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Abstract

Message-passing neural networks (MPNNs) on molecular graphs generate continuous

and differentiable encodings of small molecules with state-of-the-art performance on

protein-ligand complex scoring tasks. Here, we describe the Protein-Graph Network (PGN)

package, an open-source toolkit that constructs ligand-receptor graphs based on atom proximity

and allows users to rapidly apply and evaluate MPNN architectures for a broad range of tasks.

We demonstrate the utility of PGN by introducing benchmarks for affinity and docking score

prediction tasks. Graph networks generalize better than fingerprint-based models and perform

strongly for the docking score prediction task. Overall, MPNNs with Proximity Graph data

structures augment the prediction of ligand-receptor complex properties when ligand-receptor

data are available.

Introduction

Computational and machine learning (ML)-based approaches to predicting binding

affinity are critical research directions in drug discovery.1–4 A strong predictor of a ligand affinity

is desirable both for hit identification in virtual screening and for computationally evaluating

structure-activity relationships for hit expansion and hit-to-lead optimization. These approaches

include ligand-based methods that exclusively use 2-dimensional (2D) molecular representations

of known ligands to infer binding based on molecular similarity and structure-based approaches

that encode three-dimensional (3D) protein-ligand interactions. Despite recent advances in these

approaches, predicting ligand affinity remains a critical challenge in computational drug design,

particularly for generalizing to novel chemotypes.5 Developing strong computational predictors

would enable the computationally assisted medicinal chemist to evaluate many more compounds

in less time and cost than a purely experimental approach.

Recent reports show the power of learnable molecular representations by using Message

Passing Neural Networks (MPNNs) to accept the raw molecular graph as input.6–16 Importantly,

these learnable representations are tuned to each prediction task, allowing for a richer and more

task-specific encoding of the molecular graph, and have been shown to outperform hash-based

encodings in head-to-head comparisons in some cases.10,17 Beyond molecule-autonomous
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applications, early reports suggest that MPNNs can predict important properties of

ligand-receptor complexes.7,18 Unlike methods based on ligand structure only, these networks

either explicitly or implicitly encode 3D structural information about the ligand-receptor

complex.

This paper introduces Proximity Graph Networks (PGNs), an open-source toolkit that

allows for simple extension of multiple MPNN architectures to ligand-receptor graphs. This

software package enables information to pass between ligand and protein atoms during learning,

which we show can greatly affect model performance. Tunable ligand-receptor encodings offer

performance advantages in predicting ligand-receptor affinities. We also highlight MPNN’s

modularity, allowing us to implement new encoder architectures with minimal changes. We find

that different MPNN architectures are suited to different tasks, highlighting the importance of a

modular framework for easy evaluation of MPNN architectures. PGNs showed strong

performance compared to other published approaches on PDBbind datasets.19–21 Additionally, the

PGNs improved generalization performance on ligands bound to receptors not seen in the

training set. We also evaluated our models for a fine-grained, single protein, D4 Dopamine

Receptor docking-score prediction task.22 Strong performance on the docking-score prediction

task can aid in hit picking and improving the application of deep learning to streamline docking

workflows.23,24 These results indicate that PGNs could be a powerful tool to learn the properties

of ligand-receptor complexes.

Background

Developing accurate computational scoring functions (SFs) for assessing protein-ligand

binding affinity is an ongoing challenge, with approaches ranging from molecular fingerprints to

docking. These approaches include fingerprint and atom-pair expert encodings (PLEC25, LUNA26

and ECIF27 and docking-based SFs (Glide28, RF-score29, NN-score30). In contrast, new

deep-learning methods are based on graph encoders.31,32 The application of graph encoders to

cheminformatics tasks shows promise at improving existing scoring functions.6–16 Early research

using deep learning models as SFs includes TopologyNet33 and several traditional convolutional

models that use voxel-based representations of ligand-receptor complexes as inputs.34–37 The

following paragraphs discuss several early applications using MPNNs to learn SFs.7,18
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Our approach to generating ligand-receptor graphs resembles PLEC’s implementation of

proximity-based implicit graphs during fingerprint (FP) generation.25 Beyond this, works like

ours focus on directly applying message-passing neural networks to the ligand-receptor graphs.

Notably, Feinberg et al. present PotentialNet for various molecular applications, including

PDBbind.18 Unfortunately, the limited information about implementation and the unavailability

of their codebase makes direct comparison with PotentialNet challenging. Additionally, a recent

report by Cho et al.7 has further explored this approach, emphasizing a single architecture, only

the PDBbind Refined dataset, and a slightly different graph generation procedure than the one

used by PotentialNet or herein. Finally, two recent approaches have applied novel

attention-based architectures with good effect on this task.38,39

In contrast to these previous works, this paper introduces PGN for optimized

message-passing schemes. It provides an open-source implementation of MPNN architectures

based on Gated-Graph Neural Networks31 and Directed MPNNs10 to predict ligand-receptor

properties (Figure 1). Our experimentation with message-passing parameters using our

open-source codebase may be a guide and tool for scientists interested in applying MPNNs to

their tasks. The modular nature of our package will also allow for simple testing of different

graph generation schemes and new MPNN architectures.

Methods

We summarize generalized Message Passing Neural Networks as defined by Gilmer et

al,8 and extend this framework to the PFP architecture implemented in our PGN software

package. Please see the Supplementary Methods section for descriptions of previously reported

architectures (Gated Graph Neural Networks31 and Directed Message Passing Neural

Networks10).

Message Passing Neural Networks.We describe the MPNN formalism for an

undirected graph ( ) with node features ( ) and edge features ( ). MPNN comprises two𝐺 𝑥
𝑣

𝑒
𝑣𝑤

distinct steps: the message passing phase that spreads node information to neighbors and the

readout phase, which transforms node representations into graph-level representations.
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The message passing phase of time steps (also commonly referred to as depth) has𝑇 𝐷

two operators: the message function and a vertex update function . Message passing𝑀
𝑡

𝑈
𝑡

transforms the node features into a new hidden representation at each time step. The initialℎ
𝑣
𝑡

node representation can either be the raw node features ( ) or a transformed version ofℎ
𝑣
0 ℎ

𝑣
𝑡 = 𝑥

𝑣

the initial features ( ), where NN is a simple neural network. Subsequent time stepsℎ
𝑣
𝑡 = 𝑁𝑁(𝑥

𝑣
)

update the hidden values of the nodes according to:

𝑚
𝑣
𝑡+1 =

𝑤∈𝑁 𝑣( )
∑ 𝑀

𝑡
ℎ

𝑣
𝑡 , ℎ

𝑤
𝑡 , 𝑒

𝑣𝑤( )

ℎ
𝑣
𝑡+1 = 𝑈

𝑡
ℎ

𝑣
𝑡 , 𝑚

𝑣
𝑡+1( ),

where is the set of neighboring nodes adjacent to in graph and is the sum of all𝑁(𝑣) 𝑣 𝐺 𝑚
𝑣
𝑡+1

messages from nodes in the set . After all T steps of message passing, contains the final𝑁(𝑣) ℎ
𝑣
𝑇

node representations. We aggregate the node representations to yield a graph-level representation

for further learning using the readout function:

.𝑦
^

= 𝑅 ℎ
𝑣
𝑇 | 𝑣∈{𝐺}( )

The readout function must have several properties to guarantee invariance to graph

isomorphism (e.g., the ordering of the nodes cannot affect the network output).8 The graph level

representation is generally further transformed by a fully connected neural network to perform𝑦
^

a regression of classification task. The functions above must be differentiable to learn graph

representations from data.

Proximity Fingerprint Network. The Proximity Fingerprint (PFP) Network model

simplifies the GGNET architecture.31 We tuned PFP to perform better in low-data situations,

drawing inspiration from Duvenaud et al’s early fingerprint-like MPNNs.9

Message Passing: PFP’s message is defined identically to GGNET:
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𝑀
𝑡

ℎ
𝑣
, ℎ

𝑤
, 𝑒

𝑣𝑤( ) = 𝐴
𝑒

𝑣𝑤

ℎ
𝑤.

Above, corresponds to a learnable weight matrix. To simplify the model, PFP𝐴
𝑒

𝑣𝑤

replaces the GRU-based update function by simply aggregating messages through a rectified

linear unit:

.𝑈
𝑡

=  𝑈 = 𝑅𝑒𝐿𝑈 𝑚
𝑣
𝑡+1( )

Importantly, the updated hidden states of the nodes ( ) do not depend upon theℎ
𝑣
𝑡+1

previous hidden state directly. We account for this lack of state memory through the readout

function described below.

Readout:We use residual connections at each message passing timestep to ensure that𝑡

all levels contribute to the output representation . Therefore, we define as the readout at𝑦,
^

𝑅
𝑡

timestep and as the overall readout function. During each timestep, a neural network𝑡 𝑅

transforms the node’s hidden state to the desired output dimension, followed by a simple add

pool to guarantee node order invariance. Finally, we use a layer to yield the final𝐿𝑜𝑔𝑆𝑜𝑓𝑡𝑚𝑎𝑥

output:

.𝑅
𝑡

= 𝐿𝑜𝑔𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑣∈𝐺
∑ 𝑁𝑁 ℎ

𝑣
𝑡( )( )

The final readout is then a simple linear combination of the readouts :𝑅
𝑡

.𝑦
^

=
𝑡
∑ 𝑅

𝑡

Graph Construction.We used covalent bond edges and proximity-based virtual edges to

build the ligand-receptor proximity graphs. This approach mirrors virtual graph construction in

PLEC fingerprints.25 We started building the graph representation from the ligand atoms. From

each heavy atom, we added the protein atoms within a sphere of 4.5 Å radius (Figure 1a). Next,

we added virtual “proximity” edges connecting the ligand and proximal protein atoms (Figure
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1b) to allow information to flow between the ligand and the protein during message passing.

Finally, to ensure all nodes were reachable, we added all atoms within five bonds of the proximal

protein atoms and edges for all interconnecting bonds. Figure 1c shows the final set of nodes

(atoms) and edges (covalent and proximity) as well as the completed proximity graph for another

protein-ligand pair with more extensive contacts. We applied a simple featurization of atoms

(Table 1) and bonds (Table 2).

Hyperparameter Optimization.

We performed Bayesian Optimization to optimize model hyperparameters. We used

Hyperopt40 in Python to tune model depth (i.e., number of message passing steps), dropout rate,

number of fully connected layers in the regressor, and hidden dimension (size of the fully

connected layer in the regressor or size of the vector, depending on the model).𝑦
^

Implementation.

We implemented all models in PyTorch41 and PyTorch Geometric.42 Molecular data

processing used Open Babel,43 RDKit, and ODDT.44 For basic graph data structures, we used

NetworkX.45 We adapted the DMPNN code from the chemprop repository10 to work with

proximity graph data structures. We visualized structures with Chimera.46

Experiments

Data.

We tested our models on the PDBbind 2019 Refined, PDBbind 2019 General, and D4

Diverse Docking datasets:

PDBbind Refined Set. The refined set is a subset of the general set that we filtered to

include only the highest-quality ligand-receptor complexes. The filtering pipeline is described in

Wang et al.21 The final dataset consists of 4,852 ligand-receptor complexes.

PDBbind General Set. The general set includes all 21,382 structures in the PDBbind

database.20,47 However, we only included Protein-Ligand complexes for this paper, thus

narrowing the set to 17,679 structures. We employed no extra filtering or other manipulation.
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D4 Diverse Docking Set. This paper introduces a docking score prediction task for the

Dopamine D4 Receptor. For this task, our dataset includes 86,452 ligands from the ZINC

database48 docked in the Dopamine D4 Receptor from an Ultra-Large Library22,49 (ULL) docking

campaign. The compounds all represent different structural scaffolds as determined by

Bemis-Murcko Scaffold Splitting.50 The structures were annotated with the docking score.

D4 Experimental Dataset. This dataset contains the subset of 510 ligands with both

docked structures to the Dopamine D4 Receptor and experimental binding data. The structures

all result from the same ULL docking campaign as the D4 Diverse Docking Set. We used this

dataset for classification; docked structures were either binders or non-binders. Additionally, we

used the D4 Experimental Dataset for our metric learning task discussed below.

Experimental Procedure.

Cross-validation and Hyperparameter Optimization. Each architecture type was

optimized individually for each dataset and training/test split strategy type (discussed in the

following subsection). We ran five iterations of hyperparameter optimization for each parameter.

Model performance was the average validation loss over 5-fold cross-validation with a given set

of hyperparameters. Due to significantly longer training times than other architectures, we ran

DMPNN hyperparameter optimization for the PDBbind General and D4 Diverse datasets with

3-fold cross-validation. Before cross-validation, we held out a test set of approximately 10% of

examples. Final evaluation of all models was done with optimal hyperparameters on five

randomly seeded initializations using the test set selected before model selection. The same test

set was used for each set of hyperparameter values to minimize data contamination.

Random Split. In the random split, examples were randomly sorted into test and training

sets. The training set was then further split into cross-validation folds, without replacement,

when hyperparameter optimization was performed.

Protein Split (PDBbind). The complexes were grouped by the annotated UniProt ID in

the PDBbind database. Groups were then shuffled and added to the test set until the size of the

test set exceeded the desired test percent. Groups that would make up more than 10% of the test

set were automatically assigned to the training set. For cross-validation, the training set was split

https://doi.org/10.26434/chemrxiv-2024-hznxh ORCID: https://orcid.org/0000-0002-1240-2192 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://paperpile.com/c/DUIIYQ/7SZ6A
https://paperpile.com/c/DUIIYQ/FKVD5+kZbS
https://paperpile.com/c/DUIIYQ/pPaiD
https://doi.org/10.26434/chemrxiv-2024-hznxh
https://orcid.org/0000-0002-1240-2192
https://creativecommons.org/licenses/by/4.0/


such that no more than one group of structures was in both the training and validation set. We

expected this split to be a more rigorous test of model generalization than random splitting.

Similarity Split (D4 Diverse). For the D4 dataset, a standard scaffold split yields no

clusters due to how the dataset was constructed. Therefore, to maximize the difference between

the ligands in the training and test sets, Butina clustering51 of RDKit fingerprints (size 1024) with

a similarity threshold of 0.7 was performed. Groups were segregated (as discussed above) for the

protein split methodology. Due to the long hyperparameter optimization times, the model

parameters from random splitting experiments were used to evaluate model performance.

Metrics. For the PDBbind Refined, PDBbind General, and D4 Diverse datasets both the

RMSE and the Pearson Correlation Coefficient were used for evaluation, in line with CASF19,52,53

recommendations for standard PDBbind evaluation.

Baseline. Given the similarity of the PLEC implicit graph to the proximity graph data

structure, we used PLEC as the primary baseline model for the study. We used the same

feed-forward network and hyperparameter optimization scheme (as discussed above) to evaluate

PLEC performance for comparability. We also evaluated the models on the CASF 2016 splits to

provide a more extensive comparison to published models.19

Controls for shortcut learning.We used three separate adversarial controls to stress-test

each model: frozen MPNN, proximity-edge ablation, and ligand only. We froze encoder weights

in the ‘frozen MPNN’ control before training the model to yield a non-learnable, arbitrary graph

representation. The proximity-edge ablation control removed the proximity edges from the graph

to test how important message passing between the ligand and protein nodes was to model

performance. Finally, the ligand-only control removed all non-ligand atoms and edges.

Results and Discussion

In this section, we performed experiments to evaluate 1) whether MPNNs would offer

advantages over fingerprint and other baseline methods, 2) assess the importance of proximity

features for protein-ligand models, and 3) whether these models could be effective predictors of

experimental binding affinity. To answer these questions, we systematically benchmarked
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multiple approaches across PDBBind and D4 Dock Datasets and evaluated performance based

on RMSE and Pearson Correlation Coefficient (PCC). PCC is more relevant for rank ordering

compounds for testing, whereas RMSE is more relevant for predicting raw binding energies in

isolation and therefore the inclusion of both gives a better picture of usefulness than either alone.

Additionally these metrics are the standard for the PDBBind dataset47 which will allow for easy

comparison with past and future work. Error bars shown in the text represent the standard error

of the mean for the given experiment.

Unless otherwise stated, all results below use the optimal hyperparameters (see Tables

S1-S14) from the hyperparameter search. All results reported for graph models use the complete

Proximity Graph data structure unless explicitly stated otherwise.

Performance on PDBbind Datasets. First, we evaluated each model on the PDBbind

Refined and General datasets. We tested all models with both random splitting and protein

splitting.

PDBbind Refined dataset. Figure 2 shows the results of model evaluation on the refined

dataset. The PFP encoder-based models performed similarly to or significantly better than PLEC

in all cases. All other MPNN approaches underperformed on this dataset.

Interestingly, the PFP model trained with random splitting consistently outperformed the

baseline by PCC metric but had a similar RMSE. This discrepancy suggests that the baseline

better fits the data distribution, while PFP produced a stronger linear correlation. When

considering the protein splitting performance, PFP significantly outperformed the baseline,

suggesting that the graph model has better generalization performance. In addition, when we

applied our best-performing model to the CASF-2016 benchmark, the PFP encoder outperformed

all methods aside from deltaVinaRF20 (Table S15).

PDBbind General dataset. In this case, the baseline significantly outperformed all

MPNNs on the random splits, while the PFP Network significantly outperformed the baseline on

the more challenging protein split task (Figure 3). Interestingly, the DMPNN architecture

performed better on this task, displaying comparable performance to PFP with random splitting.

Once again, PFP had a significant performance advantage when using protein splitting.
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Performance on D4 Diverse Dataset. Next, we evaluated the performance of the

different models on the D4 Diverse dataset, which is a diverse set of molecules docked into the

D4 Dopamine receptor (Figure 4a-b). We tested all models using random and similarity

splitting, as described above. This dataset offers a different task type than the PDBbind dataset,

which attempts to capture the general features of protein-ligand structures labeled with

coarse-grained experimental affinities. The D4 diverse task focuses on learning a specialized

representation where the model must differentiate a diverse set of molecules at a homogeneous

interface. This specific binding model, therefore, requires the ability to differentiate similar

binding modes and accurately predict a sensitive readout of protein-ligand complementarity.

When assessed against the D4 Diverse dataset, all graph models outperformed the

baseline by a large margin (Figure 4c-e). In contrast to the results observed for PDBbind

datasets, the DMPNN model performed best, followed by GGNET and PFP. The similarity split

data resulted in models that performed no worse than the random split, likely due to the large

diversity already seen within the dataset.

Next, we artificially limited the training set size and evaluated model performance using

the full test set to understand if dataset size would strongly affect relative model performance

(Figure 4f). All MPNN architectures outperformed the baseline, regardless of the dataset size.

This result suggests that a learnable representation was particularly advantageous for this task.

We were next interested in seeing if this performance carried over to the more complex task of

experimental binding prediction using a dataset of 589 docked structures with empirical binding

data (see supporting methods). The first approach was to evaluate the experimental ligand with

the trained PDBbind refined model; however, we saw no ability for the model to predict

experimental binding affinity (Figure S1-2). Interestingly, we saw that finetuning from the D4

dataset to PDBbind dataset also was not helpful, suggesting that the molecular representations

learned for each task are likely quite distinct (Figure S3). Additionally, when we evaluated the

experimental set using our optimized model from the D4 docking score prediction task we saw

no discrimination between binders and non-binders; this is not surprising given the binders and

non-binders had generally similar docking score distributions. Finally, we tried to use a metric

learning approach to distinguish binders from non-binders. Although we saw improvements
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compared to PLEC (Figure S4-5), proximity edges did not appear to improve performance

compared to the ligand autonomous graph networks.

Controls for shortcut learning. Three different experiments explored the importance of

(i) having a learnable representation, (ii) message passing between the protein and ligand, and

(iii) adding receptor information to the graph. To address (i), we used a frozen MPNN control,

where encoder weights were set randomly before training. To investigate (ii), a Proximity Graph

was stripped of all proximity edges (i.e., only the ligand and protein covalent bonds associated

edges remained in the graph). Finally, to investigate (iii), the proximity graph was stripped of

protein and proximity data. All adversarial controls for shortcut learning,54 aside from the

GGNET ligand-only and proximity-edge ablation studies for PDBbind datasets, significantly

negatively affected performance, as intended (Figure 5). Additionally, we see no clear

systematic bias relating error to the number/type of interactions or proximity-graph complexity

(SI Figure 6).

The GGNET models on PDBbind performed poorly, so we do not believe the failure of

these controls to be relevant in general. Removing proximity edges had a similar effect as the

ligand-only control, suggesting that proximity edges were crucial for model performance.

Conclusions and Future Work

MPNN-based molecular encodings promise a tunable representation that can suit any task

through gradient descent. This allure has spurred much interest in applying graph models to

various computational chemistry tasks. In this work, we show certain datasets are much more

suited to MPNN-based models than others and that encoder architectures can have variable

performance based on the character of the dataset used for training. In particular, we introduce

the D4 Dopamine dock score prediction task, consisting of diverse ligands bound to one receptor.

This task benefits from the MPNNs’ tunable representation more than the common PDBbind

task used in most previous work developing MPNN scoring functions (SFs). We believe this is

due to the accuracy of the labels, the abundance of diverse data, and the need to identify and

discriminate fined-grained differences between many seemingly similar binding surfaces.
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In addition, we show that incorporating proximity information to conventional MPNN

architectures offers significant performance advantages. In all but one case, PDBbind General

with Random Splitting, one of the MPNN models performed as good or better than the

conventional fingerprint baseline. The performance improvement was particularly significant for

the D4 Diverse Docking dataset. Despite strong performance as an ensemble, the graph networks

were not suited to all tasks equally, showing the importance of diverse message-passing

architectures for optimal performance on multiple applications.

Despite our extensive evaluation of this approach, there are several opportunities for

future work. The most obvious area for improvement of the PGN package would be including

more diverse graph convolutional methods, such as Deep Tensor Networks and other related

architectures that represent distance and angle information more natively.15,55 Additionally,

exploring different data augmentation techniques to improve model performance in low-data

situations would be advantageous. Beyond simple improvements to the PGN package, we also

envision that PGN could facilitate analyses of molecular dynamics simulations and assist virtual

screen approaches.23,24 Additionally, the strong generalization of our PGN models makes model

fine-tuning for low-data situations another potential application that could aid drug discovery.9,56
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Tables

Table 1. Atom features.

Feature Description Size

Atomic # Atom type, indexed by atomic number 100

Isotope id Type of isotope 1

Degree Number of non-hydrogen neighbors 1

Formal charge The formal charge of the atom 1

Is ring 0/1 atom is in ring 1

Is aromatic 0/1 atom in aromatic ring 1

Group 0 from receptor/1 ligand 1

Table 2. Bond features.

Feature Description Size

Bond Length Distance between connecting nodes 1

Bond type One-hot encoding of bond order 3

Is aromatic 0/1 aromatic bond 1

Is Proximity 0/1 proximity edge 1
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Figure Legends

Figure 1. The process used to create Proximity Graphs and learn using the PGN architecture.

The top portion of each panel (a-c) shows the processing of a simple example ligand-receptor

complex (5OU2). The bottom panel shows a simplified example on a single atom. (a) A 4.5 Å

radius sphere (translucent green) around the ligand (dark green) was used to filter the protein for

proximal atoms. (b) The proximal protein atoms (dark blue) and the connecting bonds were

added to the graph and proximity edges were added to the graph (gray). (c) Proteins atoms within

5 bonds of proximal protein atoms were added to the graph. An additional example of a more

complex protein ligand complex (6MNF) is shown below. (d) Once the proximity graph is

constructed a simple featurization is applied to the atoms and edges. This completed proximity

graph data structure is fed into one of the included MPNN architectures to encode the graphs

before being passed to the FC network to produce the desired regression or classification output.

(e) The PDBbind (left) and D4 dock-score (right) regression tasks are summarized. PDBbind

contains the experimental pKis paired with X-ray diffraction structures for many proteins. In

contrast, the dock-score prediction task pairs the protein structure from 5WIU with a number of

predicted protein-ligand complexes with molecules in the ZINC database.

Figure 2. Performance of the different models on the PDBBind Refined dataset. (a) RMSE of

each model with random splitting (blue) and protein splitting (orange),where lower is better. (b)

PCC of each model with random splitting (blue) and protein splitting (orange), where higher is

better. (c) Table or errors and correlation values for each model and split with RMSE and PCC.

Best scoring model is bolded.

Figure 3. Performance of the different models on the PDBBind General dataset. (a) RMSE of

each model with random splitting (blue) and protein splitting (orange), where lower is better. (b)

PCC of each model with random splitting (blue) and protein splitting (orange), where higher is

better. (c) Table or errors and correlation values for each model and split with RMSE and PCC.

Best scoring model is bolded.

Figure 4. Overview of the construction of the D4 Diverse Dataset and performance of the

different models on the D4 Diverse dataset. (a) Overview of the original protein-ligand complex

used to construct the docking model. The inset shows the proximity graph of the experimental

https://doi.org/10.26434/chemrxiv-2024-hznxh ORCID: https://orcid.org/0000-0002-1240-2192 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-hznxh
https://orcid.org/0000-0002-1240-2192
https://creativecommons.org/licenses/by/4.0/


ligand bound into the pocket used for docking. (b) Heatmap showing the similarity of 1000

random ligands selected from the whole dock run and the D4 Diverse dataset used in this

manuscript. (c) Table or errors and correlation values for each model and split with RMSE and

PCC. Best scoring model is bolded. (d) RMSE of each model with random splitting (blue) and

protein splitting (orange); lower is better. (e) PCC of each model with random splitting (blue)

and protein splitting (orange; higher is better. (f) RMSE of models for various dataset sizes;

lower is better.

Figure 5. Performance of the different models and the various controls on the PDBbind Refined,

PDBbind Genera,l and D4 Diverse datasets. All control RMSEs were normalized to the

performance of the best model using the full Proximity Graph as input. For RMSE, a lower value

is better. Each panel is the full set of controls for each MPNN architecture: (a) PFP, (b) GGNET,

and (c) DMPNN.
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