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Abstract	
Current	 strategies	 centred	 on	 either	 merging	 or	 linking	 initial	 hits	 from	 fragment-based	 drug	 design	 (FBDD)	
crystallographic	screens	ignore	3D	structural	information.	We	show	that	an	algorithmic	approach	(Fragmenstein)	that	
‘stitches’	the	ligand	atoms	from	this	structural	information	together	can	provide	more	accurate	and	reliable	predictions	
for	 protein-ligand	 complex	 conformation	 than	 existing	 methods	 such	 as	 pharmacophore-constrained	 docking.	 This	
approach	works	under	the	assumption	of	conserved	binding:	when	a	larger	molecule	is	designed	containing	the	initial	
fragment	hit,	the	common	substructure	between	the	two	will	adopt	the	same	binding	mode.	Fragmenstein	either	takes	
the	 coordinates	of	 ligands	 from	a	 experimental	 fragment	 screen	and	 stitches	 the	 atoms	 together	 to	produce	 a	novel	
merged	 compound,	 or	 uses	 them	 to	 predict	 the	 complex	 for	 a	 provided	 compound.	 The	 compound	 is	 then	 energy	
minimised	under	strong	constraints	to	obtain	a	structurally	plausible	compound.	This	method	is	successful	in	showing	
the	importance	of	using	the	coordinates	of	known	binders	when	predicting	the	conformation	of	derivative	compounds	
through	a	 retrospective	 analysis	 of	 the	COVID	Moonshot	data.	 It	 has	 also	had	a	 real-world	 application	 in	hit-to-lead	
screening,	yielding	a	sub-micromolar	merger	from	parent	hits	in	a	single	round.	
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1.	Introduction	

1.1	 Fragment-based	 drug	 discovery	 is	 a	 standard	
methodology	in	drug	discovery	that	leverages	the	similar	
binding	mode	between	analogues.	
In	the	early	stages	of	drug	discovery	fragment-based	drug	
discovery	 (FBDD)	 has	 emerged	 as	 a	 standard	
methodology	[1].	It	uses	small	molecules	(<250	Da)	under	
the	assumption	that	the	information	from	multiple	small	
molecules	is	more	informative	than	the	information	from	
a	 low	 number	 of	 larger	 molecules	 (typically	 used	 in	
traditional	high-throughput	screening)	in	the	early	hit-to-
lead	 part	 of	 drug	 discovery	 [1].	 This	 is	 because	 small	
molecules	are	more	likely	to	have	a	greater	proportion	of	
their	 potential	 interaction	 vectors	 associating	 with	 the	
protein	 than	 the	 proportion	 in	 large	 molecules,	 where	
significant	 functional	 parts	 of	 the	 molecule	 may	 not	
interact	with	the	protein	at	all.	Based	on	this	assumption,	
it	 should	 be	 possible,	 as	 part	 of	 the	 FBDD	 lead-design	
process,	 to	 take	 the	 protein-ligand	 interaction	
information	 from	 these	 smaller	 proximal	 molecules	 to	
design	larger	derivative	molecules.	This	should	result	 in	
the	 more	 efficient	 design	 of	 molecules	 which	 possess	
better	 binding	 affinity	 at	 a	 lower	 cost	 than	 lead	
optimization	 through	 structure–activity	 relationship	
(SAR)	exploration	of	larger	initial	hits	[1–3].	
Regardless	of	whether	informative	structural	information	
is	 available	 for	 initial	 fragment	 hits,	 by	 far	 the	 most	
common	strategy	is	to	enumerate	derivative	compounds	
independently	 of	 structure,	 often	 through	 similarity	 or	
substructure	 searching,	 and	 afterwards	 employ	docking	
as	 a	 conformational	 filter	 [2].	 As	 discussed	 below,	 the	
shortcomings	 of	 this	 approach	 negatively	 affect	
successfulness	of	the	searches.	

1.2	Docking	approaches	as	conformational	filters	do	not	
sufficiently	 leverage	 information	 from	 existing	 protein-
ligand	 structures	 when	 predicting	 the	 conformation	 of	
derivative	compounds.	

A	common	method	 to	 assess	 the	binding	of	 a	 candidate	
molecule	is	docking.	Docking	protocols	consist	of	a	search	
algorithm	that	performs	thousands	of	heuristic	iterations	
assessed	 by	 a	 score	 function	 to	 find	 the	 lowest	 energy	
predicted	position,	orientation,	and	conformation	of	 the	
ligand	 in	 the	 context	 of	 the	 target	 protein	 [4].	 Docking	
protocols	 find	 the	 energetic	 minimum	 according	 to	 the	
parameters	 of	 the	 force-field	 used	 to	 approximate	 the	
system,	 but	 may	 result	 in	 a	 local	 energy-minimum	
conformation	 that	 deviates	 from	 the	 one	 found	 in	 the	
experimental	 structure.	 This	 can	 occur	 for	 a	 variety	 of	
reasons	 ranging	 from	 insufficient	 or	 inaccessible	
sampling	of	either	the	ligand	or	protein	conformations	to	
inaccuracies	 of	 the	 physics	 in	 the	 empirical	 models.	 A	
common	 benchmark	 to	 assess	 the	 quality	 of	 a	 docking	
protocol	 is	 to	 “redock”	 the	 ligand	 from	 an	X-ray	 crystal	

structure;	namely	removing	the	ligand	and	docking	it	and	
comparing	the	RMSD	between	the	original	and	the	docked	
ligand.	 With	 this	 approach,	 even	 the	 best	 algorithms	
reproduce	roughly	only	half	of	all	compounds	docked	to	
an	RMSD	of	less	than	2	Å	[5].	An	approach	to	improve	this	
poor	fidelity	to	the	parent	hits	is	by	adding	constraints	to	
pharmacophores	 or	 to	 key	 atoms	 on	 the	 protein	 [6].	
Another	 limitation	 stems	 from	 the	 fact	 most	 docking	
algorithms	generate	a	 set	of	 small	molecule	 conformers	
before	 docking	 which,	 especially	 for	 larger	 and	 more	
flexible	small	molecules,	may	all	greatly	diverge	from	the	
empirical	 crystallographic	 protein-bound	 conformer.	
Whereas	it	is	straightforward	to	embed	the	conformer	of	
a	derivative	compound	with	the	conformation	of	a	parent	
FBDD	hits	that	 is	 its	direct	substructure,	 it	 is	non-trivial	
when	 the	 substructure	 overlaps	 are	 imperfect	 and	
between	multiple	hits,	as	will	be	addressed	below.	

1.3	 Combinatorial	 approaches	 either	 disregard	 the	
position	of	hits	or	are	unable	to	operate	with	overlapping	
hits.	

When	 ligands	 are	 designed	 starting	 from	 fragment	 hits	
(rather	than	docking	a	subset	of	compounds	in	a	dataset),	
the	 protein-ligand	 complex	 data	 available	 from	 initial	
fragment	 hit	 structures	 are	 often	 still	 not	 utilised	 until	
after	 initial	 enumeration.	 Approaches	 are	 usually	
synthon-based,	 where	molecules	 are	 broken	 down	 into	
components	 and	 then	 new	 molecules	 are	 designed	 by	
combination	of	components	from	multiple	input	ligands.	
Examples	 include	 BRICS	 decomposition	 [7]	 and	
AutoGrow4	[8].	Neither	of	these	methods	consider	any	3D	
structural	 information	 from	 the	protein	or	 ligand	 in	 the	
initial	enumeration	step.		
Some	methods	do	consider	some	spatial	information	from	
the	protein.	DeLinker	[9]	is	an	example	of	a	method	which	
takes	 advantage	 of	 the	 3D	 structural	 information	 of	
known	ligands	by	identifying	connection	vectors	between	
ligands	and	generating	molecules	that	will	fit	into	that	3D	
ligand	 space.	However,	 it	 is	 still	 unaware	of	 the	protein	
environment	 around	 the	 ligands	 it	 is	 designing	 from.	
GANDI	 takes	 protein	 coordinates	 into	 consideration	 to	
filter	out	potential	clashes	[10],	whilst	designing	 linkers	
in	 a	 similar	manner	 to	DeLinker.	 DEVELOP	 takes	 this	 a	
step	 further	 by	 encoding	 both	 protein	 and	 ligand	
conformation	 into	both	connectivity	 (via	a	graph	neural	
network)	 and	 coordinate	 information	 (through	 a	 voxel	
occupancy	map)	in	its	training	to	encode	pharmacophoric	
features	that	can	be	used	to	predict	new	molecules	for	a	
protein	 target	 not	 in	 its	 training	 dataset	 [11].	 STRIFE	
improves	upon	the	predictions	made	by	DEVELOP	by	also	
performing	 docking	 constrained	 to	 hotspot	 maps	 to	
better	assess	the	products	after	a	coarse-grain	and	a	fine-
grain	step	[12].		
None	of	the	methods	discussed	thus	far	consider	the	3D	
conformation	 of	 overlapping	 hits.	 An	 algorithm	 that	
stands	 out	 in	 this	 respect	 is	 BREED	 [13],	 implemented	
within	Maestro	 in	 the	 Schrödinger	 suite,	 this	 algorithm	
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joins	 fragments	 hits	 by	 hybridizing	 upon	 spatially	
overlapping	bonds,	thus	obeying	the	conformation	of	the	
hits.	However,	 it’s	 a	 commercial	 product.	 In	 practice,	 in	
most	situations,	fragment	merging	is	most	often	done	by	
eye	[14].	

1.4	 Fragmenstein	 generates	 energetically	 feasible	
protein-bound	conformers	that	obey	one	or	more	parent	
hits	

To	 address	 the	 above	 problems,	 we	 developed	
Fragmenstein.	The	governing	 idea	behind	Fragmenstein	
is	striving	for	fidelity	to	the	position	of	the	inspiring	hits	
based	 upon	 the	 assumption	 that	 the	 derivative	
compounds	 bind	 in	 a	 very	 similar	 way.	 The	 crucial	
difference	 is	 that	 the	 conformers	 are	 generated	 by	
stitching	together	the	atoms	of	the	parent	hits	for	both	de	
novo	 generation	 (combination)	 and	 for	 docking-like	
approach	 (placement),	 and	 subsequently	 minimised	 in	
place.	 	 To	 achieve	 this	 several	 tactics	 are	 employed	 to	
overcome	certain	issues,	such	as	mapping	partial	overlaps	
to	 multiple	 parent	 molecules,	 merging	 rings	 and	
correcting	impossible	topologies.	

2.	Methods	

2.1	 Fragmenstein	 is	 a	 Python	 package	 with	 few	
dependencies.	

The	Fragmenstein	codebase	is	a	modular	Python	package	
that	 is	 dependent	 on	 RDKit	 [15]	 for	 compound	
manipulation,	 PyRosetta	 [16]	 for	 energy	 minimisation	
and	 some	 additional	 open-source	 purpose-written	
packages	 described	 in	 the	 GitHub	 repository.	 Its	 usage	
does	 not	 require	 external	 system	 calls,	 including	 the	
ligand	parameterisation	for	Rosetta,	which	was	rewritten	
to	 be	 both	 open	 source	 and	 usable	within	 Python	 3.6+.	
Thanks	to	the	limited	number	of	external	dependencies,	it	
can	 be	 easily	 deployed	 in	 both	 Linux	 and	 MacOS	
architectures.	
Fragmenstein	 is	 open	 source.	 The	 open-source	
codebase	 for	 Fragmenstein	 can	 be	 found	 at	
https://github.com/oxpig/Fragmenstein.	
Code	 and	 data	 for	 benchmarks	 (vide	 infra)	 available	 at	
https://github.com/matteoferla/Fragmenstein-
manuscript-data.	
Fragmenstein	 merges	 or	 places	 compounds	 by	
stitching	together	the	atoms	of	the	hits.	Fragmenstein	
has	 two	 main	 functionalities	 (Figure	 1):	 fragment	 hit	
combination	and	derivative	placement,	both	constrained	
by	 the	 fragment	 hits	 that	 inspired	 them.	 Both	 these	
operations	 require	 two	 steps:	 (i)	 the	 creation	 of	 a	
potentially	distorted	compound	whose	atoms	overlap	the	
parent	 hits	 and	 (ii)	 the	 energy	 minimisation	 of	 the	
compound	under	strong	constraints.		
The	two	functionalities	can	be	used	as	a	single	continuous	
workflow	 (viz.	 GitHub	 repository).	 First,	 fragments	 are	
combined	 (merged/linked)	 with	 Fragmenstein,	 then	 a	

search	 is	 conducted	 via	 the	 SmallWorld	 server	
(https://sw.docking.org/)	[17]	for	purchasable	analogues	
in	Enamine	REAL	or	equivalent	supplier	(i.e.	analogue-by-
catalogue),	 and	 lastly	 candidate	 compounds	 are	 placed	
with	Fragmenstein	in	order	to	be	ranked.	
The	 operations	 performed	 are	 described	 in	 the	 GitHub	
repository	and	outlined	in	Figure	1.		

2.2	 Combinations	 on	 test	 datasets	 were	 conducted	 to	
assess	 success	 rate	 and	 availability	 from	 make-on-
demand	space.	

The	 hits	 from	 the	 XChem	 targets	 SARS-COV-2	 MPro	
(cysteine	protease)	[18]	and	Mac1	domain	of	SARS-COV-2	
NSP3	 (macrodomain	 ADP-ribosylhydrolase)	 [19],	 	 were	
downloaded	 from	 Fragalysis	
(https://fragalysis.diamond.ac.uk/)	 [20]	 and	 filtered	 for	
inclusion	 in	 the	 DSi-Poised	 library	 [21].	 The	 templates	
used	were	PDB:6LU7	for	MPro	and	PDB:6WOJ	for	Mac1,	
these	 were	 energy	 minimised	 with	 PyRosetta	 with	 the	
FastRelax	 mover	 constrained	 by	 its	 density-map	 [16].	
Their	hits	were	combined	(merged/linked)	with	the	aim	
of	 quantifying	 the	 failure	 rate	 and	 the	 synthetic	
accessibility.	Additionally,	to	explore	the	thermodynamic	
cost	 of	 fidelity	 to	 the	 reference	 compounds,	 alternative	
approaches	 were	 adopted,	 namely	 merging	 solely	 by	
maximum	common	 substructure	 and	merging	by	BRICS	

Figure	1.	Combination	and	placement	operations	and	their	rules	within	
Fragmenstein.	A.	Steps	in	a	combination	operation.	For	combinations,	the	
positional	overlap	 is	calculated	with	any	ring	collapsed.	This	 is	done	 to	
prevent	overlap	issues	(first	inset,	detail	in	SI	Figure	1).	Both	rules	share	
the	 atomic	 positional	 overlap	 mapping	 (middle	 inset,	 further	 detail	 in	
Supplementary	 figure	 1).	 After	which,	 the	merger	 is	 rectified	 based	 on	
certain	rules	listed	in	its	GitHub	repository.	B.	The	effect	of	adherence	to	
atomic	positions	can	be	seen	in	a	test	where	a	furan	and	a	benzene	with	
centres	of	mass	at	different	distances	yield	different	molecules	 ranging	
from	a	single	ring	to	two	linked	rings.	C.	Steps	in	a	placement	operation.	
The	 provided	 compound	 is	 mapped	 to	 each	 hit	 with	 a	 multistep	 MCS	
scheme	(Supplementary	figure	2),	the	mapping	with	the	larger	coverage	
is	 chosen	 and	 the	 other	 hits	 are	mapped	 via	 a	MCS	 restricted	 by	 their	
atomic	 overlap	 with	 the	 primary	 hit.	 For	 both	 combination	 and	
positioning,	after	the	stitched	together	conformer	is	created,	it	is	energy	
minimised	 locally,	 with	 strong	 constraints	 and	 with	 a	 topology	
parameterised	from	an	ideal	conformer.	
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decomposition[22].	 These	 were	 placed	 with	 the	
PyRosetta	framework	of	Fragmenstein	(Igor).	BREED	[13]	
was	also	 run	with	1.5	Å	 cut-off	 and	with	 the	 “untangle”	
setting	 disabled	 to	 increase	 number	 of	 compounds	
generated	even	if	overly	connected,	but	the	limited	results	
precluded	 its	 benchmarking.	 Interactions	 were	
determined	with	 PLIP	 [23].	 Interactive	 pages	 of	 results	
were	created	in	MichelaNGLo	[24].	
	

2.3	MPro	was	used	to	assess	the	accuracy	of	placements	of	
derivative	compounds.	

The	information	of	which	fragment	hits	were	parents	for	
which	crystallised	derivative	compounds	was	taken	from	
the	Moonshot	GitHub	repository[18],	but	was	reduced	to	
contain	only	the	relevant	parent	hits	for	each	submitted	
compound	 as	 these	 are	 presented	 together	 for	 each	
submission	set.	Namely,	the	relevant	hits	were	manually	
picked	 based	 on	 the	 binding	 of	 the	 hits	 and	 the	 2D	
representation	of	the	derivative	to	not	bias	the	selection	
(cf,	 code	 in	 repository).	 The	 common	 protein	 template	
used	 was	 PDB:6LU7,	 which	 was	minimised	 as	 describe	
above.	 Fragmenstein	 was	 run	 with	 the	 tweak	 that	 the	
PyRosetta	 Pose	 instance	was	modified	 to	 have	 catalytic	
His41	protonated	on	Nδ	(HID)	and	Cys145	deprotonated	
for	non-covalent	compounds,	while	for	compounds	with	
electrophilic	warheads	His41	protonated	on	Nε	(HIE)	and	
Cys145	 crosslinked	 with	 the	 compound.	 Note	 that	 the	
latter	 functionality	 is	 automatic	 in	 Fragmenstein	 if	 the	
SMILES	to	be	placed	has	a	dummy	atom	(*	in	SMILES)	or	
the	 warhead	 conversion	 code	 within	 Fragmenstein	 is	
called.	
RDock	 was	 used	 as	 a	 benchmark	 for	 pharmacophore-
constrained	 docking	 [25].	 executed	 on	 the	 same	 Mpro	
merges	 that	 were	 placed	 with	 Fragmenstein.	 For	 each	
compound,	 the	 protein	 cavity	 was	 defined	 using	 the	
RbtLigandSiteMapper	on	the	largest	parent	fragment	hit	
with	 a	 radius	 of	 8Å	 and	 the	 following	 parameters:	
SMALL_SPHERE	 1.0;	MIN_VOLUME	 100;	MAX_CAVITIES	
1;	VOL_INCR	0.0;	and	GRIDSTEP	0.5.	

One	 hundred	 poses	 per	 compounds	were	 docked	 using	
the	 default	 “dock.prm”	 protocol.	 The	 top	 poses	 were	
selected	based	on	the	rDock	score	and	the	best	RMSDs.	
For	 the	 case	 of	 constrained	 docking,	 we	 computed	 the	
pharmacophores	 of	 the	 hits	 and	 set	 them	 as	 optional	
restraints	with	weight	1.	The	percent	of	constraints	that	
should	be	satisfied	was	set	to	80%	based	on	a	preliminary	
calibration	 test	 to	 achieve	 the	 lowest	 RMSD	 from	 the	
crystallographic	 pose.	 In	 a	 real-world	 scenario	 this	
calibration	 strategy	 is	 not	 possible	 since	 the	
crystallographic	 poses	 are	 not	 available,	 consequently,	
the	results	presented	here	are	likely	an	overestimation	of	
the	actual	performance.	

2.4	 Two	 examples	 were	 retrospectively	 analysed,	
specifically	 addressing	 covalent	 ligands	 and	 user-
provided	mapping.	

First,	 to	 demonstrate	 the	 need	 for	 the	 thermodynamic	
corrections	 in	 the	 final	 step	 of	 Fragmenstein,	 the	
placement	 of	 a	 pair	 of	 derivative	 compounds	 binding	
NUDT7	 from	 [26]	 (deposition	 group	 G_1002045)	 were	
investigated.	 NU181	 (PDB:5QH1,	 chemical	 component:	
H5G,	Enamine:	Z1632454068)	and	PCM-0102716	(PDB:	
5QH9,	chemical	component:	GZY,	Enamine:	Z254513422)	
were	 the	 parent	 hits	 for	 NU443	 (PDB:	 5QHH,	 chemical	
component:	H5D,	S	enantiomer)	and	NU442	(PDB:5QHG,	
chemical	 component:	 H17,	 R	 enantiomer),	 which	 were	
modelled	with	the	chloroacetamide	reacted	with	Cys73.	
Second,	 to	 demonstrate	 the	 use	 of	 user	 correction,	 the	
placement	 of	 the	 derivative	 compound	 binding	 the	
tubulin	 interface	 from	 [27]	 (deposition	 groups	
G_1002173	and	G_1002214)	was	investigated.	F04	(PDB:	
5S4O,	 chemical	 component:	 O0J,	 Enamine:	 Z48847594)	
and	F36	(PDB:	5S5K,	chemical	component:	S6V,	Enamine:	
Z2472938267)	were	the	parent	hits	for	todalam-4	(PDB:	
5SB3,	 chemical	 component:	47F,	Enamine:	Z48853939).	
The	modelling	was	done	with	a	custom	map	 in	order	to	
flip	 the	N	and	S	 atoms	 in	 the	 aminothiazole	 (an	equally	
plausible	 orientation	 given	 the	 electron	 density	 and	
required	for	the	elaboration)

3.	Results	

3.1	A	retrospective	placement	of	100	compounds	based	on	
their	 parent	 reveals	 much	 strong	 agreement	 with	 the	
crystal	structures	than	pharmacophoric	constraints.	

A	key	underlying	hypothesis	is	the	derivative	compounds	
bind	 in	 a	 very	 similar	 way	 to	 their	 parent	 hits.	
Fragmenstein	 merges	 fragments	 by	 first	 stitching	
together	 the	 positioned	 atoms	 of	 the	 parent	 fragments	
prior	 and	 then	 locally	 minimising	 under	 strong	
constraints,	 without	 relying	 on	 previously	 generated	
conformers.	 To	 test	 this	 the	 dataset	 from	 the	 Covid	
Moonshot	project	was	used	as	it	contains	a	large	panel	of	
hit-inspired	derivative	compounds	 is	available	[18].	The	
Covid	Moonshot	 project	was	 a	 collaborative	 SAR-COV-2	

protease	 fragment-based	 drug	 discovery	 project	 that	
relied	on	user	submitted	ideas	of	derivative	compounds.	
These	submissions	were	guided	by	user’s	choice	and	as	a	
result	 represent	 a	 spectrum	of	 diverse	 approaches.	 The	
submissions	 were	 filtered	 for	 compounds	 that	 were	
crystalised	and	that	had	a	stated	parent,	yielding	a	total	of	
100	 compounds.	The	atomic	positions	of	 the	 conformer	
from	 the	 crystal	 structure	were	 compared	 to	 those	 of	 a	
conformer	 placed	 by	 Fragmenstein	 constrained	 against	
the	 stated	 inspiring	 hits	 and	 to	 those	 of	 conformers	
docked	with	and	without	restraints	(Figure	2,	interactive	
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at	 https://michelanglo.sgc.ox.ac.uk/r/fragmenstein-
moonshot).	
The	importance	of	exploiting	the	structural	information	of	
the	parent	hits	 is	 illustrated	by	 the	 fact	 that	64%	of	 the	
proposed	merges	were	found	to	fully	preserve	the	pose	of	
their	parent	fragments	(mean	RMSD<2Å).	
Fragmenstein	 was	 able	 to	 propose	 high-quality	 poses	
(RMSD	<	1Å)	 for	 28%	of	 the	 evaluated	 compounds	 and	
acceptable	poses	(RMSD	<	2Å)	for	56%	of	them.	Docking	
(via	rDock)	was	not	able	to	obtain	any	high-quality	poses	
(Figure	2A).	
In	order	to	determine	if	Fragmenstein	was	able	to	better	
exploit	 the	 structural	 information	 of	 the	 fragment	 hits	
than	other	approaches,	we	next	compared	Fragmenstein	
with	 the	 constrained	 version	 of	 rDock	 using	
pharmacophoric	constraints	derived	from	the	parent	hits.	
Figure	 2B	 shows	 that,	 while	 including	 constraints	
improves	 the	 docking	 performance,	 Fragmenstein	 still	
outperforms	rDock,	which	was	able	to	produce	accurate	
poses	for	only	5%	of	the	compounds.	A	factor	involved	is	
that	Fragmenstein	generates	the	conformer	based	on	the	
hits,	while	docking	frequently	choses	a	conformer	among	
a	 set	 of	 generated	 conformers.	 Specifically,	 for	 this	
dataset,	the	most	similar	generated	conformers	out	of	10,	
100	and	1,000	(ETKDG	in	RDKit)	to	the	crystallographic	
pose	deviated	by	0.9	Å,	 0.7Å	and	0.6	Å	on	 average.	The	
inability	to	sample	a	conformer	that	perfectly	matches	the	
crystallographic	one	underlies	the	choice	in	Fragmenstein	
to	start	from	a	stitched-together	conformer.	This	together	
with	 the	 hit-derived	 strong	 constraints	 during	
minimisation	 allows	 the	 placed	 molecule	 to	 be	 highly	
faithful	to	the	parent	hits.	
	

3.2	On	 two	 datasets,	 Fragmenstein	 proposes	 49	 and	 24	
easily	 accessible	 derivative	 compounds	 from	 the	
combination	of	34	and	44	parent	hits.	

To	 assess	 the	 overall	 quality	 of	 combinations	 from	
Fragmenstein,	i.e.	determining	the	methodological	failure	
rate	 and	 synthetic	 accessibility,	 two	 targets,	 MPro	 (a	
cysteine	 protease	 from	 SARS-COV-2)	 and	 Mac1	 (a	
nucleosyl-peptide	 hydrolase	 from	 SARS-COV-2)	 from	
previous	 fragment	 screens	 were	 chosen	 and	 the	 initial	
hits	 that	 originated	 from	a	 library	designed	 to	 facilitate	
synthetic	 derivatives	 (DSi-Poised)	 were	 combined	 and	
scored	 (Table	 1,	 interactive	 at	
https://michelanglo.sgc.ox.ac.uk/r/fragmenstein-mpro-
DSiP).	 Excluding	 the	 combinations	 that	 were	 over	 5Å	
apart	for	their	closest	atoms,	the	failure	rate	was	1.4%	due	
to	 compounds	 whose	 chemistry	 could	 not	 be	 rectified	
correctly,	while	56%	of	combinations	were	energetically	
favourable	 (∆∆G	 <	 0)	 without	 excessive	 deviation	 from	
the	positions	of	 the	parent	hits	 (RMSD	<	1.).	Of	 the	420	
acceptable	 combinations,	 7	were	 purchasable,	 while	 64	
could	 potentially	 be	 made	 with	 2	 or	 fewer	 reactions	
according	 to	 predictions	 from	 PostEra	 Manifold	 [28].	
Therefore,	 Fragmenstein	 suggests	 synthetically	

accessible	 compounds	 that	 are	 predicted	 to	 follow	 the	
binding	conformation	of	the	parent	fragment	hits,	which	
is	 an	 underpinning	 assumption	 in	 fragment-based	 drug	
discovery	(cf.	Figure	1).			

3.2	 The	 strict	 obedience	 to	 atomic	 positions	 by	
Fragmenstein	 is	 a	 strong	 filter	 whose	 effects	 may	 be	
misled	 by	 potentials	 and	 are	 unmasked	 when	 counting	
number	of	interactions.	

As	 described	 above,	 a	 key	 point	 of	 Fragmenstein	 is	
obedience	to	parent	hits.	To	emphasise	the	importance	of	
fidelity	 to	position	of	 the	 initial	hits	of	 the	 initial	hits	of	
Mac1	 were	 combined	 pairwise	 ignoring	 positional	
information	 in	 three	 different	 approaches.	 In	 one	 the	
parent	 hits	 were	 merged	 by	 maximum	 common	
substructure	(MCS),	in	another	by	BRICS	decomposition,	
and	 in	 a	 third	 with	 Fragmenstein	 but	 constrained	 to	 a	
single	hit.	
The	minimisation	of	these	in	place	via	constraints	to	both	
the	 parent	 hits	 did	 not	 yield	 any	 acceptable	 poses,	
whereas	the	minimisation	in	place	against	only	the	larger	
hit	resulted	in	a	jump	to	23%	for	MCS	and	34%	for	BRICS	
(Figure	 S3).	 When	 Fragmenstein	 mergers	 were	
constrained	to	a	single	hit,	the	acceptance	rate	increased	
from	 11%	 to	 14%,	 because	 several	 mergers	 that	 were	
irreconcilably	strained	when	constrained	against	two	hits	

Figure	 2.	 Accuracy	 of	 placement	 of	 COVID19	 MPro1	 Moonshot	
compounds.	Derivative	compounds	in	the	COVID19	MPro1	Moonshot	
project	which	had	a	stated	parent	(manually	adjusted)	were	placed	
with	 Fragmenstein	 and	 docked	 with	 rDock	 either	 freely	 or	 with	
pharmacophore	 constraints.	 The	 initial	 dataset	 contained	 100	
fragment-inspired	compounds,	but	23	were	discarded	(because	the	
crystal	 structure	 of	 derivative	 had	 no	 overlapping	 atoms	with	 the	
parent,	 the	 reactive	 derivative	 was	 non-covalent	 in	 the	 crystal	
structure	 and/or	 Fragmenstein	 failed	 to	 minimise	 the	 derivative	
compound)	and	a	further	20	were	discarded	in	the	pharmacophore	
constrained	rDock	due	to	failure	to	dock	successfully.	Green	area	<	1	
Å	 RMSD	 against	 crystal	 structure,	 pale	 green	 <	 2	 Å	 RMSD.	 The	
compounds	 bound	 in	 the	 same	 pocket	 as	 the	 hits	 but	 the	
Fragmenstein	 models	 had	 an	 RMSD	 >	 5	 Å	 were	 x2581,	 x10236,	
x2764,	 x10900,	 x2779,	 x1386,	 x3305,	 x1384,	 x10606,	 x10723,	
x10049,	x3366,	 for	most	of	 these	either	 the	crystallised	compound	
disobeyed	 the	 hits	 or	 Fragmenstein	 incorrectly	 mapped	 the	
derivative	to	the	hits	due	the	convoluted	overlay.	Individual	models	
can	 be	 investigated	 at	
https://michelanglo.sgc.ox.ac.uk/r/fragmenstein-moonshot.	
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were	more	relaxed	when	constrained	against	a	single	hit	
and	not	obliged	to	respect	the	position	of	the	second	hit.	
The	 number	 of	 interactions	 formed	 as	 determined	 via	
PLIP	reveals	a	median	0.25	interactions	per	heavy-atom	
(HA)	 for	 the	 acceptable	 two-hit–constrained	
Fragmenstein	mergers	and	a	lower	0.21	interactions/HA	
for	single-hit–constrained	Fragmenstein	mergers.	
This	 is	 because	 without	 the	 positional	 constraints	 the	
force-field	dominates	the	placement	by	pushing	towards	
a	 distant	 energy	 minimum.	 Fragmenstein	 utilises	
molecular	 mechanics	 but	 does	 not	 find	 the	 energy	
minimum	within	 a	 box,	 and	 instead	 finds	 a	 low	 energy	
state	 around	 the	 initial	 hit.	 As	 a	 consequence,	 the	
calculated	 free	 energy	 of	 binding	 are	 sensitive	 to	 the	
number	 of	 constraints	 applied	 and	 are	 not	 an	 overly	
meaningful	 metric.	 Unsurprisingly	 the	 median	 ligand	
efficiency	improves	from	−0.20	kcal/mol/HA	for	the	two-
hit–constrained	 mergers	 to	 −0.23	 kcal/mol/HA	 for	 the	
single-hit–constrained	 mergers,	 despite	 the	 latter	
forming	 less	meaningful	 interactions	by	not	obeying	the	
conformation	of	the	second	hit.		
The	pure-MCS	mergers	constrained	to	the	largest	hit	had	
both	fewer	interactions	and	worse	free	energy	of	binding	
(median	 ligand	 efficiency	 of	 –0.14	 kcal/HA)	 due	 to	 the	
more	compact	nature,	making	the	mergers	more	likely	to	
fall	 off	 an	 energy	 cliff.	 This	 contrasts	 with	 BRICS	
decomposition	where	the	substructures	of	the	parent	hits	
are	 joined	at	 the	broken	bonds	 therefore	respecting	 the	
axis	 of	 the	 compounds,	 even	 if	 they	may	not	 have	been	
spatially	 overlapping.	 In	 the	 BRICS	 approach,	 the	
constraints	 were	 to	 a	 substructure	 of	 single	 hit,	 so	 the	
ligand	 efficiency	 is	 better	 than	 Fragmenstein	 (−0.25	
kcal/mol/HA),	 whereas	 the	 median	 number	 of	
interactions	was	actually	lower	(0.17	interactions/HA).	

	 MPro	 Mac1	

Number	of	hits	used	 34	 44	
Number	of	acceptablea	mergers	 157	 263	
Number	 of	 failed	mergers	 due	 to	 equal	 size	 to	
one	hit	

13	 34	

Number	of	failed	mergers	due	to	>	5	Å	minimum	
distance	between	hits	

918	 1438	

Number	of	failed	mergers	due	to	strain	(∆∆G	>	0	
kcal/mol	or	>1	Å	RMSD)	

33	 149	

Number	of	failed	mergers	due	to	technical	issues	 1	 8	
median	mol.	wt	of	acceptable	subset	 356.1	 305.0	
median	QED	b	of	acceptable	subset	 .79	 .66	
Number	of	of	acceptable	compounds	with	SA	c	<	
0.	

54	 27	

Number	of	of	acceptable	compounds	with	SA≤0.4	 71	 40	
Number	 of	 acceptable	 compounds	 that	 are	
purchasabled	

5	 2	

Number	 of	 acceptable	 compounds	 with	
purchasable	analogues	in	Enamine	Real	differing	
by	2	or	fewer	atoms	

26	 22	

Number	of	acceptable	compounds	accessible	via	
a	one-step	synthesise	

28	 10	

Number	of	acceptable	compounds	accessible	via	
a	two-step	synthesis	

16	 10	

Table	 1.	 Assessment	 of	 the	 quality	 of	 mergers	 generated	 with	
Fragmenstein.	Combinations	(mergers/Linkages)	were	computed	for	
DSiPoised	subset	of	hits	for	the	targets	and	classified	by	outcome	and	
then	 the	 acceptable	molecules	were	 further	 assessed	 for	 synthentic	
accessibility.	 	
a)	The	acceptability	criteria	were	both	hits	were	used,	RMSD	<	1	Å,	
∆∆G	>	0	kcal/mol,	and	number	of	heavy	atoms	greater	than	that	of	the	
largest.	 hit,		
b)	QED:	Quantitative	Estimate	of	Druglikeness,	 calculated	by	RDKit.
	 	
C)	SA:	FastSAScore	calculated	by	Postera	Manifold.	 	
D)	Purchasable:	compound	available	from	the	vendors	Enamine	(BB,	
MADE	and	REAL),	Sigma,	Mcule,	EMolecules,	Molport,	WuXi	(BB	and	
GalaXi).		
E)	1-step	/	2-step:	Molecule	unavailable	but	synthesisable	in	a	one	or	
two	reactions	as	predicted	by	by	Postera	Manifold	retrosynthesis.	The	
combinations	 can	 be	 inspected	 at	
https://michelanglo.sgc.ox.ac.uk/r/fragmenstein-mpro-DSiP.	

3.3	Case	examples	

Fragmenstein	can	work	with	covalent	compounds.	In	
order	 to	work	with	 covalent	 compounds,	 Fragmenstein	
treats	the	attachment	atom	(stored	as	a	dummy	atom)	and	
defined	atoms	from	the	warhead	differently,	primarily	by	
protecting	 these	 during	 merging.	 To	 test	 the	 impact	 of	
having	 a	 covalent	 attachment,	 the	 placement	 of	 a	
published	 compound	 [26]	 with	 two	 stereoisomers	 was	
replicated.	 In	 this	 study,	 only	 one	 enantiomer	 reacted	
with	 the	 thiol	 of	 the	 catalytic	 cysteine	 in	 the	 protein	
(NUDT7).	
This	 compound	 is	 merger	 of	 two	 hits	 (NU181	 and	
PCM0102716)	 which	 were	 used	 for	 placement	 with	
Fragmenstein.	The	RMSD	between	the	placed	model	and	
the	 crystal	 structure	 of	 the	merger	 is	 0.28	 Å,	while	 the	
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combined	 RMSD	 values	 of	 the	model	 and	 the	 structure	
against	the	parent	hits	are	0.65	and	0.61	Å,	indicating	that	
the	 slight	 conformational	 change	 resulting	 from	 the	
constrained	 minimisation	 is	 also	 seen	 in	 the	 crystal	
structure.	 This	 placement	 (Figure	 3A)	 operation	 also	
showcases	a	feature	of	Fragmenstein	borne	out	of	having	
to	 operate	 on	 multiple	 hits.	 Namely,	 that	 some	
superposed	 substituents	 in	 the	 hits	 may	 act	 as	 red	
herrings	and	are	ignored,	in	this	example	the	hydroxyl	of	
one	 hit	 (NU181)	 is	 automatically	 ignored	 from	 the	
mapping	as	it	would	otherwise	impede	the	mapping	of	the	
second	hit	 (PCM0102716)	which	has	a	group	occupying	
the	same	space.	In	this	fragment	screens,	as	is	common,	a	
racemic	mix	first	soaked	in	the	crystal	(NU308)	and	was	
subsequently	 chirally	 separated	 into	 two	 stereoisomers	
(NU442	and	NU443).	Whereas	one	stereoisomer	(NU443)	
was	 found	 covalently	 bound,	 the	 other	 (NU442)	 was	
found	not	 reacted.	 Placing	with	Fragmenstein	 the	 latter	
stereoisomer	 as	 a	 covalent	 compound	 (Supplementary	
figure	 4),	 yielded	 a	 pose	with	 a	 10%	worse	 binding	 ∆G	
(predicted	 by	 Rosetta	 ref2015	 scorefunction	 without	
constraint	weights)	than	the	former	and	with	a	0.9	Å	shift	
in	the	sulfur	atom	of	the	connected	cysteine	relative	to	the	
position	 in	 the	 parent	 hit,	 indicating	 that	 the	 covalent	
bond	 is	 expected	 to	 be	 strained	 as	 is	 confirmed	 in	 the	
crystal	structure	wherein	the	presumably	worse	reaction	
barrier	was	not	overcome.	
	
In	Fragmenstein,	 it	 is	possible	 to	 enforce	derivative	
atoms	to	map	to	specific	atoms	from	the	hit	atoms	in	
order	to	get	the	intended	placement.	An	example	of	this	
is	 a	 parent	 hit	 with	 a	 ring	 in	 a	 flipped	 conformation.	
Crystallographic	 structures	 generally	 consist	 of	 a	 single	
conformer	bound	in	a	set	orientation	as	suggested	by	the	
electron	density	map.	In	some	cases,	for	example	with	the	
terminal	amides	of	glutamine	or	asparagine	or	the	ring	in	
a	histidine,	the	specific	density	alone	cannot	reveal	which	
way	 these	 sidechains	 are	 oriented.	 This	 can	 apply	 to	
ligands	[29].		
An	example	of	this	is	seen	with	tubulin	inhibitor	Todalam-
4	[27].	This	compound	is	the	merger	of	two	compounds	
(F04	 and	 F36).	 One	 possesses	 an	 aminothiazole	 ring	
placed	in	one	orientation	in	the	crystal	structure,	yet	for	

the	 merger	 to	 be	 accurate,	 the	 flipped	 orientation	 is	
required.	When	applied	to	 this	 test	case,	when	passed	a	
map	 to	 override	 certain	 atoms	 Fragmenstein	 correctly	
predicts	the	intended	placement	(Figure	3B).	This	ability	
to	fine	tune	the	behaviour	of	Fragmenstein	allows	it	to	be	
highly	versatile	and	adaptable.	
	

Figure	 3.	 Retrospective	 Comparison	 of	 crystallised	 and	 placed	
derivative	 compound	 from	NUDT7	 study	 (A)	 and	 tubulin	 (B)	 study,	
illustrating	 an	 merger	 with	 hits	 that	 do	 not	 overlap	 cleanly	 and	 a	
merger	requiring	a	user-defined	mapping	respectively.	 	
In	 the	 NUDT7	 study,	 the	 two	 hits	 NU181	 (in	 lavender,	 LHS)	 and	
PCM0102716	 (puce,	 LHS)	 were	 merged	 in	 <paper>	 yielding	 the	
merger	 NU443.	 The	 crystal	 structure	 of	 NU443	 (turquoise,	 RHS)	
overlayed	 with	 the	 placement	 predicted	 by	 Fragmenstein	 (green,	
RHS).	PCM0102716	and	NU443	are	covalent	with	Cys73	via	a	acryloyl	
warhead.	 Internally	 outside	 of	 the	 PyRosetta	 operations,	 covalent	
attachment	atoms	are	stored	as	dummy/R/✱	atoms,	shown	in	white.	
The	 RMSD	 between	 the	 placed	 model	 and	 the	 crystal	 structure	 of	
NU443	is	0.28	Å,	while	the	combined	RMSD	values	of	the	model	and	
the	 structure	 against	 the	 parent	 hits	 are	 0.65	 and	 0.61	 Å.	 In	 the	
placement	 process	 the	 hydroxyl	 of	 NU181	 was	 automatically	
discarded	 from	 the	 mapping	 as	 it	 would	 otherwise	 impede	 the	
mapping	of	the	second	hit	(PCM0102716)	due	to	the	greater	proximity	
of	 the	 NU181	 hydroxyl	 to	 the	 oxygen	 of	 the	 acryloyl	 warhead	 of	
PCM0102716	rather	 than	to	 the	carbon	bonded	the	benzene	ring	 in	
PCM0102716.		 	
In	the	tubulin	study,	F04	(purple)	and	F36	(orange)	inspired	Todalam-
4	 (sky-blue:	 crystal,	 green:	 predicted).	 The	 aminothiazole	 ring	 is	
flipped	 between	 F04	 and	 todalam-4	 by	 design.	 A	 constructive	
observation	 of	 this	 derivative	 is	 that	 the	N-benzyl	 is	 rotated	 in	 the	
crystal	relative	to	F36	possibly	to	attain	a	T-shaped	pi	bond,	a	dipole-
momentum–driven	configuration,	which	 is	not	modelled	 in	classical	
mechanics	forcefields	such	as	that	employed	by	Rosetta.	

4.	Discussion	

4.1	Elaborations	 empirically	 follow	 their	 parent	 hits,	 so	
designs	ought	to	do	the	same	

The	 core	 principle	 of	 Fragmenstein	 is	 to	 create	 a	
conformer	 of	 a	 compound,	 via	 its	 two	 routes	
(combinations	 or	 placements)	 by	 stitching	 together	 the	
atomic	positions	of	the	parent	hits,	with	the	aim	of	being	
as	faithful	as	possible	to	these	without	being	energetically	
unfeasible.	

Docking	 is	 often	 employed	 to	 shortlist	 compounds,	
however	it	has	the	problem	that	the	outputted	conformer	
may	 not	 reflect	 the	 binding	 of	 the	 fragment	 hits	 that	
inspired	them,	even	though	fragment	hits	with	a	common	
substructure	 are	most	 often	 found	 positioned	 in	 a	 very	
similar	manner	[3].	Were	a	docked	derivative	candidate	
to	 interact	differently	than	its	parents,	 the	validity	of	 its	
score	 would	 be	 rightfully	 put	 to	 question	 by	 an	
experimentalist.	 Several	 decomposition	 studies	 address	
the	 SAR	 additivity/superadditivity	 of	 certain	 functional	
groups[30–33]	and	how	the	binding	mode	is	maintained	
crystallographically.	Here,	 the	 inverse	direction	 is	 taken	
and	is	found	also	to	be	consistent;	in	Figure	2	it	was	shown	
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that	 in	 the	 Covid-Moonshot	 dataset	 of	 the	 crystallised	
derivative	 compounds	 that	 bound	 similarly	 to	 their	
parent	(69%),	82%	are	placed	by	Fragmenstein	with	an	
RMSD	under	2	Å	 compared	 to	22%	by	pharmacophore-
constrained	 docking.	 Confirming	 the	 importance	 of	
obeying	the	position	of	the	atoms	in	the	parent	hits.	
Fragmenstein	has	a	very	high	success	rate	 in	combining	
parent	hits	and	yields	several	virtual	compounds	in	make-
on-demand	 space	 (Table	 1).	 Fragmenstein	 aims	 to	
preserve	the	 interactions	of	the	parent	hits	unlike	other	
methods.	Nevertheless,	in	assessing	the	elaborations,	one	
may	be	misled	by	the	metrics	used.	Gibbs	free	energy	of	
binding	 can	 be	 misleading,	 especially	 when	 constraints	
are	 involved:	 reducing	 the	 number	 of	 constraints	
improves	 this	 metric,	 whereas	 there	 are	 fewer	
interactions.	

4.2	A	simple	energy	score	for	exploration	is	unsuitable	for	
shortlisting	virtual	compounds	for	purchase	or	synthesis	

Ranking	virtual	compounds	from	a	screen	via	a	predicted	
energy	metric	is	less	than	ideal	in	general:	a	principle	that	
also	 applies	 to	 Fragmenstein.	 With	 Fragmenstein	 in	
particular,	 the	energy	estimate	 is	not	of	a	global	energy	
minimum,	but	a	minimum	highly	constrained	to	the	RMSD	
between	 the	 placed	 coordinates	 and	 parent	 hits:	 the	
RMSD	 should	 therefore	 be	 considered	 alongside	 the	
predicted	potential.	
	
In	 a	 pipeline,	 where	 fragment	 hits	 are	 combined,	
analogues	 identified	 by	 catalogue,	 and	 then	 placed,	 the	
next	 challenge	 becomes	 choosing	 which	 compounds	 to	
purchase,	 a	 problem	 shared	 with	 other	 methodologies.	
Three	 operations	 are	 commonly	 performed:	 filtering,	
sorting,	 and	 clustering.	 One	 possible	 filter	 is	 supplier	
driven,	namely	the	removal	of	compounds	above	a	given	
price	point	or	with	unworkable	delivery	 times.	Another	
possible	 filter	 is	 the	 wholesale	 removal	 of	 compounds	
with	 substructures	 that	 may	 cause	 assay	 interference,	
such	as	fluorescence	or	PAINS,	or	may	be	toxic	(e.g.	Ghose	
or	 REOS	 filters),	 or	 may	 not	 be	 drug-like	 (eg.	 Lipinski	
rules)[34,	 35].	Whereas	 sorting	 by	 predicted	 energy	 or	
similar	score	is	the	simplest	approach,	it	is	less	suitable	in	
the	real	world	than	a	combination	of	different	metrics	in	
addition	to	score	or	number	of	interactions.	One	factor	is	
risk,	 whereas	 a	 conservative	 elaboration	 may	 be	 more	
likely	 to	 bind,	more	 information	may	 be	 gained	 from	 a	
riskier	 derivative	 compound.	 A	 variety	 of	 other	 factors	
could	be	considered	such	as	a	penalty	for	rotatable	bonds	
on	account	of	entropic	loss	from	the	decrease	in	degrees	
of	 rotational	 freedom	 upon	 binding.	 One	 further	 step,	
especially	 useful	 for	 hit	 discovery,	 is	 clustering	 by	 the	
interactions	formed.	These	various	steps	together	better	
reflect	a	drug	discovery	campaign	as	 they	allow	a	set	of	
virtual	 compounds	with	 desired	 properties	 and	 diverse	
binding	modalities	to	be	shortlisted	as	opposed	to	simply	
by	predicted	energy.	

4.3	 Fragmenstein	 can	 be	 paired	 with	 catalogue	
searches	and	decomposition.	
The	 linking	 approach	 is	 intentionally	 basic	 as	
Fragmenstein	 is	not	 intended	 for	Protac	design	(i.e.	 two	
distinct	moieties	tethered	by	a	long	flexible	linker)	or	to	
add	 novel	 chemical	 substructures	 between	 two	 hits.	
These	use	cases	are	addressed	by	other	tools	[36–39].	A	
recent	 published	 approach,	 for	 example	 for	 fragment	
joining	 enumerate	 all	 purchasable	 compounds	 that	
contain	substructure	of	pairs	of	hits	and	places	these	with	
Fragmenstein	[36].	
For	close	compounds,	the	torsion	of	the	link	may	be	highly	
constrained	 by	 the	 substructures	 from	 the	 parent	 hits,	
which	 is	 exactly	 the	 sort	 of	 problem	 Fragmenstein	 can	
address	as	demonstrated	in	its	role	in	the	identification	of	
a	IC50	430	nM	inhibitor	against	SARS-COV-2	Mac1[19,	40]	
(mergers:		
https://michelanglo.sgc.ox.ac.uk/r/fragmenstein_nsp3).	
Even	 though	 the	 compounds	 generated	 by	 combination	
are	 chemical	 correct,	 a	 limitation	 of	 this	 is	 that	 the	
compounds	 created	 may	 not	 be	 in	 make-on-demand	
space	 or	 may	 not	 be	 synthetically	 accessible.	 In	 the	
provided	demonstration	notebook	the	SmallWorld	server	
is	 queried	 to	 find	purchasable	 analogues	 from	Enamine	
REAL	(an	analogues-by-catalogue	approach)	[17],	which	
can	be	placed	by	Fragmenstein.	A	similar	approach	was	
used	 in	 the	 SARS-COV-2	Mac1	 study[19]	 (using	 Arthor,	
https://arthor.docking.org/[17]).	 Chemical	 make-on-
demand	space	despite	its	vastness	is	often	limiting.	In	fact,	
it	should	be	noted	that	the	outcome	of	the	search	may	not	
be	always	fruitful.	For	example,	a	merger	of	two	perfectly	
placed	parents	may	yield	a	compound	that	is	far	removed	
from	make-on-demand	space	(e.g.	Supplementary	figure	
5,	 a	 clear	 planar	merger	 distant	 from	make-on-demand	
space),	thus	forcing	the	user	to	consider	other	mergers	or	
linkers	as	a	starting	point	for	exploration.	Predictably,	the	
more	 the	 lead-like	 candidates	 grow,	 the	 more	 isolated	
they	may	be	in	easily	synthesisable	chemical	space.		
A	 fruitful	 synergism	 to	optimise	 compounds	 is	 combing	
BRICS	decomposition	and	Fragmenstein,	which	 in	effect	
removes	substructures	from	the	initial	hits	which	are	not	
forming	 good	 interactions	 or	 hamper	 synthetic	
accessibility.	
Beyond	drug	discovery,	Fragmenstein	has	 found	uses	 in	
biochemistry	settings	by	virtue	of	allowing	the	change	of	
a	crystallographically	amenable	analogue	with	the	native	
substrate,	 e.g.	 the	 non-hydrolysable	 guanosine	
imidotriphosphate	 (GNP)	 for	 guanosine	 triphosphate	
(GTP)	[41].		

	5.	Conclusions	
Fragmenstein	 is	 first	 and	 foremost	 a	 tool	 that	 strictly	
obeys	the	parent	hits	both	as	a	generative	model	and	as	a	
docking	alternative.	This	provides	a	way	for	a	human	user	
to	 drive	 their	 computational	 experiment	 to	 meet	 their	
hypothesis	by	controlling	and	appraising	the	prediction:	

https://doi.org/10.26434/chemrxiv-2024-17w01 ORCID: https://orcid.org/0000-0002-5508-4673 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-17w01
https://orcid.org/0000-0002-5508-4673
https://creativecommons.org/licenses/by/4.0/


		

Page	9 	

	

in	the	end,	the	decision	of	which	compounds	to	purchase	
is	very	rarely	left	to	a	blind	algorithm	and	instead	is	put	in	
the	hands	of	an	experienced	chemist.	
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