First, numerical stability is not the only issue with the DIIS approach, the anharmonic

character of the PES is another problem – the norm of the gradient is not linear with respect

to the distance from the stationary point. Thus, when the DIIS method is applied to error

vectors whose norms differ by orders of magnitude, the predictive power of the approach

is lost. In the current implementation this issue is handled by the condition

𝛿𝐵𝑖,𝑖 > 𝐵𝑛,𝑛 , 𝑖 = 𝑛 − 𝑚 + 1,… , 𝑛 − 1 (16)

where 𝛿 = 10−8. If the condition is fulfilled, the depth of theDIIS procedure,𝑚, is decreased
in steps of one until the condition is not fulfilled or𝑚 = 1.

Second, having solved these problems there could still be convergence issues due to

the qualitative nature of the (G)DIIS procedure – in particular it is a procedure with no

reference to the value of the energy. As the method is formulated it is based on the en-

ergy function being convex. That is, this strictly leads to that one expects that the gradient

norm continuously decreases as the geometry approaches the stationary point. However,

this is not always the case. Especially, it is not uncommon for the optimization procedure

to evolve along the energy surface such that it is experiencing a shoulder (inflection point)

in one direction while being at a minimum in all other directions. While propagating on

such a shoulder, the gradient norms can be fairly small. However, as the optimization pro-

cedure updates the molecular orbitals beyond the edge of the shoulder a rapid decrease of

the energy will initially be associated with a significant increase of the norm of the error

vectors. It is clear that the (G)DIIS method in such an case will produce an extrapolated set

of coordinates which returns up to the shoulder – a region of error vectors with a low norm.

In the present implementation of the GDIIS procedure, tries to detect this case by finding

the smallest element 𝐵𝑖,𝑖 and checking the condition 𝐸𝑛 + 𝛿 < 𝐸𝑖, where 𝛿 = 10−4. Addi-
tionally, to ensure the 𝐵𝑗𝑗 values are in roughly descending order, it is checked whether any𝐵𝑖𝑖𝜎 < 𝐵𝑗+𝑗,𝑗+1, with 𝜎 = 15. If any of these conditions is fulfilled, the depth of the (G)DIIS
procedure,𝑚, is reset to 1, and a pure variable metric step is taken based on the gradient of
the latest trial.

10
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Third, the updated Hessian is used in the two steps of the GDIIS procedure and thus it

is important that it be qualitatively correct. Since the error vectors are also a part of these

updates, they will only make sense if the gradients are consistent. Thus, under similar con-

ditions as described above the BFGS proceduremight produce updated Hessians which are

nonphysical and/or ill-conditioned – usually detected by a series of monotonically smaller

and smaller displacements in the GDIIS iterations suddenly interrupted by an unexpect-

edly large displacement. In the current implementation this is considered to be the case if

the norm of the displacement vector is larger than 𝜋 – i.e., a rotation larger than 180◦. The
remedy for this behavior is that a new update vector is computed using a reduced depth

of the BFGS-update procedure repeatedly until the norm of the displacement vector is ac-

ceptable.

Restricted-Step Rational-Function Optimization

In the past, the so-called restricted-step rational-function optimization (RS-RFO) proce-

dure43,44 has been applied with success to molecular structure optimizations in associ-

ation with the use of internal coordinates45, an approximate initial Hessian46, and the

BFGS Hessian update method. Inspired by the 1992 paper by Fischer and Almlöf29, in

which it was suggested that the successful use of the DIIS method, parameterized over

the occupied–virtual block of the Fock matrices5,6, for SCF orbital optimizations, could

be transferred over to a parameterization of the procedure in terms of orbital rotations,

a similar adaptation will be executed here. It is noted that such a transfer is obvious –

a new alternative parameterization has emerged, and good estimates of the Hessian ma-

trix exist. The only matter that is a possible restriction in the adaptation of RS-RFO to or-

bital optimization is the size of the parameter space, which for a given system goes from3𝑁−6, in the case of a molecular structure optimization (𝑁 being the number of atoms), to𝑁SCF = 𝑁occ × (𝑁AO−𝑁occ) in the case of a SCF orbital optimization (𝑁AO the total number

of linearly independent basis functions and𝑁occ the number of occupied orbitals). That is,

for a basis set of reasonable quality in association with second-row atoms, the characteris-

tic dimension of the matrices associated with the RFO procedure increases by one order of
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magnitudewith respect to a typical geometry optimization, and the scaling of the procedure

might increase by as much as three orders of magnitude. Moreover, while 3𝑁−6 scales lin-
early with the number of atoms,𝑁SCF scales quadratically. For a successful implementation

this issue will have to be mitigated.

The basics of the RS-RFO procedure are now briefly presented here. It is an alternative

to a conventional step-restricted truncated second-order Taylor expansion of the energy in

which the energy is expressed by an rational function – a Padé [2/2] approximant – as

𝐸(𝜿) = 𝐸(𝜿0) + 12
(1 𝛿𝜿𝖳) ⎛⎜⎜⎝

0 𝒈𝖳𝒈 𝑯⎞⎟⎟⎠
⎛⎜⎜⎝
1𝛿𝜿⎞⎟⎟⎠

(1 𝛿𝜿𝖳) ⎛⎜⎜⎝
1 𝟎𝖳𝟎 𝛼𝑺⎞⎟⎟⎠

⎛⎜⎜⎝
1𝛿𝜿⎞⎟⎟⎠

(17)

where 𝛿𝜿 = 𝜿 − 𝜿0, 𝑺 is a matrix usually set to the unit matrix, and 𝛼 is a parameter which
in the case of unconstrained optimizations is set to unity, but in the case of constrained

optimizations it is adjusted to get a displacement with a norm within the step-restriction

length.

The stationary points of the RS-RFO equation are found as solutions to eigenvalue equa-

tions ⎛⎜⎜⎝
0 𝒈𝖳𝒈 𝑯⎞⎟⎟⎠

⎛⎜⎜⎝
𝜈1,𝑖𝒗𝑖

⎞⎟⎟⎠ = 𝜆𝑖 ⎛⎜⎜⎝
1 𝟎𝖳𝟎 𝛼𝑺⎞⎟⎟⎠

⎛⎜⎜⎝
𝜈1,𝑖𝒗𝑖

⎞⎟⎟⎠ (18)

such that the computed eigenvectors are associated with the displacement vectors as

⎛⎜⎜⎝
1𝛿𝜿⎞⎟⎟⎠ =

1𝜈1,𝑖 ⎛⎜⎜⎝
𝜈1,𝑖𝒗𝑖

⎞⎟⎟⎠ (19)

The critical part of the implementation of the solver to the eigenvalue problem is (i) only

the lowest eigenvalue is needed, and (ii) the full Hessianmatrix is too large for explicit stor-

age. This is trivially solved as follows. First, the eigenvalue problemwill be solved using the

iterative method of Davidson47, which will significantly reduce the computational expense
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and storage requirements as compared to any general procedure finding all eigenvalues.

Second, in the iterative procedure the on-the-fly application of the BFGS update, as sug-

gested by Fischer and Almlöf29, was implemented. As in the case for the implementation

of the GDIIS method, mentioned above, the depth of the BFGS procedure is modified if the

suggested step length is longer than 𝜋. In that case the depth of the BFGS update is set to 1
and the step restriction is set to 𝜋 (the default value is 10.0 if 𝑚 ≠ 1, such that poor BFGS
updates can be diagnosed and the proper care can be taken).

To conclude this section, it is appropriate to mention the recent implementation by

Slattery et al. of a quasi-Newton unitary optimization with trust-region approach.48 There

are many similarities with what is proposed above. The main differences are that Slattery

et al. are using the lowmemory version of BFGS, the L-BFGSmethod,49 the original step is

computedwith a conventional quasi-Newton step, an optional line search and a subsequent

step restriction is implemented by the use of a trust radius. The trust radius is compiled from

the most recent line search.

Gradient-Enhanced Kriging

The gradient-enhanced Kriging31–33 (GEK) approach – a Gaussian process regression50

variant – is a machine-learning method which has been applied with significant success

to, for example, molecular structure optimizations.30,51–53 In this report such a GEK imple-

mentation especially modified for the case of SCF orbital optimizations is presented. The

size of the parameter space, 𝑁SCF, however, is a significant problem for an efficient imple-

mentation, as reported by C. L. Ritterhof54, who demonstrated the GEK procedure applied

to SCF orbital optimization can have competitive iteration counts, while the timings are

very unfavorable due to the 𝑁3 scaling of the procedure. The author of this report pro-
poses, though, that the general effective dimensionality of the SCF optimization problem

is much smaller than the formal size. Considering, for example, that the GDIIS procedure

normally converges in 15–25 iterations, using a depth of 4–5 iterations, one has to conclude

that the effective dimensionality is much smaller thanwhat one expects – this is mainly be-

cause the different degrees of freedom are to a large extent uncoupled. Hence, inspired by
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the “smallness” of the DIIS formulation and the structure of second-rank Hessian-update

methods, a subspace formalism of the GEK procedure (S-GEK), adapted for SCF/KS-DFT

orbital optimizations, will be put forward. However, before presenting the space-reduction

procedure the basics of the GEK implementation is introduced here. The details of this

procedure have been published elsewhere30,51,52.

The GEK is a gradient-enhanced Gaussian process regression, that is, not only the en-

ergy but also all elements of the gradient are regressed. Hence, the surrogate model repro-

duces exactly the energy and the complete gradient vectors at the points of regression – the

model is fitted to the data, not the reverse.

The surrogate model is effectively expressed as

𝐸(𝜿)∗ = 𝜇 + 𝒗(𝜿)𝖳𝑴−1𝒚 (20)

where 𝜇 is the bias/trend function (can be a constant or a function of 𝜿), 𝒗 is the generalized
covariance vector,𝑴 is the generalized covariance matrix and 𝒚 is the generalized value

vector. This can also, alternatively be expressed as

𝐸∗(𝜿) = 𝜇 + 𝑛∑
𝑖=1𝑤𝑖𝑣𝑖(𝜿) + 𝑛∑

𝑖=1
𝐾∑
𝑘=1𝑢𝑖,𝑘 𝜕𝑣𝑖(𝜿)𝜕(𝜅)𝑘 (21)

where𝑤𝑖 and 𝑢𝑖,𝑘 are weights derived from the expression𝑴−1𝒚, 𝑛 is the depth of the GEK,
that is, the number of sets of coordinates forwhich the energy and gradient vector is known,

and, finally, 𝐾 is the dimensionality of the parameter space.

Although in Eq. (21) the contributions from 𝑣𝑖(𝜿) and 𝜕𝑣𝑖(𝜿)∕𝜕(𝜅)𝑘 are written sepa-
rately, in practice they are all collected in a single list, such that each element of the vectors𝒗(𝜿) and 𝒚 or the matrix 𝑴 refers to either the energy or the derivative at a data point 𝑖
in some predefined order. For instance, one could sort first the energies for all data points,

then all derivatives for the first data point, the derivatives for the second data point, etc.
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Thus, the 𝒚 vector would be (expressed as the transpose of a row vector for convenience):

𝒚 = (𝒚𝖳0 𝒚𝖳1 ⋯ 𝒚𝖳𝑛)𝖳𝒚𝖳0 = (𝐸(𝜿1) ⋯ 𝐸(𝜿𝑛)) 𝒚𝖳𝑖 = ( 𝜕𝐸(𝜿)𝜕(𝜅)1 ⋯ 𝜕𝐸(𝜿)𝜕(𝜅)𝐾 )𝜿=𝜿𝑖 (22)

where 𝜿𝑖 indicates the coordinate vector of data point 𝑖 while (𝜅)𝑘 denotes the 𝑘th dimen-
sion, or the 𝑘th component of the 𝜿 vector. That is, the 𝒚 vector collects all the energies

and gradients from the 𝑛 previous iterations, which the surrogate model will reproduce ex-
actly. The𝑴 matrix collects the covariance between the data points, as well as the first and

second derivatives:

𝑴 =
⎛⎜⎜⎜⎜⎜⎝
𝑴00 𝑴01 ⋯ 𝑴0𝑛𝑴10 𝑴11 ⋯ 𝑴1𝑛⋮ ⋮ ⋱ ⋮𝑴𝑛0 𝑴𝑛1 ⋯ 𝑴𝑛𝑛

⎞⎟⎟⎟⎟⎟⎠
𝑴00 = ⎛⎜⎜⎜⎝

𝑓(𝜿1, 𝜿1) ⋯ 𝑓(𝜿𝑛, 𝜿1)⋮ ⋱ ⋮𝑓(𝜿1, 𝜿𝑛) ⋯ 𝑓(𝜿𝑛, 𝜿𝑛)
⎞⎟⎟⎟⎠

𝑴0𝑖 = 𝑴𝖳𝑖0 =
⎛⎜⎜⎜⎜⎝
𝜕𝑓(𝜿1,𝜿)𝜕(𝜅)1 ⋯ 𝜕𝑓(𝜿𝑛 ,𝜿)𝜕(𝜅)1⋮ ⋱ ⋮𝜕𝑓(𝜿1,𝜿)𝜕(𝜅)𝐾 ⋯ 𝜕𝑓(𝜿𝑛 ,𝜿)𝜕(𝜅)𝐾

⎞⎟⎟⎟⎟⎠𝜿=𝜿𝑖
𝑴𝑖𝑗 =

⎛⎜⎜⎜⎜⎝
𝜕2𝑓(𝜿,𝜿′)𝜕(𝜅)1 𝜕(𝜅′)1 ⋯ 𝜕2𝑓(𝜿,𝜿′)𝜕(𝜅)𝐾 𝜕(𝜅′)1⋮ ⋱ ⋮𝜕2𝑓(𝜿,𝜿′)𝜕(𝜅)1 𝜕(𝜅′)𝐾 ⋯ 𝜕2𝑓(𝜿,𝜿′)𝜕(𝜅)𝐾 𝜕(𝜅′)𝐾

⎞⎟⎟⎟⎟⎠𝜿=𝜿𝑖𝜿′=𝜿𝑗

(23)

and the vector 𝒗(𝜿) collects the covariance and derivatives between an arbitrary point 𝜿
and the data points 𝜿𝑖:

𝒗(𝜿) = (𝒗0(𝜿)𝖳 𝒗1(𝜿)𝖳 ⋯ 𝒗𝑛(𝜿)𝖳)𝖳𝒗0(𝜿)𝖳 = (𝑓(𝜿, 𝜿1) ⋯ 𝑓(𝜿, 𝜿𝑛)) 𝒗𝑖(𝜿)𝖳 = ( 𝜕𝑓(𝜿,𝜿𝑖)𝜕(𝜅)1 ⋯ 𝜕𝑓(𝜿,𝜿𝑖)𝜕(𝜅)𝐾 ) (24)

The functions 𝑣𝑖(𝜿) are therefore just a shorthand notation for 𝑓(𝜿, 𝜿𝑖), and the weights 𝑤𝑖
and 𝑢𝑖,𝑘 in Eq. (21) are obtained as

(𝑤1 ⋯ 𝑤𝑛 𝑢1,1 ⋯ 𝑢1,𝐾 ⋯ 𝑢𝑛,1 ⋯ 𝑢𝑛,𝐾) = (𝑴−1𝒚)𝖳 (25)
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A crucial element of the GEK procedure is the definition of the covariance function𝑓(𝜿, 𝜿′) (a symmetric function), which is the building block of the covariance vector and
matrix. The covariance function is a mathematical description of the correlation between

the values of two data points. Many choices are possible for a valid covariance function55,

and based on the successful experience with geometry optimization30,51,53 we chose a

Matérn 5∕2 covariance function56 with individual characteristic length for each dimen-

sion. A metric is defined to measure the distance, in parameter space, between two data

points as

𝑑(𝜿, 𝜿′) = √√√√√ 𝐾∑
𝑘=1 ((𝜅)𝑘 − (𝜅′)𝑘𝑙𝑘 )2 (26)

where 𝑙𝑘 is the characteristic length, defined below. Note that this reduces to a simple Eu-
clidean distance if all 𝑙𝑘 = 1. The covariance function then reads

𝑓(𝜿, 𝜿′) = 𝑓(𝑑(𝜿, 𝜿′)) = 𝑓(𝑑) = (53𝑑2 +√5𝑑 + 1) exp (−√5𝑑) (27)

which has a Gaussian-like shape (in fact, a Gaussian or “squared exponential” would also

be a possible covariance function to use). The internal regression parameterization is based

on the eigenvectors of the approximate Hessian of the latest iteration, that is, the 𝜿 vector
used in the whole of this section is actually 𝜿̃ = 𝑼𝜿, where𝑼 is the matrix of eigenvectors

of the approximate Hessian and 𝜿 is the vector of “raw” occupied–virtual orbital rotation
parameters in the current orbital basis.

When the model is built with a single data point, using a Matérn 5∕2 covariance func-
tion, the Hessian matrix at that point is diagonal, with eigenvalues:

𝜖𝑘 = 5(𝜇 − 𝐸)3𝑙2𝑘 (28)

This observation is used to derive the associated characteristic length for each dimension,

in the representation that diagonalizes the Hessian, as

𝑙𝑘 =√5(𝜇 − 𝐸max)3𝜖𝑘 𝐸max = max𝑖 {𝐸(𝜿𝑖)} (29)
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considering that in this implementation 𝜇 − 𝐸max = 10.0 𝐸h. This has the effect of repro-
ducing the approximate Hessian when a single data point is used to build the model.

The GEK does not only allow for prediction of energy values, but also, to each such

prediction, associate an estimate of the accuracy of that particular value – the expected

variance 𝑠2(𝜿) = (𝒚 − 𝟏𝜇)𝖳𝑴−1(𝒚 − 𝟏𝜇)𝑛 [1 − 𝒗(𝜿)𝖳𝑴−1𝒗(𝜿)] (30)

This facilitates an analytically based robustness measure to be applied to the procedure

– rather than to make the optimization procedure restricted by an arbitrary step length,

a variance restriction can be applied. This has been expressed in the restricted-variance

optimization (RVO), which has with success been used in molecular structure optimiza-

tions.30,51,53

Subspace Gradient-Enhanced Kriging

To proceed to the novel contribution reported in this work – the parameter space reduction

– let us consider some technical details of the of the DIIS and the quasi-Newton procedure.

In the first case, satisfactory convergence rates with DIIS are achieved by projecting the

multi-dimensional error vectors, expressed either as displacement vectors or as gradients,

of the last few iterations onto a small subspace spanned by the error vectors. This defines the𝑩 matrix, which is used to solve the DIIS equations. Subsequently, a single quasi-Newton

step in the full parameter space is performed on the residual error vector. In the second

case, the Hessian update of the quasi-Newton procedure is the fundamental tool towards

convergence acceleration. It is noted that, for example, the BFGS second-rank update pro-

cedure can technically be described as the following update:

𝑯𝑛+1 = 𝑯𝑛 + 𝛼𝒖𝒖𝖳 + 𝛽𝒗𝒔𝖳 (31)

where, 𝛼 and 𝛽 are some real constants, and 𝒖 = ∆𝒈 and 𝒔 = ∆𝜿𝑯. In particular, it is noted
that it is these vectors which communicate efficiently the most significant parts of the cou-

pling between the parameters. It is the availability of an accurate Hessian approximation,
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obtained through this procedure, which to a large extent explains the much faster con-

vergence of the quasi-Newton approach compared to a plain conjugate gradient method.

Inspired by the efficiency of this approach, a set of unit projection vectors, defined in the

full space and a reduced space as 𝒆f𝑖 and 𝒆r𝑖 , to define an effective subspace was designed
by selecting from (a) the actual displacement vectors of the last 𝑚 − 1 iterations, and (b)
the associated gradient difference vectors. To this list is further added the gradient vector

at the latest point and the vector corresponding to the predicted displacement of RS-RFO

procedure at the current structure. This set of 2𝑚 vectors in the full space is subsequently

orthonormalized to generate 𝒆f𝑖, while the corresponding vectors in the reduced space are
set to (𝒆r𝑖 )𝑗 = 𝛿𝑖𝑗, i.e. they are canonical basis vectors in the reduced space. This defines the
projection operator 𝑃̂ = ∑

𝑖 𝒆r𝑖 (𝒆f𝑖)𝖳 (32)

In what then follows, the original coordinate vectors, gradient vectors and the approximate

Hessian are projected onto this subspace and the resulting entities are subsequently used

in a RVO procedure supported by the GEK approximation. For example, a gradient in the

full space, 𝒈f, is expressed as 𝒈r = ∑
𝑖 (𝒆f𝑖)𝖳𝒈f𝒆r𝑖 (33)

in the reduced space. The resulting displacement, 𝛿𝜿r, from solving the optimization in the

reduced space is finally expanded up into the full space by

𝛿𝜿f = ∑
𝑖 (𝒆r𝑖 )𝖳𝛿𝜿r𝒆f𝑖 (34)

This procedure, the S-GEK/RVO or S-RVO approach, can be used as a convergence ac-

celeration approach on top of the previously proposed RS-RFO method. It significantly re-

duces the dimensionality of the S-RVO procedure from 𝑚 × (1 + 𝑁SCF) to 𝑚 × (1 + 2𝑚),
making it a viable option for SCF/KS-DFT orbital optimization.
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Computational Details

The object of the benchmark suite to be designed is to offer a vigorous test of the merits

of the three optimization procedures presented in this study. The benchmarking will ex-

plore both SCF and DFT optimizations, this in order to explore performance as a function

of the different complexity of the non-linear parameterization of the energy as expressed

in SCF vs. DFT. Moreover, to evaluate the performance of the three SCF/DFT orbital opti-

mization methods, a comprehensive data set of 2080 target electronic structures was em-

ployed, encompassing both organic molecules and transition-metal complexes. The goal

of the data sets was to constitute representative cases of both closed- and open-shell wave

functions, to contain cases of strained wave functions as represented by non-equilibrium

molecular structures, and include cases with potential near-degeneracy effects as repre-

sented by transition-metal (TM) complexes. In this respect, it is the expectation that the

data set presented below is not biased and does not contain tests which are cherry-picked

to favor one or another of the optimization methods. Moreover, with this selection of test

suite, it comes naturally that any subsequent analysis on the merits of the three methods

has to be based on a statistical comparison. This also eliminates the significance of any

parameter sensitivity some molecular structures might exhibit in individually compiled

convergence rates.

Thus, structures beyond stationary points and structures containing transition metals,

as well as those beyond the ground electronic states, were utilized to evaluate the robust-

ness of the reported SCF/DFT optimization procedures. Among these, a subset of 500 (265

singlets + 235 doublets) organic molecules was selected from the Sella57 database to rep-

resent organic molecules composed of 7 to 25 atoms. The original Sella database contains

molecular structures close to a transition state structure for both singlet and doublet spin

states. These structures were subsequently optimized to either the reactant or the product

equilibrium molecular structure, thus doubling the number of molecular structures. The

two sets of molecular structures in the singlet spin state where subsequently used for the

benchmarking of wave functions in both the singlet and triplet states. Hence, the organic

molecules were subjected to calculations in singlet, doublet, and triplet states, involving
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both stationary and transition state structures. Additionally, a subset of 275 structures was

drawn from the tmQM58 dataset to represent transition-metal complexes with fewer than

20 atoms. Here, the transition-metal complexes were computed in both their singlet and

triplet electronic states. To summarize: 265 singlet TS-like structures were computed as

both singlet and triplet; those structures were optimized to a stable singlet structure, and

again the wave function was computed as singlet and triplet; 235 doublet TS-like structures

were computed as doublets; after optimization to stable doublet structures the doubletwave

function was again computed; 275 transition-metal-complex structures were computed as

singlet and triplet. This gives 265 × 4 + 235 × 2 + 275 × 2 = 2080 total structures for each
SCF optimization method. It should be noted that the geometry optimizations were done

only once at the HF/3-21G level of theory, and the resulting structures were used for all

reported calculations as single points.

All calculations were carried out using the OpenMolcas software package, version

23.0659. The evaluation of three distinct SCF procedures was conducted utilizing both HF

andDFT-basedmethods. DFT calculationswere done using the B3LYP functional60. For or-

ganic molecules, the cc-pVDZ basis set61–63 was adopted, while molecules containing tran-

sition metals were computed using the ANO-R1 basis set64,65 (the use of ANO-R1 in Open-

Molcas automatically enables the exact 2-component (X2C)66 scalar relativistic Hamilto-

nian and finite-size nuclei). Singlet calculations were done with the restricted SCF formu-

lation, doublet and triplet calculationswith the spin-unrestricted one. The default SCF con-

vergence criteria were utilized (energy change below 10−9 𝐸h, a maximum absolute value

of the occupied–virtual Fock matrix below 1.5 × 10−4, and a norm of ∆𝜿 below 10−3), along
with the RICD approximation67, while the default LK procedure68 was disabled. For DFT

calculations, the default Libxc69 implementation andnumerical quadrature inOpenMolcas

were employed. The calculations were conducted without the imposition of any symme-

try constraints. The performance of the three SCF procedures was assessed by comparing

the number of SCF iterations. If not otherwise stated, this is the iteration count after the

standard SCF startup procedure, which consists of both the “initial guess” of occupied or-

bitals and a number of preliminary iterations with EDIIS8 and DIIS42 procedures, as im-
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plemented in OpenMolcas and described in the appendix, such that the reported iteration

counts refer only to the three methods benchmarked in this work.

Results and Discussion

The results in this section will be presented into two parts. First, the significance of the re-

setting technique of the r-GDIIS procedure will be assessed as compared to a vanilla GDIIS

implementation. Second, the different orbital optimization methods – the r-GDIIS, the RS-

RFO and the S-GEK/RVO methods – will be benchmarked against each other.

Performance assessment of the r-GDIIS approach

The suggested resetting technique of the r-GDIIS method is here compared versus a

straightforward implementation of the GDIIS with respect to iterations until convergence

according to the default threshold. The average number of iterations and the standard devi-

ation of the iteration count for the eight separate sets of benchmark calculations as assessed

with the HF and the B3LYP methods are presented in Table 1. Additionally, the table con-

tains information, for each set, on the number of molecules for which the calculation took

more than 120 iterations to converge and the number of molecules for which convergence

was not reached before 400 iterations (including the SCF startup in this latest count). Note

that the statistics is based on the cases in which convergence was reached. Hence, an ap-

parent advantage from the statistics could be a sign that problematic cases did not converge

and in this sense did not contribute to the evaluation of the statistical data.

The following three general observations can be noted. First, the B3LYP optimization

procedure seems in general to be less problematic to converge as compared to HF in the

cases of open-shell calculations. Second, the triplet state transition metal benchmarks

stands out as a more challenging task both at the HF and the B3LYP level of theory as

compared to the other benchmark sets. Third, convergence is faster for benchmark molec-

ular structures that correspond to equilibriummolecular structures – note that the neither

triplet benchmark set corresponds to equilibrium molecular structures, as they are opti-
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Table 1: Benchmark results for the eight sets of benchmark calculations compiled
with the GDIIS and r-GDIIS approaches. The reported numbers are the average
number of iterations post SCF startup (the standard deviation) / the number of
molecules for which more than a total of 120 iterations was needed (the number
of molecules which did not converge before a total of 400 SCF iterations).

HF B3LYP
GDIIS r-GDIIS GDIIS r-GDIIS

Singlets 11.2(2.5) / 0(0) 11.3(2.9) / 0(0) 9.4(2.2) / 0(3) 9.8(3.1) / 0(0)
Singlets Opt 7.9(1.0) / 0(0) 7.9(1.0) / 0(0) 8.1(1.4) / 0(0) 8.1(1.4) / 0(0)
Doublets 15.4(5.3) / 0(19) 17.1(8.4) / 0(0) 11.0(2.4) / 0(2) 11.1(3.0) / 0(0)
Doublets Opt 12.9(6.0) / 0(11) 15.2(13.4) / 0(0) 10.0(3.7) / 0(5) 11.4(12.2) / 1(0)
Triplets 11.5(5.9) / 0(4) 12.3(8.1) / 0(0) 7.0(2.5) / 0(0) 7.0(2.5) / 0(0)
Triplets Opt 12.6(15.8) / 1(24) 19.6(32.4) / 8(0) 8.6(4.1) / 0(0) 8.6(4.1) / 0(0)
TM Singlets 12.5(4.9) / 0(4) 13.2(7.6) / 0(0) 10.9(3.6) / 0(1) 11.4(3.8) / 0(5)
TM Triplets 34.0(20.0) / 1(102) 47.8(36.9) / 7(2) 24.6(29.5) / 2(48) 33.5(29.6) / 7(2)

mized for a singlet wave function. This is in line with the purpose of the design of the test

suites. Finally, it is clear that the resetting of the DIIS depth is a significant improvement.

For example, the resettingmechanism reduces the total number of failed convergence cases

from 164 to 2, and from 59 to 7 for the HF and B3LYP methods, respectively. In particular,

it is noted that for the triplet transitions metals close to half of the test cases fail to converge

with the standard GDIIS – 102 cases out of 275 – whereas the resetting approach more or

less eliminates this problem – 2 cases. This is exactly the reason why the transition metal

sets were included in the benchmark suite: open-shell transition metal complexes are ex-

pected to constitute more of a challenge as compared to molecular systems made up of

elements from the first three rows of the periodic table. It is also noted that the resetting

approach can introduce a marginal increase in the iteration count but this comes with the

benefit that convergence is almost guaranteed. To summarize, in general these results are a

clear empirical documentation of the benefits of the resetting procedure. More specifically,

for systems with complicated open-shell electronic structures the resettingmechanism can

be the difference between frequent failures or not.
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Benchmarking of three SCF orbital optimizers

The benchmark comparison between the r-GDIIS approach, the RS-RFO, and the S-RVO

optimization procedures is now presented. First, Table 2 contains statistics with respect to

average iterations with in each benchmark set, the standard deviation of the same mea-

sure, the number of systems converging after more than 120 iterations, and the number of

molecules for which the optimization did not converge before a total of 400 SCF iterations.

Relying on a single statistical measure to evaluate performance is known to be problem-

atic70; in particular, the mean and standard deviation can be very sensitive to extreme val-

ues. Therefore, somewhat more detailed data is presented in Figures 1, 2, 3 and 4, in which

the distribution of the iteration counts is represented by so-called box-and-whisker plots.

Here the box represents the first and third quartile, 𝑄1 and 𝑄3 (so that it includes 50% of

the cases), the line inside the box is the median value and second quartile. The whiskers

extend to 1.5 times the interquartile range, IQR = 𝑄3 − 𝑄1, from the start and the end of

the box, but always ending on a data point within the range. In the presented results the

whiskers have different lengths since there are often no data points which are outside 1.5
times the IQR range to the left of the box, rather the data before𝑄1 is rather compressed and
is found close the left of the 𝑄1 marking. Any data points that are outside of the whiskers
on either side are considered outliers and are represented explicitly. Note that the number

of outliers is a functions of how tight the distribution is. That is, a benchmark can have

more outliers as a consequence of the underlying distribution being very tight. Hence, the

number of outliers between the two benchmarks should be compared with care. The me-

dian and IQR value should be much less sensitive to extreme values than the mean and

standard deviation.

For all cases – monitoring both the average iterations and the standard deviations – one

can observe the following trends. The KS-DFT optimizations convergence typically faster

compared to HF.Moreover, the convergence tends to be swifter for the benchmark sets that

represent molecules at equilibrium structures as compared to non-equilibrium structures

– i.e. within the singlet and doublet sets. This is in particular true for the S-RVO optimizer.

Exceptions exists, for example, the transition metal HF singlets optimizations in general
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Table 2: Benchmark results for the eight sets of benchmark sets compiledwith the
r-GDIIS method, the RS-RFO, and, the S-GEK/RVO approaches, respectively. The
reported numbers are the average number of iterations post SCF startup (the stan-
dard deviation) / the number ofmolecules forwhichmore than 120 total iterations
was needed (the number of molecules which didn’t converge before a total of 400
SCF iterations).

HF
r-GDIIS RS-RFO S-GEK/RVO

Singlets 11.3(2.9) / 0(0) 11.7(2.3) / 0(0) 10.7(2.0) / 0(0)
Singlets Opt 7.9(1.0) / 0(0) 8.2(1.3) / 0(0) 7.9(1.0) / 0(0)
Doublets 17.1(8.4) / 0(0) 17.6(6.7) / 0(0) 15.1(5.5) / 0(0)
Doublets Opt 15.2(13.4) / 0(0) 17.3(22.1) / 1(0) 14.8(11.7) / 0(0)
Triplets 12.3(8.1) / 0(0) 13.4(6.7) / 0(0) 11.1(5.4) / 0(0)
Triplets Opt 19.6(32.4) / 8(0) 18.7(17.0) / 0(0) 14.7(12.1) / 0(0)
TM Singlets 13.2(7.6) / 0(0) 15.7(13.6) / 0(0) 13.8(10.7) / 0(0)
TM Triplets 47.8(36.9) / 7(2) 49.5(27.2) / 7(0) 41.8(24.3) / 4(0)

B3LYP
r-GDIIS RS-RFO S-GEK/RVO

Singlets 9.8(3.1) / 0(0) 11.2(4.4) / 0(0) 9.0(3.0) / 0(0)
Singlets Opt 8.1(1.4) / 0(0) 9.7(2.0) / 0(0) 7.5(1.1) / 0(0)
Doublets 11.1(3.0) / 0(0) 11.8(3.5) / 0(0) 10.5(2.9) / 0(0)
Doublets Opt 11.4(12.2) / 1(0) 12.4(14.9) / 1(0) 10.7(10.1) / 0(0)
Triplets 7.0(2.5) / 0(0) 7.4(2.8) / 0(0) 6.7(2.3) / 0(0)
Triplets Opt 8.6(4.1) / 0(0) 9.8(7.9) / 0(0) 8.1(3.8) / 0(0)
TM Singlets 11.4(3.8) / 0(5) 16.5(7.4) / 0(2) 10.0(4.3) / 0(0)
TM Triplets 33.5(29.6) / 7(2) 31.4(22.9) / 3(0) 24.5(14.5) / 0(0)
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(a) Singlets

(b) Singlets Opt

Figure 1: Benchmark iteration counts for the 2 benchmark sets of singlets – the Singlets and
Singlets Opt set are presented at the upper and the lower panels, respectively – evaluated
at the HF and KS-DFT (B3LYP) level of theory using the r-GDIIS, the RS-RFO, and the S-
GEK/RVO SCF/KS-DFT orbital optimization methods, respectively. The 𝑥-axis represents
the iteration count until convergence. The data is presented with box and whisker plots
where the whisker range is derived by the 1.5 IQR-rule. Outliers are plotted as diamond-
shaped signs.
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(a) Doublets

(b) Doublets Opt

Figure 2: Benchmark iteration counts for the 2 benchmark sets of doublets – the Doublets
and Doublets Opt set are presented at the upper and the lower panels, respectively – eval-
uated at the HF and KS-DFT (B3LYP) level of theory using the r-GDIIS, the RS-RFO, and
the S-GEK/RVO SCF orbital optimization methods, respectively. The 𝑥-axis represents the
iteration count until convergence. The data is presented with box and whisker plots where
the whisker range is derived by the 1.5 IQR-rule. Outliers are plotted as diamond-shaped
signs.
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(a) Triplets

(b) Triplets Opt

Figure 3: Benchmark iteration counts for the 2 benchmark sets of triplets – the Triplets and
Triplets Opt set are presented at the upper and the lower panels, respectively – evaluated
at the HF and KS-DFT (B3LYP) level of theory using the r-GDIIS, the RS-RFO, and the S-
GEK/RVO SCF/KS-DFT orbital optimization methods, respectively. The 𝑥-axis represents
the iteration count until convergence. The data is presented with box and whisker plots
where the whisker range is derived by the 1.5 IQR-rule. Outliers are plotted as diamond-
shaped signs.
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(a) TM Singlets

(b) TM Triplets

Figure 4: Benchmark iteration counts for the 2 benchmark sets of transition metals – the
TM Singlets and TM Triplets set are presented at the upper and the lower panels, respec-
tively – evaluated at the HF and KS-DFT (B3LYP) level of theory using the r-GDIIS, the RS-
RFO, and the S-GEK/RVO SCF/KS-DFT orbital optimization methods, respectively. The𝑥-axis represents the iteration count until convergence. The data is presented with box and
whisker plots where the whisker range is derived by the 1.5 IQR-rule. Outliers are plotted
as diamond-shaped signs.
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converge faster than the corresponding KS-DFT optimizations. The most striking result is,

however, that for all the eight test sets, using HF or KS-DFT, the S-RVO procedure shows

superior performance as compared to both the r-GDIIS and the RS-RFO procedures, with

the possible exception of the TM singlets with HF. For the test sets of the organic molecules

this advantage is modest but consistent. For the transition metals the S-RVO demonstrates

a significant advantage as compared to the two other optimization methods, this in partic-

ular for the open-shell (triplets) benchmark test suite – the average iterations are reduced

from 47.8 to 41.8when comparing r-GDIIS and S-GEK/RVO. For theKS-DFT optimization,
the corresponding results are reduced from 33.5 to 24.5. The table and the corresponding
figures also readily show that the observed dispersion is significantly reduced for the S-RVO

method as compared to the two other methods, and the extreme values tend to be lower.

It is noted that in some cases there are a handful of outliers beyond the maximum value

displayed in the figures, but never for the S-RVOmethod. Finally, one can observe that the

S-RVOprocedure is the only one for which there is no single case inwhich the optimization

did not converge. It is evident that the non-parametric surrogate model – although just ex-

pressed in a subspace – is a significant step forward toward a swift and robust SCF/KS-DFT

orbital optimization method.

Briefly, on comparison of the r-GDIIS versus the RS-RFO method the results are a bit

disappointing. The RS-RFO approach, as implemented in this study, does not exhibit any

superiority over the r-GDIIS – a comparison with the GDIIS would of course leave a com-

pletely different verdict. The only cases where there seems to be some advantage of the

RS-RFO as compared to the r-GDIIS approach can be found for the statistics of the KS-

DFT optimizations of the transitionmetals. The origin of the generally slower convergence

rate can one only speculate about. Is it that the step restriction is too tight? Considering that

both methods are molded in the frame of a second-order method – both are quasi-Netwon

methods in some respect – one would not expect a significant difference in performance.

Hence, the used thresholds for activating the step restriction and the underlying ad-hoc pro-

cedure involved in these decisions can be suspected. This will not, however, be analyzed

any further here, especially when the restricted variance approach of the RVO procedure
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is demonstrating a significant advantage over the step restriction procedure of the RS-RFO

method, so the RVO procedure based on S-GEK should be the norm.

In addition to the iteration count, it is also interesting to analyze the quality of the con-

verged wave function or orbitals. We do this by comparing the final energies obtained in

the calculations, taking the S-GEK/RVO results as a reference, since it was themethod that

converged in all cases. Most of the 4160 total structures, considering separately the HF and

B3LYP calculations, resulted in the same converged energy (when converged) with the four

methods: GDIIS, r-GDIIS, RS-RFO and S-GEK/RVO. Only in 199 cases is the energy differ-

ence larger than 5×10−7 𝐸h. These are represented in Figure 5, where it is evident thatmost
differences are positive, i.e. the S-GEK/RVOmethod converges to a lower (when not equal)

energy than the other methods, except in a dozen of cases. It is also clear that GDIIS and

r-GDIIS tend to differ more from S-GEK/RVO than RS-RFO. Moreover, it can be observed

that most differences are found in the sets of transition metal complexes (123 cases) and,

in general, more in HF than in B3LYP calculations (144 vs. 55).

This section ends with some timing observations and suggestions for future develop-

ments. First, it was noted that the RS-RFO approach has a significant longer timings per

iteration as compared to the r-GDIIS approach. This most likely has its origin in that the

former handles the full parameter space while the r-GDIIS only works in a very limited

subspace. Second, the S-GEK/RVO was adopted post the RS-RFO procedure and in this

context the S-GEK/RVO did not add significant additional timing to the underlying RS-

RFOmethod. Considering the consistently better performance of the r-GDIIS as compared

to RS-RFO – both for the convergence rate and the timings – one should explore the com-

bination of the r-GDIIS and the S-GEK/RVO procedure for even better and faster conver-

gence.

Conclusions

In this report three SCF/KS-DFT orbital optimization schemes have been investigated us-

ing a large benchmark test suite to evaluate performance characteristics. First a resetting
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version of the GDIIS procedure, the r-GDIIS approach, was presented. This approach uses

a number of different criteria to decide when the DIIS depth needs to be reset in order to

avoid divergence or poor convergence rate. Second, a reduced-step rational function opti-

mization scheme was presented. This method is facilitated by the use of the Davidson pro-

cedure in connection with an on-the-fly Hessian update procedure as the rational function

equations are solved. Finally, the novel implementation of the gradient-enhanced Kriging

adapted to a subspace formalism, S-GEK, was presented and implemented in the context of

a restricted-variance optimization (RVO) procedure. The benchmark calculations included

in total an excess of 2000 cases – singlet, doublet and triplet state organicmolecular systems,

and singlet and triplet state transition metal complexes – about half of the structures cor-

respond to equilibriummolecular structures. The results of the benchmarking gave a clear

indication that the S-GEK is superior to any of the conventional state-of-the-art methods of

SCF/KS-DFT orbital optimization explored in this study. In particular, it was demonstrated

that for transitionmetals the improvements in convergence rates are impressive and robust.

Moreover, the newmethod exhibits sturdy characteristics with respect to handling difficult

cases – in all there was not an single instance in which the S-GEK/RVO optimization failed

to complete the optimization procedure.

To conclude, the paper suggest that the S-GEK/RVO procedure should be explored in

conjunction with the r-GDIIS approach for optimal CPU timings. In addition, consider-

ing that the S-GEK/RVO approach is a non-parametric surrogate model there is no obvi-

ous requirement that it needs to start in the so-called quadratic region of the parameter

space. That is, it should be worthwhile to investigate to what extent the iterations in the

SCF startup scheme can be reduced by switching over to the S-GEK/RVO approximation

earlier in the optimization procedure.
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Appendix

The SCF optimization methods described, implemented and tested in this work are for the

most part based on a second-order Taylor expansion, and therefore they work best when

the wave function is relatively close to a minimum, such that the energy is approximately

quadratic with respect to 𝜿. Over the years, experience has shown that far from aminimum,

performance tends to be poor and convergence can be an issue. To address this, several

“SCF acceleration” schemes have been proposed whose aim is to guide the optimization in

a fast and robust manner towards a quadratic region where efficient optimization methods

can perform best. The process from the beginning of a calculation to the point where the

final optimization method (GDIIS, r-GDIIS, RS-RFO, or S-GEK/RVO) is activated is what

is referred to in this work as “SCF startup”, and includes both the definition of the starting

orbitals and the initial SCF iterations. Given that this process is identical regardless of the

chosen final method, the iterations used for it are excluded from the iteration counts re-

ported in the main text. Although the startup process has not been the subject of this work,

it will be briefly described in this appendix for completeness. It is the default startup in

OpenMolcas59, except where noted.
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Starting Orbitals

The SCF procedure must begin with a starting set of molecular orbitals that define the

reference Slater determinant. While in principle any orthonormal set of orbitals could be

used, the process will benefit from an initial guess as close as possible to the final solution,

facilitating rapid convergence to the ground state and avoiding spurious convergence to

unphysical solutions. The performance of any optimizationmethod is therefore dependent

on how the starting orbitals are defined. In all cases the default in OpenMolcas59 have been

used. Nevertheless, since the process by which these starting orbitals are defined has not,

to our knowledge, been previously described, we take the opportunity of doing so in this

appendix, noting again that this is not strictly part of this work.

The initial (guess) orbitals for the SCF procedure are obtained by diagonalization of a

synthetic model Fock matrix 𝑭m. This model Fock matrix is constructed in AO basis, as a

sum of atomic blocks, with interatomic blocks set to 0, i.e.

𝐹m𝜇𝜈 = ⎧⎪⎨⎪⎩
𝐹𝐴𝜇𝜈 𝜇, 𝜈 ∈ 𝐴0 𝜇 ∈ 𝐴, 𝜈 ∈ 𝐵,𝐴 ≠ 𝐵 (35)

where𝐴 and𝐵 refer to atoms, or centers for basis functions. Each atomic block corresponds
to a model Fock operator that is diagonal in a set of orthonormal reference functions:

𝐹𝐴,ref𝜅𝜆 = 𝜂𝜅𝛿𝜅𝜆 (36)

where 𝜂 are the energies of the reference functions. The reference atomic Fock matrix is
transformed to an arbitrary basis set via the overlaps between the basis set and the reference

functions (𝑺𝐴,ref, a rectangular matrix) and among the basis set functions (𝑺𝐴, a symmetric
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matrix):

𝑆𝐴,ref𝜇𝜅 = ⟨𝜒𝜇|𝜒𝜅⟩ 𝜇 ∈ 𝐴, 𝜅 is a reference function of 𝐴 (37)𝑆𝐴𝜇𝜈 = ⟨𝜒𝜇|𝜒𝜈⟩ 𝜇, 𝜈 ∈ 𝐴 (38)𝑭𝐴 = (𝑺𝐴)−1𝑺𝐴,ref𝑭𝐴,ref(𝑺𝐴,ref)𝖳(𝑺𝐴)−1 (39)

Once 𝐹m is obtained by eq. (35), it is first transformed to an orthonormal basis, defined by

canonical orthonormalization. If 𝑺 is the overlap matrix of the full system in the desired

basis, the matrix 𝑳 is defined as 𝑳 = 𝑽𝝈1∕2 (40)

where 𝑽 is the matrix of eigenvectors of 𝑺 and 𝝈 is the diagonal matrix of its eigenvalues.

Then the transformed 𝑭m is: 𝑭̃m = 𝑳𝖳𝑺𝑭m𝑺𝑳 (41)

Note that, in the event of a monoatomic system, the factors (𝑺𝐴)−1 and 𝑺 in eqs. (39) and
(41)will cancel out, but in general 𝑺 ≠ 𝑺𝐴. Diagonalization of 𝑭̃m yields a set of eigenvectors

and eigenvalues that can be used as starting orbital coefficients and energies for the SCF

procedure.

The reference functions fromwhich the atomic Fock matrices, eq. (36), are constructed

are quite limited, only valence functions are typically included. Any reasonable calculation

will contain manymore functions, that thus span a larger Hilbert space. As a consequence,

the diagonalization of 𝑭̃m produces a large number of orbitals with zero or very small en-

ergies, which are not resolved. In order to generate a more useful and well-defined set of

orbitals for this “virtual” space, they are subject to a further diagonalization using the ki-

netic energy operator.

The subset of eigenvectors of 𝑭̃m corresponding to eigenvalues larger than −10−3 𝐸h,𝑪virt, is used to obtain the kinetic energy matrix over the virtual space, from the full kinetic

energy matrix in AO basis: 𝑻virt = 𝑪𝖳
virt𝑻AO𝑪virt (42)
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and they are transformed to diagonalize the 𝑻virt:

𝑪̃virt = 𝑪virt𝑼 (43)

where 𝑼 are the eigenvectors of 𝑻virt. The energies of these orbitals are taken as the corre-

sponding eigenvalues, shifted by 3.0 𝐸h, to ensure that they are well above the rest.
The reference functions and 𝜂 values used in eq. (36) and (39) are the lowest-lying

atomic natural orbitals and their energies, as defined by the ANO-RCC basis set71–73. The

energies are defined in the files distributed with the OpenMolcas source code59, for con-

venience, the values relevant for the calculations in this work are given in the supporting

information.

Initial Optimization Procedures

Once the starting orbitals are defined, an initial wave function and density matrix is set up

by occupying the lowest-lying orbitals, according to the aufbau principle. Alternatively, an

initial “Fermi aufbau” procedure is employed, in which the orbitals are assigned fractional

occupations consistent with a temperature 𝑇F and Fermi energy 𝐸F:
𝑛𝑖 = 𝑛max1 + exp ( 𝜀𝑖−𝐸F𝑇F ) (44)

where 𝑛max is 2 for restricted SCF and 1 for unrestricted SCF calculations, 𝜀𝑖 are the orbital
energies, and 𝐸F is defined in such a way that the sum of 𝑛𝑖 matches the total number of
electrons in the system, i.e. the only input parameter is 𝑇F. The default initial value for 𝑇F
is 0.5 𝐸h, and it is multiplied by 0.46 each iteration. When 𝑇F reaches 0.01 𝐸h or lower and
the energy change from the previous iteration is below 0.01 𝐸h, the aufbau procedure is
terminated and orbitals are assigned only 0 or 𝑛max occupations. This Fermi aufbau process
is enabled automatically whenever the starting orbital energies are not considered reliable

enough for a straightforward aufbau occupation. In the calculations presented in this work,

this happens only for the triplets (in the Triplets, Triplets Opt and TM Triplets sets) and for
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the anionic singlets (cases 000 to 095 in the TM Singlets set).

The optimization method applied during the initial iterations is the “energy-DIIS”

(EDIIS)8, which, unlike the methods described in the Theory section, is not formulated

in terms of orbital rotations, but as a more straightforward SCF approach with successive

construction and diagonalization of a Fock matrix74. In EDIIS, the Fock matrix that is di-

agonalized at a given iteration is not the one generated by the “current” density matrix𝑫𝑚,
but by an interpolated density matrix 𝑫̃𝑚

𝑫̃𝑚 = 𝑚∑
1 𝑐𝑖𝑫𝑚, 𝑐𝑖 ≥ 0, 𝑚∑

1 𝑐𝑖 = 1 (45)

The 𝑐𝑖 coefficients are obtained by minimizing the energy function
𝐸(𝑫̃𝑚) = 𝑚∑

1 𝑐𝑖𝐸(𝑫𝑖) −∑
𝑗<𝑖 Tr((𝑭𝑖 − 𝑭𝑗)(𝑫𝑖 − 𝑫𝑗)) (46)

where 𝑭𝑖 are the Fock matrices corresponding to the density matrices. When 𝑫̃𝑚 is found,
it is used for building an interpolated Fock matrix 𝑭̃𝑚, and diagonalizing this yields a new
set of orbitals used in the next iteration. The EDIIS optimization proceeds until the energy

change is below 0.1 𝐸h and themaximum absolute value of the off-diagonal elements of 𝑫̃𝑚
is smaller than 0.15.

After the EDIIS method has converged, the optimization switches to C2-DIIS42, in

which the coefficients are first constrained to
∑𝑚1 𝑐2𝑖 = 1 instead of ∑𝑚1 𝑐𝑖 = 1 (and neg-

ative coefficients are allowed, so extrapolations are possible). In contrast to the GDIIS ap-

proach described in the Theory section, no quasi-Newton–Raphson-like step is performed

after. This method continues until the off-diagonal elements of the density matrix are be-

low 0.075, in absolute value. At that point, the final optimization method (GDIIS, r-GDIIS,
RS-RFO or S-GEK/RVO, in this work) is enabled.

37

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/


References

(1) Roothaan, C. C. J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys.

1951, 23, 69–89.

(2) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation

Effects. Phys. Rev. 1965, 140, A1133–A1138.

(3) Yaffe, L. G.; Goddard, W. A. Orbital optimization in electronic wave functions: equa-

tions for quadratic and cubic convergence of general multiconfiguration wave func-

tions. Phys. Rev. A 1976, 13, 1682–1691.

(4) Bacskay, G. B. A quadratically convergent Hartree–Fock (QC-SCF) method. Applica-

tion to closed shell systems. Chem. Phys. 1981, 61, 385–404.

(5) Pulay, P. Convergence acceleration of iterative sequences. The case of SCF iteration.

Chem. Phys. Lett. 1980, 73, 393–398.

(6) Pulay, P. Improved SCF convergence acceleration. J. Comput. Chem. 1982, 3, 556–560.

(7) Sellers, H. ADEM-DIOS: an SCF convergence algorithm for difficult cases. Chem.

Phys. Lett. 1991, 180, 461–465.

(8) Kudin, K. N.; Scuseria, G. E.; Cancès, E. A black-box self-consistent field convergence

algorithm: One step closer. J. Chem. Phys. 2002, 116, 8255–8261.

(9) Fang, H.; Saad, Y. Two classes of multisecant methods for nonlinear acceleration.Nu-

mer. Linear Algebra Appl. 2009, 16, 197–221.

(10) Hu, X.; Yang, W. Accelerating self-consistent field convergence with the augmented

Roothaan–Hall energy function. J. Chem. Phys. 2010, 132, 054109.

(11) Garza, A. J.; Scuseria, G. E. Comparison of self-consistent field convergence accelera-

tion techniques. J. Chem. Phys. 2012, 137, 054110.

(12) Pratapa, P. P.; Suryanarayana, P. Restarted Pulay mixing for efficient and robust accel-

eration of fixed-point iterations. Chem. Phys. Lett. 2015, 635, 69–74.

38

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/


(13) Li, H.; Yaron, D. J. A Least-Squares Commutator in the Iterative Subspace Method for

Accelerating Self-Consistent Field Convergence. J. Chem. Theory Comput. 2016, 12,

5322–5332.

(14) Hu, W.; Lin, L.; Yang, C. Projected Commutator DIIS Method for Accelerating Hy-

brid Functional Electronic Structure Calculations. J. Chem. Theory Comput. 2017, 13,

5458–5467.

(15) Høst, S.; Olsen, J.; Jansík, B.; Thøgersen, L.; Jørgensen, P.; Helgaker, T. The augmented

Roothaan–Hall method for optimizing Hartree–Fock and Kohn–Sham density matri-

ces. J. Chem. Phys. 2008, 129, 124106.

(16) Jansík, B.; Høst, S.; Johansson, M. P.; Olsen, J.; Jørgensen, P.; Helgaker, T. A step-

wise atomic, valence-molecular, and full-molecular optimisation of the Hartree–

Fock/Kohn–Sham energy. Phys. Chem. Chem. Phys. 2009, 11, 5805.

(17) Wang, Y. A.; Yam, C. Y.; Chen, Y. K.; Chen, G. Communication: Linear-expansion

shooting techniques for accelerating self-consistent field convergence. J. Chem. Phys.

2011, 134, 241103.

(18) Chen, Y. K.; Wang, Y. A. LISTb: a Better Direct Approach to LIST. J. Chem. Theory

Comput. 2011, 7, 3045–3048.

(19) Feldmann, R.; Baiardi, A.; Reiher,M. Second-Order Self-Consistent Field Algorithms:

From Classical to Quantum Nuclei. J. Chem. Theory Comput. 2023, 19, 856–873.

(20) Thøgersen, L.; Olsen, J.; Yeager, D.; Jørgensen, P.; Sałek, P.; Helgaker, T. The trust-

region self-consistent field method: Towards a black-box optimization in Hartree–

Fock and Kohn–Sham theories. J. Chem. Phys. 2004, 121, 16–27.

(21) Thøgersen, L.; Olsen, J.; Köhn, A.; Jørgensen, P.; Sałek, P.; Helgaker, T. The trust-

region self-consistent fieldmethod in Kohn–Sham density-functional theory. J. Chem.

Phys. 2005, 123, 074103.

39

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/


(22) Yang, C.; Meza, J. C.; Wang, L.-W. A Trust Region Direct Constrained Minimization

Algorithm for the Kohn-Sham Equation. SIAM J. Sci. Comput. 2007, 29, 1854–1875.

(23) Wen, Z.; Milzarek, A.; Ulbrich, M.; Zhang, H. Adaptive Regularized Self-Consistent

Field Iteration with Exact Hessian for Electronic Structure Calculation. SIAM J. Sci.

Comput. 2013, 35, A1299–A1324.

(24) Helmich-Paris, B. A trust-region augmented Hessian implementation for restricted

and unrestricted Hartree–Fock and Kohn–Sham methods. J. Chem. Phys. 2021, 154,

164104.

(25) Kreplin, D. A.;Werner, H.-J. A combined first- and second-order optimizationmethod

for improving convergence of HartreeFock and Kohn–Sham calculations. J. Chem.

Phys. 2022, 156, 214111.

(26) Høyvik, I.-M. Convergence acceleration for the multilevel Hartree–Fock model.Mol.

Phys. 2019, 118, 1626929.

(27) Seidl, C.; Barca, G.M. J. Q-Next: AFast, Parallel, andDiagonalization-FreeAlternative

to Direct Inversion of the Iterative Subspace. J. Chem. Theory Comput. 2022, 18, 4164–

4176.

(28) Császár, P.; Pulay, P. Geometry optimization by direct inversion in the iterative sub-

space. J. Mol. Struct. 1984, 114, 31–34.

(29) Fischer, T. H.; Almlöf, J. General methods for geometry and wave function optimiza-

tion. J. Phys. Chem. 1992, 96, 9768–9774.

(30) Raggi, G.; Fdez. Galván, I.; Ritterhoff, C. L.; Vacher, M.; Lindh, R. Restricted-Variance

Molecular Geometry Optimization Based on Gradient-Enhanced Kriging. J. Chem.

Theory Comput. 2020, 16, 3989–4001.

(31) Liu, W.; Batill, S. Gradient-Enhanced Response Surface Approximations Using Krig-

ing Models. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Opti-

mization. 2002.

40

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/


(32) Han, Z.-H.; Görtz, S.; Zimmermann, R. Improving variable-fidelity surrogate model-

ing via gradient-enhanced kriging and a generalized hybrid bridge function. Aerosp.

Sci. Technol. 2013, 25, 177–189.

(33) Ulaganathan, S.; Couckuyt, I.; Ferranti, F.; Laermans, E.; Dhaene, T. Performance

study of multi-fidelity gradient enhanced kriging. Struct. Multidiscip. Optim. 2015, 51,

1017–1033.

(34) Dalgaard, E.; Jørgensen, P. Optimization of orbitals formulticonfigurational reference

states. J. Chem. Phys. 1978, 69, 3833–3844.

(35) Yeager, D. L.; Jørgensen, P. Convergency studies of second and approximate second

order multiconfigurational Hartree–Fock procedures. J. Chem. Phys. 1979, 71, 755–

760.

(36) Broyden, C. G. The Convergence of a Class of Double-rank Minimization Algorithms

1. General Considerations. IMA J. Appl. Math. 1970, 6, 76–90.

(37) Fletcher, R. A new approach to variable metric algorithms. Comput. J. 1970, 13, 317–

322.

(38) Goldfarb, D. A family of variable-metric methods derived by variational means.Math.

Comput. 1970, 24, 23–23.

(39) Shanno, D. F. Conditioning of quasi-Newton methods for function minimization.

Math. Comput. 1970, 24, 647–647.

(40) Chupin, M.; Dupuy, M.-S.; Legendre, G.; Séré, É. Convergence analysis of adaptive

DIIS algorithms with application to electronic ground state calculations. ESAIM:

Math. Modell. Numer. Anal. 2021, 55, 2785–2825.

(41) Anderson, D. G. Iterative Procedures for Nonlinear Integral Equations. J. Assoc. Com-

put. Mach. 1965, 12, 547–560.

(42) Sellers, H. The C2-DIIS convergence acceleration algorithm. Int. J. Quantum Chem.

1993, 45, 31–41.

41

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/


(43) Banerjee, A.; Adams, N.; Simons, J.; Shepard, R. Search for stationary points on sur-

faces. J. Phys. Chem. 1985, 89, 52–57.

(44) Besalú, E.; Bofill, J. M. On the automatic restricted-step rational-function-

optimization method. Theor. Chem. Acc. 1998, 100, 265–274.

(45) Lindh, R.; Bernhardsson, A.; Schütz, M. Force-constant weighted redundant coordi-

nates in molecular geometry optimizations. Chem. Phys. Lett. 1999, 303, 567–575.

(46) Lindh, R.; Bernhardsson, A.; Karlström, G.; Malmqvist, P.-Å. On the use of a Hes-

sianmodel function inmolecular geometry optimizations.Chem. Phys. Lett. 1995, 241,

423–428.

(47) Davidson, E. R. The iterative calculation of a few of the lowest eigenvalues and cor-

responding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 1975, 17,

87–94.

(48) Slattery, S. A.; Surjuse, K.; Valeev, E. F. Economical Quasi-Newton Self Consistent

Field Solver. arXiv.org, e-Print Arch., Phys. 2023, 2307.00560, This content is a preprint

and has not been peer-reviewed.

(49) Nocedal, J.; Wright, S. J. Numerical Optimization; Springer New York, 2006.

(50) Pinheiro, M., Jr.; Dral, P. O. Quantum Chemistry in the Age of Machine Learning; Else-

vier, 2023; pp 205–232.

(51) Fdez. Galván, I.; Raggi, G.; Lindh, R. Restricted-Variance Constrained, Reaction Path,

and Transition State Molecular Optimizations Using Gradient-Enhanced Kriging.

J. Chem. Theory Comput. 2021, 17, 571–582.

(52) Lindh, R.; Fdez. Galván, I. Quantum Chemistry in the Age of Machine Learning; Else-

vier, 2023; pp 391–428.

(53) Fdez. Galván, I.; Lindh, R. Smooth Things Come in Threes: A Diabatic Surrogate

Model for Conical IntersectionOptimization. J. Chem. TheoryComput. 2023, 19, 3418–

3427.

42

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/


(54) Ritterhoff, C. L. The Use of Kriging Within the SCF Procedure. ChemRxiv 2020,

doi:10.26434/chemrxiv.11950542.v1 This content is a preprint and has not been peer-

reviewed.

(55) Rasmussen, C. E.; Williams, C. K. I. Practical Methods of Optimization; MIT Press,

2006; Chapter 4, pp 79–104.

(56) Stein, M. L. Interpolation of Spatial Data; Springer Series in Statistics 9; Springer New

York, 1999.

(57) Hermes, E. D.; Sargsyan, K.; Najm,H. N.; Zádor, J. Sella, anOpen-Source Automation-

Friendly Molecular Saddle Point Optimizer. J. Chem. Theory Comput. 2022, 18, 6974–

6988.

(58) Balcells, D.; Skjelstad, B. B. tmQM Dataset—Quantum Geometries and Properties of

86k Transition Metal Complexes. J. Chem. Inf. Model. 2020, 60, 6135–6146.

(59) Li Manni, G.; Fdez. Galván, I.; Alavi, A.; Aleotti, F.; Aquilante, F.; Autschbach, J.;

Avagliano, D.; Baiardi, A.; Bao, J. J.; Battaglia, S. et al. The OpenMolcas Web: A

Community-Driven Approach to Advancing Computational Chemistry. J. Chem. The-

ory Comput. 2023,

(60) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation

of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional

Force Fields. J. Phys. Chem. 1994, 98, 11623–11627.

(61) Dunning, T. H. Gaussian basis sets for use in correlatedmolecular calculations. I. The

atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.

(62) Woon, D. E.; Dunning, T. H. Gaussian basis sets for use in correlated molecular calcu-

lations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371.

(63) Wilson, A. K.; Woon, D. E.; Peterson, K. A.; Dunning, T. H. Gaussian basis sets for use

in correlatedmolecular calculations. IX. The atoms gallium through krypton. J. Chem.

Phys. 1999, 110, 7667–7676.

43

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/


(64) Zobel, J. P.; Widmark, P.-O.; Veryazov, V. The ANO-R Basis Set. J. Chem. Theory Com-

put. 2020, 16, 278–294.

(65) Zobel, J. P.; Widmark, P.-O.; Veryazov, V. Correction to “The ANO-R Basis Set”.

J. Chem. Theory Comput. 2021, 17, 3233–3234.

(66) Kutzelnigg, W.; Liu, W. Quasirelativistic theory equivalent to fully relativistic theory.

J. Chem. Phys. 2005, 123, 241102.

(67) Aquilante, F.; Gagliardi, L.; Pedersen, T. B.; Lindh, R. Atomic Cholesky decomposi-

tions: A route to unbiased auxiliary basis sets for density fitting approximation with

tunable accuracy and efficiency. J. Chem. Phys. 2009, 130, 154107.

(68) Aquilante, F.; Pedersen, T. B.; Lindh, R. Low-cost evaluation of the exchange Fock

matrix from Cholesky and density fitting representations of the electron repulsion

integrals. J. Chem. Phys. 2007, 126, 194106.

(69) Lehtola, S.; Steigemann, C.; Oliveira, M. J. T.; Marques, M. A. L. Recent developments

in libxc – A comprehensive library of functionals for density functional theory. Soft-

wareX 2018, 7, 1–5.

(70) Weymuth, T.; Reiher, M. The transferability limits of static benchmarks. Phys. Chem.

Chem. Phys. 2022, 24, 14692–14698.

(71) Widmark, P.-O.; Malmqvist, P.-Å.; Roos, B. O. Density matrix averaged atomic natural

orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta

1990, 77, 291–306.

(72) Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. Main Group

Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J. Phys. Chem. A

2004, 108, 2851–2858.

(73) Roos, B. O.; Lindh, R.;Malmqvist, P.-Å.; Veryazov, V.;Widmark, P.-O. NewRelativistic

ANO Basis Sets for Transition Metal Atoms. J. Phys. Chem. A 2005, 109, 6575–6579.

44

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/


(74) Lehtola, S.; Blockhuys, F.; Van Alsenoy, C. An Overview of Self-Consistent Field Cal-

culations Within Finite Basis Sets.Molecules 2020, 25, 1218.

45

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/


TOC Graphic

46

https://doi.org/10.26434/chemrxiv-2023-321vf-v3 ORCID: https://orcid.org/0000-0002-0684-7689 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-321vf-v3
https://orcid.org/0000-0002-0684-7689
https://creativecommons.org/licenses/by-nc/4.0/

