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Abstract 23 
Background: Mobile monitoring campaigns are frequently used to develop air pollution 24 
exposure models to be used in health studies. Monitoring designs vary substantially, however, 25 
and it is unclear how design features impact exposure assessment models or health inferences.  26 
 27 
Methods: We conducted a case study of the impact of mobile monitoring study design on  28 
ultrafine particle (UFP) exposure assessment and the estimated association between UFP and 29 
late-life cognitive function. We leveraged UFP measures from an extensive mobile monitoring 30 
campaign consisting of 309 temporary roadside stationary sites, each with ~29 temporally 31 
balanced visits over a year. We subsampled the data following common field designs: fewer 32 
visits per site (4-12); shorter campaign durations (1-4 seasons); business or rush hours 33 
(unadjusted and temporally adjusted); and an unbalanced number of visits where high 34 
variability sites received more or less visits than low variability sites. We developed annual 35 
average UFP exposure models with the resulting data and ran health analyses to estimate the 36 
adjusted association between five-year UFP exposure and baseline cognitive function (Cognitive 37 
Abilities Screening Instrument – Item Response Theory [CASI-IRT]) in the Adult Changes in 38 
Thought (ACT) cohort (N=5,409). 39 
 40 
Results: The reference UFP all-data exposure model (R2=0.65) estimated that the adjusted 41 
mean CASI-IRT was lower by 0.020 (95% CI: -0.036, -0.004) per each 1,900 pt/cm3. More 42 
restricted designs generally produced poorer performing exposure models (median R2: 0.40-43 
0.61), with business hours (R2: 0.40-0.45), one-season (R2: 0.43), and unbalanced visits (R2: 0.48) 44 
performing worst. Health inferences were broadly consistent with those from the all-data 45 
exposure model with just fewer visits per location, but they had more bias and/or were 46 
inconsistent across campaigns with fewer seasons, business or rush hours, or unbalanced visits. 47 
Business and rush hour designs had the most biased and attenuated health estimates.  48 
 49 
Conclusions: Thoughtful monitoring design can improve exposure models and subsequent 50 
health inferences.   51 
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1 Introduction 52 
Increasing evidence links traffic-related air pollution (TRAP), including ultrafine particles 53 

(UFP) to adverse health outcomes such as cognitive function (Brugge & Fuller, 2020; HEI, 2013; 54 
US EPA, 2019). UFPs are typically defined as particles ≤ 100 nm in diameter and measured as a 55 
particle number concentration (PNC). These are not routinely monitored by traditional long-56 
term fixed site networks like other pollutants such as fine particulate matter (PM2.5) or nitrogen 57 
dioxide (NO2).  58 

Mobile monitoring campaigns, the use of a mobile platform such as a vehicle to collect 59 
repeated short-term air samples from many locations, are commonly implemented to address 60 
this gap and capture the high spatial variability of UFPs (Kim et al., 2023). Over the past few 61 
decades, mobile monitoring campaigns have helped us gain important insights into pollutant 62 
sources and their spatiotemporal variability, pollution “hotspots,” commuter exposures, and 63 
more (Apte et al., 2017; Austin et al., 2021; Karumanchi et al., 2021; Knibbs et al., 2011; 64 
Weichenthal et al., 2016). An increasing number of recent campaigns aim to develop long-term 65 
exposure assessment models to be used in subsequent epidemiologic inferences. Monitoring 66 
designs vary substantially, however, and no standard protocols exist. Most collect only a 67 
handful of measurements (visits) per site (median: ~4, range: ~1-40), last between a few weeks 68 
up to approximately 3 months, and sample exclusively during weekday business or rush hours 69 
(Kim et al., 2023, p. 202). Nearly all collect samples in an unbalanced fashion, with some 70 
locations receiving more visits than others for various reasons, including logistical constraints. 71 
Most campaigns produce poor to moderately performing exposure assessment models. Limited 72 
attention has been paid to the impact of monitoring design on exposure assessment models 73 
(Apte et al., 2017; Blanco, Doubleday, et al., 2022; Blanco et al., 2023; Blanco, Gassett, et al., 74 
2022; Hatzopoulou et al., 2017; Messier et al., 2018; Saha et al., 2019), and no studies have 75 
assessed how these design features impact exposure assessment models or subsequent 76 
epidemiologic health inferences.  77 

Many epidemiologic studies require long-term exposures, which is unique from other 78 
applications such as commuter or high exposure studies where shorter-term, on-road, and/or 79 
weekday business or rush hour exposures may be most relevant. We have previously shown 80 
that common, restricted sampling designs produce biased annual-average exposure predictions 81 
(Blanco, Doubleday, et al., 2022; Blanco et al., 2023). The objective of this study was to 82 
investigate the degree to which stationary (temporary roadside stop) monitoring design choices 83 
impact subsequent epidemiologic inferences. We conduct a case study of UFP exposures and 84 
late-life cognitive function by leveraging an extensive mobile monitoring campaign that was 85 
specifically designed to estimate unbiased annual average UFP exposures in the greater Seattle 86 
area (Blanco, Gassett, et al., 2022) and the Adult Changes in Thought (ACT) cohort, a large 87 
prospective cohort study investigating the aging brain (Kukull et al., 2002). We follow common 88 
mobile monitoring designs to sample our rich mobile monitoring dataset; develop design-89 
specific PNC exposure assessment models; use these to assess participant exposures; and fit 90 
health models to estimate the association between PNC exposure and cognitive function in 91 
ACT. We evaluate these results to provide guidance on mobile monitoring study design features 92 
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that should be prioritized if the goal is to develop exposure assessment models for 93 
epidemiologic applications. 94 
 95 

2 Methods 96 
2.1 Cohort and Cognitive Assessments   97 

ACT is a community-based, prospective cohort study in the greater Seattle area that has 98 
been investigating the aging brain since 1994 (Kukull et al., 2002). The study randomly invites 99 
elderly (65+ yr) members of the Kaiser Permanente Washington integrated healthcare delivery 100 
system (formerly Group Health Cooperative) to participate. Invitees are assessed for cognitive 101 
function at baseline using the Cognitive Abilities Screening Instrument (CASI), which combines 102 
common screening tests including the Mini-Mental State Examination (MMSE) and the 103 
Hasegawa Dementia Rating Scale to quantitatively assess attention, concentration, orientation, 104 
short- and long-term memory, language abilities, judgement, and other functions (Teng et al., 105 
2004). People with high cognitive scores (scores of ≥ 86/100) are enrolled. People with low 106 
scores are evaluated with a comprehensive neuropsychological battery and focused 107 
neurological examination. Results of those assessments and medical records including imaging 108 
are reviewed at a consensus conference to identify cases of dementia and Alzheimer’s disease 109 
using standardized research criteria. People who do not have dementia from this consensus 110 
process are also invited to enroll in the study. The final cognition scores from the CASI are 111 
derived using Item Response Theory (CASI-IRT), to improve score accuracy, measure cognitive 112 
change with less bias, and to account for missing test items (Crane et al., 2008; Ehlenbach et al., 113 
2010; Li et al., 2017). Participants are prospectively followed until dementia incidence, drop-114 
out, or death. Extensive health, lifestyle, biological, and demographic data are also collected.  115 

As of March of 2020, the total ACT enrollment consisted of 5,763 participants. This analysis 116 
was restricted to ACT study baseline and included 5,409 (94%) participants with a valid CASI-IRT 117 
score and those who had lived in the exposure monitoring region (see below) during at least 118 
95% of the prior five years (SI Figure S1 details participant retention). The ACT repository has 119 
excellent residential histories and air pollution coverage for ACT participants  (Blanco, Gassett, 120 
et al., 2022; Shaffer et al., 2021). On average, this analytic cohort lived in the monitoring area 121 
>99% of the time, had exact geocoded residential addresses 98% of the time (e.g., vs. street 122 
level geocoding), and had imputed addresses 5% of the time (i.e., from residential gaps).  123 

Study procedures were approved by the University of Washington and Kaiser Permanente 124 
institutional review boards. ACT participants signed informed consent forms. 125 
 126 
2.2 Exposure Assessment from Mobile Monitoring Campaigns 127 

We leveraged an extensive and novel mobile monitoring campaign that was designed to 128 
assess unbiased annual average TRAP exposures for ACT (Blanco, Doubleday, et al., 2022; 129 
Blanco, Gassett, et al., 2022). Monitoring was conducted within a 1,200 land km2 area in the 130 
greater Seattle area and consisted of repeated 2-minute measurements at 309 roadside 131 
locations that were representative of ACT residential locations. Approximately 29 (IQR: 29-29, 132 
range: 26-35) measurements were collected from each location over the course of a year 133 
between March 2019 and March 2020 across all four seasons, all days of the week, and most 134 
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hours of the day (5 AM – 11 PM). Median pollutant concentrations were estimated for each site 135 
visit. These were winsorized at the site level such that values below the 5th and above the 95th 136 
quantile were set to those thresholds to reduce the influence of extreme observations. These 137 
data were used to develop what we refer in this study as “all-data” site annual averages which 138 
were treated as gold standard reference estimates, as described below. The campaign 139 
measured UFPs using multiple instruments. In this study, we use UFP measures from the TSI 140 
NanoScan 3910, which measured total and size-specific PNC for 10-420 nm particles, and the 141 
TSI P-TRAK 8525, which measured total PNC for 20-1,000 nm particles. We considered total PNC 142 
from the NanoScan our primary measure since it measured smaller particles than the P-TRAK 143 
and was more consistent with the World Health Organization’s suggested air quality guidelines 144 
of measuring particles down to at least 10 nm (WHO, 2021). In sensitivity analyses, we 145 
specifically looked at 10-100 nm PNC from the NanoScan since UFPs are commonly defined as ≤ 146 
100 nm, and at 20-1,000 nm PNC from the P-TRAK, a common UFP monitoring instrument. 147 

We subsampled the all-data campaign (309 roadside locations x ~29 visits each) with 148 
replacement following four common restricted sampling designs (30 campaigns each) (Table 1). 149 
In the first design, we sampled fewer visits per site (n=4, 6, and 12) with no additional temporal 150 
restrictions. In the second design, we restricted sampling to fewer (1-3) seasons and  collected 151 
12 visits from each site balanced across sampling seasons (e.g., 4 samples per season for a 152 
three-season campaign).  153 

In the third design, we sampled fewer visits per site (n=12) during weekday business (9 154 
AM - 5 PM) or rush (7-10 AM & 3-6 PM) hours. The fewer visit design with 12 visits per site was 155 
a reference for these designs – it collected the same number of visits per site without temporal 156 
restrictions. We used business and rush hour visit samples as is (unadjusted) and temporally-157 
adjusted – a common approach for addressing known biases resulting from restricted sampling 158 
campaigns that do not sample during the full exposure period of interest (e.g., weekends, night 159 
time, when the goal is to estimate an annual average) (Eeftens et al., 2012; Klompmaker et al., 160 
2015; Montagne et al., 2015; van de Beek et al., 2021; van Nunen et al., 2017). This approach 161 
generally entails using an air monitoring site with continuous monitoring (typically a 162 
“background” or low-concentration site); calculating time-specific adjustment factors, based 163 
most commonly on the difference between a time-specific (e.g., hourly) measurement and the 164 
site’s long-term average; and applying these adjustment factors to the measured 165 
concentrations. Our approach approximating this general strategy is detailed in Note S1. In 166 
summary, our temporal approach consisted of: 1) simulating a long-term UFP monitoring at an 167 
urban background site (Beacon Hill; continuous measures were unavailable for the entire 168 
mobile monitoring study period) from periodic PNC measures, collocated NO2 measures, and 169 
temporal indicators; 2) generating adjustment factors, defined as the difference between the 170 
predicted hourly PNC and the long-term average PNC at Beacon Hill; and 3) applying these 171 
adjustment factors to the mobile monitoring data collected under business and rush hours 172 
designs.   173 
 In our fourth design, we evaluated a strategy characterized by unbalanced visits, a 174 
practice employed by nearly all field campaigns. We sampled based on predicted site variability, 175 
defined by partial least squares (PLS) regression where we regressed site-specific PNC 176 
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interquartile range (IQR; median [range]: 7,183 [2,834-22,625] pt/cm3 based on ~29 visits per 177 
site) against the first two PLS components summarizing hundreds of geographic covariate 178 
predictors (see below for example covariates). The in-sample model R2 was 0.46. We used this 179 
model to predict in-sample site-specific IQR and ordered these such that 129 (42%) sites were 180 
treated as medium variability sites, and visits continued to be fixed to 12. The remaining sites 181 
were split into high (H) or low (Low) variability (n=90 [29%] each). Figure S5 shows the 182 
distribution of IQRs used for variability group. We incorporated more visits for high-variability 183 
sites (14 to 22 visits) and fewer visits for low-variability sites (10 to 2), and vice versa.  184 

The same sampling campaigns (i.e., exact visit samples) were used for sensitivity 185 
analyses of 10-100 nm and 20-1,000 nm particles (vs 10-420 nm) for all designs other than the 186 
business and rush hour designs, where a different set of 30 campaigns were randomly sampled. 187 
This should not be a source of bias since all campaigns were randomly selected.  188 

We calculated annual average site concentrations from each sampling campaign. In 189 
total, there were 480 candidate sampling campaigns and subsequent exposure models for our 190 
primary analysis using 10-420 nm PNC from the NanoScan in addition to the all-data exposure 191 
model. 192 
 193 
Table 1.Reduced Sampling Designs from an extensive, “all-data” mobile monitoring campaign (309 roadside sites).a 194 

Designa Versions No. of 
Versions 

Total 
Visits 

Visits 
per 
Site 

Campaign 
Repetitions 

All-data All-data 1 8,969 29b 1 
Fewer Visits  
(no temporal 
restrictions) 

4, 6, 12 visits per site 3 1,236, 
1,854, 
3,708 

4, 6, 
12 

30 

Fewer 
Seasonsc 

1-4 seasons 4 3,708  12 30 

Fewer Hours Weekday business or rush 
hours, unadjusted or 
temporally-adjusted 

4 3,708 12 30 

Unbalanced 
Visits 

High (H) and low (L) variability 
sites receive the following 
visits: H2 L22, H6 L18, H12 L12 
(all receive 12 visits), H18 L6, 
H22 L2  

5 3,708 2-22 
(avg: 
12) 

30 

a The all-data design is a reference for all other designs, which have fewer site visits.  195 
b mean and median: 29; IQR: 29-29; range: 26-35 196 
c Samples were distributed evenly across the randomly selected seasons (e.g., 12 site visits/3 197 
seasons = 4 site visits/season). 198 
 199 

We used the annual average site PNCs from each sampling campaign to develop universal 200 
kriging – partial least squares (UK-PLS) exposure prediction models. PNC was log-transformed 201 
and regressed against the first two PLS components, which summarized 188 geographic 202 
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covariates predictive of TRAP (e.g., land use, roadway proximity, population density), as 203 
previously detailed (Blanco et al., 2023; Blanco, Gassett, et al., 2022). We evaluated each model 204 
by comparing the five-fold cross-validated site predictions against the annual averages from the 205 
all-data campaign (our best estimates). We and others have shown the importance of validating 206 
model predictions against unbiased estimates, and how comparisons against biased, unstable 207 
campaign measurements (e.g., from restricted sampling designs) produces noisy and misleading 208 
conclusions (Blanco, Doubleday, et al., 2022; Blanco et al., 2023; Kerckhoffs et al., 2016; 209 
Messier et al., 2018). We evaluated the performance of each model using mean-square error 210 
(MSE) -based R2 (R2

MSE), which evaluates whether pairs of predictions and observations are the 211 
same (i.e., along the one-to-one line) rather than simply linearly associated, like traditional 212 
regression-based R2, and is thus better suited to evaluate predictive performance.  213 

We used each campaign model to predict time-weighted average PNC exposures for each 214 
participant at baseline based on their prior five-year residential history.  215 
 216 
2.3 Inferential Analyses 217 

We assessed the association between the five-year average PNC exposure prior to 218 
baseline using each exposure model and baseline cognitive function (CASI-IRT) using linear 219 
regression. Each model was adjusted for age, calendar year (2 yr categories), sex, and education 220 
(no degree, high school equivalent, bachelor’s, master’s, doctorate, other). The model was: 221 
 222 

𝐶𝐴𝑆𝐼	𝐼𝑅𝑇! = 	𝛼 + 𝛽",$𝑋!,$%&' +	𝛽(𝑋!
)*+ + 𝛽,𝐼!

-+). +	𝛽/𝐼!0+1 +	𝛽2𝐼!+34 + 𝜀!    (1) 223 
 224 
Where the i index denotes participant i and m the PNC exposure prediction from a given 225 
exposure model m. We compared the health effects parameter (𝛽.",$) estimated from each PNC 226 
exposure model to the health effect estimated from the all-data campaign.  227 

All analyses were conducted in R (v. 4.2.2) (R Core Team, 2023). 228 
 229 

3 Results 230 
 231 
3.1 Cohort Characteristics 232 

Table 2 describes the baseline analytic cohort characteristics. On average (SD), 233 
participants were 74 (6) years old, slightly more were female, about half had at least a college 234 
education, and an average (SD) CASI-IRT score of 0.33 (0.71). 235 
  236 
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 237 
Table 2. Baseline cohort characteristics.1 238 

 Low PNC 
(N=1785) 

Medium PNC 
(N=1785) 

High PNC 
(N=1839) 

Overall 
(N=5409) 

Visit Age (Years)     

Mean (SD) 73.6 (6.03) 74.0 (6.40) 74.4 (6.48) 74.0 (6.31) 

Median [Min, Max] 72.0 [65.0, 
98.0] 73.0 [65.0, 96.0] 73.0 [65.0, 101] 73.0 [65.0, 101] 

Sex     

Male 767 (43.0%) 742 (41.6%) 750 (40.8%) 2259 (41.8%) 

Female 1018 (57.0%) 1043 (58.4%) 1089 (59.2%) 3150 (58.2%) 

Degree     

None 128 (7.2%) 136 (7.6%) 158 (8.6%) 422 (7.8%) 

GED/High School 657 (36.8%) 607 (34.0%) 733 (39.9%) 1997 (36.9%) 

Bachelor's 423 (23.7%) 443 (24.8%) 408 (22.2%) 1274 (23.6%) 

Master's 288 (16.1%) 319 (17.9%) 265 (14.4%) 872 (16.1%) 

Doctorate 110 (6.2%) 122 (6.8%) 98 (5.3%) 330 (6.1%) 

Other 179 (10.0%) 158 (8.9%) 177 (9.6%) 514 (9.5%) 

CASI-IRT     

Mean (SD) 0.368 (0.689) 0.365 (0.720) 0.277 (0.710) 0.337 (0.708) 

Median [Min, Max] 0.408 [-1.96, 
1.75] 

0.398 [-1.98, 
1.75] 

0.304 [-2.12, 
1.75] 

0.371 [-2.12, 
1.75] 

Residential PNC (pt/cm3) 
Exposure 

    

Mean (SD) 8,760 (647) 10,100 (311) 12,500 (2,080) 10,500 (2,020) 

Median [Min, Max] 8,890 [5,930, 
9,570] 

10,100 [9,570, 
10,700] 

11,700 [10,700, 
22,100] 

10,100 [5,930, 
22,100] 

1Low, medium, and high PNC tertile is based on the predicted PNC from the all-data exposure 239 
model. 240 
 241 
 242 
3.2 Exposure Assessment and Model Performances 243 

The median (interquartile range [IQR]) site PNC for the primary analysis (10-420 nm) from 244 
the all-data campaign was 9,747 (8,412-11,199) pt/cm3 (Figure S6). Sampling designs had similar 245 
but slightly more variable annual average site estimates. Sensitivity analyses resulted in lower 246 
site concentration estimates; 20-1,000 nm PNC from the P-TRAK had the smallest 247 
concentrations (Figure S6). 248 
 The all-data campaign PNC exposure models had a cross-validated R2

MSE value of 0.65 249 
(Figure 1). Almost all sampling designs with restricted sampling had lower performing exposure 250 
models. Performances were incrementally worse for campaigns with fewer visits per site; 251 
shorter campaign durations; more restricted sampling days and times (business and rush 252 
hours). Performance was even worse when temporal adjustments were applied (see Figure S7 253 
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for paired comparisons of adjusted and unadjusted campaign model performances); and when 254 
there were an unbalanced number of visits sampled across sites, particularly when high 255 
variability sites had very few visits. Despite collecting the same number of total visits (309 sites 256 
x 12 visits), campaigns with one season duration, those conducted during business hours 257 
(adjusted and unadjusted), and those with few visits to high variability sites (even when more 258 
visits were collected from lower variability sites) performed worse than otherwise unrestricted 259 
12 visit designs. Sensitivity analyses for 10-100 nm and 20-1,000 nm PNC showed similar 260 
patterns (Figure S9). 261 
 262 

 263 
Figure 1. Cross-validated UFP model performances (N=30 campaigns per design). The dashed lines indidcate the all-data 264 
campaign performance. Red design reference boxplots indicate the least restrictive or most balanced campaigns; any of these 265 
can serve as a reference for the business and rush hours designs. Models are for total 10-420 nm PNC (pt/cm3) from the 266 
NanoScan instrument. Boxes show the median and IQR, whiskers show the 10th and 90th percentiles. 267 

 268 
The median (IQR) predicted PNC for participants was 10,124 (9,293-11,100) pt/cm3 and 269 

ranged from 5,930-22,134. Exposure predictions for sampling designs varied across campaigns 270 
(Figure S10). The business hour design tended to underpredict high exposures relative to the 271 
all-data exposure model, while the rush hour design overpredicted high exposures. Designs 272 
with few visits to high variability sites (and more visits to low variability sites, H2 L22) had highly 273 
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variable predictions across campaigns, particularly for high concentrations. We saw similar 274 
patterns in sensitivity analyses of 10-100 nm and 20-1,000 nm PNC.  275 

Predictions from most designs were highly correlated with predictions from the all-data 276 
campaign (median Pearson correlations [R] > 0.85), although the business hour design was 277 
consistently lower than all other designs (R ~0.77-0.78; Figure S11). Lower correlations indicate 278 
differences in exposure surfaces (predictions) for mobile monitoring designs with fewer visits 279 
per site, those with shorter campaign durations, those limited to business hours, and those with 280 
fewer visits at high-variability sites. All designs had one or more atypical campaigns (i.e., 281 
outliers in the Figure S11 boxplots) that had a meaningfully lower correlation with the all-data 282 
campaign than the majority of other similarly designed campaigns, indicating potentially 283 
meaningful variability and lower exposure model performances across campaign iterations. 284 
 285 
3.3 Inferential Analyses 286 

Using the all-data campaign exposure model, the adjusted mean baseline CASI-IRT score 287 
was lower by -0.020 (95% confidence interval [CI]: -0.036, -0.004) for every increment of 1,900 288 
pt/cm3. Figure 2 summarizes the health effect point estimates across sampling campaigns and 289 
their percent difference relative to the health effect estimate obtained from the all-data 290 
exposure model. The health effect estimates for the fewer visit and season designs are similar, 291 
with campaigns with more visits and longer durations being most similar and associated with 292 
more consistent (less variable) results across campaigns. The fewer visit design with 4 visits per 293 
site and 1 season designs have the highest variability in the estimated health estimates across 294 
campaigns, indicating less consistent results. Business and rush hour designs, on the other 295 
hand, produce biased, attenuated health effect estimates that are about 50% and 40% different 296 
from the all-data estimate, respectively. Temporally adjusting these designs was associated 297 
with slightly more accurate health inferences. Campaigns with balanced designs where all sites 298 
receive the same number of visits (12) had health effects inferences that are the most 299 
consistent with the all-data exposure model. Figure S12 shows similar results for sensitivity 300 
analyses, with 20-1,000 nm PNC P-TRAK exposure models showing greater differences closer to 301 
60% for business hour designs. Figure S13 further details the point and 95% CI for selected 302 
campaigns for primary and sensitivity analyses.  303 
 304 
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 305 
Figure 2. Health effect estimates from different sampling designs for the adjusted association between PNC (1,900 pt/cm3) and 306 
cognitive function (CASI-IRT). Percent difference is relative to the health effect estimate from the all-data exposure model. Boxes 307 
show the median and IQR, whiskers show the 10th and 90th percentiles. 308 

 309 

4 Discussion 310 
Mobile monitoring campaigns to assess traffic pollutants, including UFPs, are being used 311 

around the globe to address monitoring gaps (Kim et al., 2023). Many campaigns now aim to 312 
develop exposure assessment models to be used in epidemiologic applications. This application 313 
generally necessitates capturing long-term, offroad (generally residential) exposures and is 314 
different from commuter exposures or hotspot identification studies, among others. Still, 315 
guidance on mobile monitoring study design for epidemiologic applications has been largely 316 
absent from the literature (Blanco, Doubleday, et al., 2022; Blanco et al., 2023; Blanco, Gassett, 317 
et al., 2022; Doubleday et al., 2023). As a result, there is substantial variability in how mobile 318 
monitoring campaigns are designed and implemented. We previously showed that monitoring 319 
design features like the number of sites, visits, campaign duration, sampling days, and sampling 320 
hours can greatly impact the predictive performance of exposure assessment models (Blanco, 321 
Doubleday, et al., 2022; Blanco et al., 2023). Here, we further assess additional monitoring 322 
approaches and how these differences in exposure model choices impact epidemiologic 323 
inferences.  324 

We found that, when compared to an extensive mobile monitoring campaign intentionally 325 
designed for epidemiologic application (the all-data exposure model), campaigns with fewer 326 
visits (~4-12) but no temporal restrictions, shorter durations (~2-3 seasons), and a fixed number 327 
of visits across sites (12 in this case) had only slightly worse exposure model performances 328 
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(Figure 1); similar, highly correlated (mostly >~0.85 ) participant exposure assessments (Figure 329 
S11); and health inferences with only a small degree of bias (Figure 2). As expected, shorter 330 
campaigns (e.g., one season) and those with fewer repeat site visits generally had worse 331 
performing models with predictions that were less correlated (i.e., more different) to those 332 
from the all-data campaign. Rush hour and especially business hour designs, on the other hand, 333 
had much worse exposure model performances, more variable participant exposure 334 
assessments, and more biased, attenuated health effect estimates despite predicting exposures 335 
that were moderately (business) to highly (rush) correlated with those from the all-data 336 
exposure model. Moreover, the health effect estimates associated with these monitoring 337 
campaigns were noticeably different from all other designs, including much shorter (e.g., 1 338 
season vs year-around) campaigns and those with fewer samples (e.g., 4 vs 12 visits per site), 339 
suggesting that capturing temporal variability through extended hours designs (e.g., sampling 340 
weekends and extending the sampling hours) is critical for capturing long-term annual average 341 
exposures. It's notable that these reduced day and hour campaigns are most common in the 342 
field since an operator is required to operate a vehicle and monitor instrumentation throughout 343 
the sampling period. 344 

Interestingly, temporally adjusted business and rush hour designs were associated with 345 
worse exposure model performances (Figure 1, Figure S7, Figure S8) and had more biased 346 
health inferences than other designs, although temporal adjustment was able to reduce these 347 
health biases (Figure 2). Sites within a region can have different temporal patterns (Blanco, 348 
Doubleday, et al., 2022) related to major  nearby sources (or their absence), for example, 349 
airports, highways, or industrial sites. Applying temporal adjustments from a single site may 350 
incorrectly or insufficiently adjust exposure estimates, depending on the heterogeneity of the 351 
monitoring sites. In our study, temporal adjustment did not improve predictions of overall 352 
exposure levels, but it was associated with less bias in health effect inference. Heuristically, the 353 
added complexity of the time adjustment introduced a form of classical-like measurement error 354 
that adversely impacted prediction accuracy, but the improved temporal alignment decreased 355 
the impact of Berkson-like error, which was responsible for the dominant health effect 356 
estimation bias from the unadjusted exposure estimates (Szpiro et al., 2011; Szpiro & Paciorek, 357 
2013).  358 

A feature of our temporal adjustment approach was that we based it on a simulated 359 
UFP monitoring site, as described in the Methods, from collocated PNC and highly temporally 360 
correlated NO2 observations along with other temporal indicators. This approach was 361 
associated with good PNC predictions and captured much of the temporal variation in UFP 362 
(Figure S2 – Figure S4), suggesting it was a reliable source for estimating temporal adjustment 363 
factors. In the literature, various adjustment approaches (e.g., “difference” or “ratio” 364 
approaches) and sites have been used to temporally adjust mobile monitoring readings. These 365 
approaches have not been validated with data and themselves produce fluctuating adjustment 366 
factors. Finally, we used hourly adjustment factors to adjust noisier two-minute mobile 367 
monitoring site visits. We have previously shown that these are highly correlated (Blanco, 368 
Doubleday, et al., 2022). 369 
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 There are different ways field sampling is conducted that lead to unbalanced sampling 370 
whereby some locations receive more visits than others. This may result from having non-fixed 371 
driving routes, logistical constraints that make it challenging to visit some sites while others 372 
along common driving routes are naturally oversampled, intentionally oversampling sites 373 
anticipated to have high variability while deprioritizing sites with low variability (e.g., suburban 374 
areas), etc. We present one approach whereby sampling is influenced by the anticipated site 375 
concentration variability across time. We did not see an appreciable benefit to exposure model 376 
performance from oversampling high variability sites although performances was lower when 377 
we dramatically undersampled high variability sites (Figure 1, H2 L22). Schemes with balanced 378 
samples across sites (12 visits each) had the least biased and least variable health inferences 379 
(Figure 2). These findings suggest using a balanced sampling design whenever feasible. If 380 
traveling to sites with low anticipated variability presents a significant logistical challenge, 381 
however, our results suggested that strategies characterized by somewhat fewer visits to these 382 
sites may be a reasonable choice.  383 

We used predicted, in-sample IQR based on PLS regression analysis rather than “true” IQR 384 
to classify sites. This adds some error to site classifications (high, medium, low variability) 385 
despite being in-sample predictions (which can produce overfitted, optimistic results). 386 
Nonetheless, true site concentrations and variability are largely unknown prior to conducting 387 
in-field mobile monitoring, adding natural uncertainty to monitoring decisions. Moreover, 388 
defining target sites becomes more challenging for multiple pollutants since spatial and 389 
temporal patterns (e.g., pollutant variability) may vary across pollutants, such that a site could 390 
have high variability for one pollutant and low variability for another. 391 

Overall, our findings suggest that strategic monitoring design can be implemented to 392 
optimize the likely accuracy of health inferences and the anticipated consistency of these 393 
results across campaigns (i.e., generally narrower boxplots in Figure 2) while keeping in mind 394 
the logistical constraints unique to mobile monitoring. We suggest prioritizing sampling during 395 
extended times beyond rush hours and business hours. Designs that focused on rush hour and 396 
especially on business hour monitoring were associated with attenuated health inferences that 397 
are only minimally made better with commonly used temporal adjustment approaches. Beyond 398 
that, collecting data over at least three seasons if the goal is to estimate an annual average, 399 
collecting a balanced (fixed) number of visits across locations, and collecting a higher number of 400 
visits per location were all associated with better health inference accuracy and lower 401 
variability across campaigns. One thing to note is that sampling design impacts some pollutants 402 
more than others (Blanco et al., 2023). This variability will likely translate to subsequent health 403 
inferences to varying degrees. 404 

Spatial and temporal compatibility (i.e., similarity in distributions) between monitoring and 405 
cohort locations is an important feature for minimizing the impact of measurement error and 406 
consequently optimizing health inferences (Szpiro & Paciorek, 2013). Our study is inherently 407 
spatially aligned since our extensive mobile monitoring campaign was specifically designed to 408 
capture exposures for the ACT cohort (Blanco, Gassett, et al., 2022). It’s notable that most 409 
campaigns select monitoring locations based on geographic features or sources (e.g., major 410 
roads, industry, airports) and do not explicitly set out to capture exposures based on the 411 
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geographical spread of study participants. Spatial compatibility is particularly relevant for air 412 
pollution epidemiology, where health effects of variable levels of exposure are associated with 413 
subtle health effects, and biases or lower levels of precision can easily obscure meaningful 414 
associations. In this case study of UFPs and cognitive function, we observed an association 415 
between our exposure and outcome of interest. While mobile monitoring inherently results in 416 
missing observations, the all-data and other similar designs (e.g., 3 seasons) estimated  annual 417 
average exposure levels that are close to the true annual average (Blanco, Doubleday, et al., 418 
2022). The day and time restricted designs, however, sample during times that are temporally 419 
misaligned with the longer-term exposures of interest. These designs contribute to bias from 420 
Berkson-like error, which is the difference between the true annual average exposure surface 421 
and the more limited  part captured by the modeling process (Szpiro & Paciorek, 2013). The 422 
ideal way to eliminate the bias from temporal misalignment is by modifying the sampling 423 
design, but if this is not possible an alternative is to introduce a spatiotemporal model that fully 424 
captures the complexity of the underlying exposure surface. Our use of temporal adjustment 425 
can be viewed as a step in that direction, and as expected it did seem to reduce bias from 426 
Berkson-like error to some degree, but evidence of bias remains. Future research can explore 427 
the question of whether the available data are sufficiently rich to support a full spatiotemporal 428 
model that will more fully capture the underlying surface, and thus eliminate bias from 429 
Berkson-like error. Another possibility is to reweight the data to achieve temporal 430 
compatibility. However, it is not clear that either of these approaches will be successful with 431 
the rush-hour or business-hour designs since key information about what happens during the 432 
non-covered hours is completely unavailable. 433 

More generally, our findings are conservative with respect to realized published studies. 434 
Many mobile monitoring campaigns incorporate multiple features that might limit their 435 
applicability to long-term population exposure studies, for example, campaigns that last less 436 
than a year, collect fewer repeat visits per site (median ~4), sample only during weekday 437 
business hours, and collect unbalanced numbers of visits per site (Kim et al., 2023). We 438 
anticipate that these designs will produce biased health effect estimates like those that we 439 
observed for the business hours design, if not more severe. Moreover, most mobile monitoring 440 
campaigns explicitly collect non-stationary, on-road data. While non-stationary designs achieve 441 
higher spatial coverage than stationary designs like the one used in this study, they measure 442 
on-road concentrations that are typically higher than those captured by stationary, offroad 443 
locations that are more similar to residential exposures; collect less data per location (seconds 444 
vs minutes) making for more unstable estimates; and the resulting exposure models are 445 
associated with poorer performance (Doubleday et al., 2023; Kim et al., 2023). Most on-road 446 
campaigns also do not adjust on-road data to minimize the influence of air pollution plumes 447 
(spike concentrations) common on roads but less so at residential locations. These design 448 
features are unique to on-road mobile monitoring, and their potential impact on health 449 
inferences should be investigated in future work. 450 

We conducted this study using data from the long-standing, community-based ACT cohort. 451 
While we could have simulated health outcome data to conduct this analysis, we chose to use 452 
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this data source to reflect real-world impacts and incorporate aspects that might not be 453 
included in a simulation study. As such, this approach may be more illuminating of real world 454 
implications compared to a simulation study. ACT has consistently collected measures over 455 
time, including cognitive function, demographics, and lifestyle factors. ACT’s extensive 456 
participant residential histories allowed us to assess UFP exposures for most participants. Since 457 
we used fixed annual average 2019 UFP exposure surfaces to assess exposures, there is 458 
inherent exposure assessment error in these analyses, including the all-data campaign, and this 459 
likely was higher for earlier time periods. Historical UFP data are rare and we assumed that the 460 
exposure surface was constant over time (Blanco, 2021; Kim et al., 2017; Levy et al., 2015; 461 
Meng et al., 2019; Molter et al., 2010; Wang et al., 2011). More generally, our inferential 462 
models in this analysis were not necessarily meant to characterize causal associations between 463 
UFP and cognitive function. Such analysis could consider more extensive confounding 464 
adjustment, and address potential selection biases that may have resulted, for example, from 465 
conducting complete case analyses. The goal of this analysis was to characterize how mobile 466 
monitoring design choices may impact estimated health effects of air pollution.  467 

We investigate how mobile monitoring design impacts both air pollution exposure 468 
assessment and subsequent health outcomes and show that thoughtful monitoring design can 469 
be implemented to improve the accuracy of health inferences and consistency across 470 
campaigns. Critically, we recommend extending sampling beyond typical weekday business or 471 
rush hours. Health inferences can be further improved by collecting data over at least three 472 
seasons if the goal is to estimate an annual average, collecting a balanced (fixed) number of 473 
visits across locations, and collecting an increased number of visits. Our future work will 474 
investigate how monitoring design more specifically impacts non-stationary, on-road data 475 
exposure models and health inferences.  476 
 477 
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 2 

1 Methods  
 

 
Figure S1. Analytic cohort used in this study. 

 
Note S1. Temporal adjustment approach 

In summary, our temporal approach consisted of the following:  
1. Simulate a long-term UFP monitoring at an urban background site (Beacon Hill; 

continuous measures were unavailable for the entire mobile monitoring study period) 
from periodic PNC measures, collocated NO2 measures, and temporal indicators. 

2. Generate adjustment factors, defined as the difference between the predicted hourly 
PNC and the long-term average PNC at Beacon Hill. 

3. Apply these adjustment factors to the mobile monitoring data collected under business 
and rush hours designs.   

 
More specifically, we simulated one based on available continuous NO2 measurements 

and collocated PNC measurements collected periodically throughout the study period at an 
urban background site in the study area (Beacon Hill) since a long-term UFP monitoring site was 
unavailable during the original mobile monitoring study period. Figure S2 depicts similar 
temporal trends between observed hourly PNC and NO2 concentrations. Table S1 and Figure S3 
summarize the available PNC measures (available from 31 sampling days across four months 
and three seasons). Hourly NO2 observations were from the US EPA regulatory air network (US 
EPA, 2023). We imputed missing hourly NO2 values (3%) based on a regression model fitting 
existing log-transformed NO2 observations against an indicator for the observation month and a 
cubic cyclic spline for each day of the week (Mon-Sun) based on the hour associated with that 
observation (See Equation S1 for a similar layout). While most days with missing observations 
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had only one missing value, and we could have implemented simpler linear regression, we took 
this more flexible approach because 5 days had multiple (5+) missing values. We fit the 
following model to simulate a long-term PNC monitoring site:  
 

log(𝑃𝑁𝐶!) = 𝛼 + 𝛽 log-𝑁𝑂",!/ + 𝑠(ℎ𝑜𝑢𝑟!) ∗ 𝑑𝑎𝑦	𝑜𝑓	𝑤𝑒𝑒𝑘! + 𝜖!	   (S1) 
 
where the log-transformed hourly average PNC at time t was regressed against the hourly 
average log-transformed NO2 concentration at the same time t and a cubic cyclic spline for each 
day of the week (Mon-Sun) for the hour (0-23) associated with t (i.e., there are seven cyclic 
splines). The resulting model residuals had a minimal temporal variation, suggesting that the 
model captured important PNC temporal trends (Figure S4); and it had an in-sample model R2 
of 0.52. 

We used this model to predict hourly PNC concentrations during the study period and 
simulate a long-term PNC monitoring site. We winsorized (i.e., set) extreme predictions above 
the 95th (16,380 pt/cm3) and below the 5th quantile (2,963 pt/cm3) to those quantiles, 
respectively, to reduce extreme temporal adjustments in the next step. We calculated hourly 
adjustment factors by taking the difference between the long-term (i.e., annual) and each 
hourly average PNC site concentration: 
 

𝛿@! = 𝑃𝑁𝐶$%& − 𝑃𝑁𝐶B!,'()*+,(-./    (S2)   
 
Finally, PNC samples collected under the business or rush hours designs were adjusted: 
 

𝑃𝑁𝐶B!,0/1 		 = 	𝑃𝑁𝐶B! +	𝛿@!   (S3)   
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 4 

 
Figure S2. Time series of hourly NO2 (ppb) and UFP (1,000 pt/cm3) at Beacon Hill used to simulate a continuous, long-term PNC 
monitoring site, as described in the Methods. There are 632 paired hourly observations with a Pearson correlation (R) of 0.64. 
Smooth lines describe the general pollutant trends. 

 
Table S1. Continuous overnight sampling PNC times at the Beacon Hill monitoring site. Data were used to simulate a continuous, 
long-term PNC monitoring site, as described in the Methods. 

Month Dates Start End Days 

Apr 6 2019-04-05 2019-04-10 Fri, Sat, Sun, Mon, Tue, Wed 

Jun 8 2019-06-21 2019-06-28 Fri, Sat, Sun, Mon, Tue, Wed, Thu 

Sep 6 2019-09-19 2019-09-24 Thu, Fri, Sat, Sun, Mon, Tue 

Nov 11 2019-11-15 2019-11-25 Fri, Sat, Sun, Mon, Tue, Wed, Thu 
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 5 

 
Figure S3. Distribution of hourly PNC levels at Beacon Hill, stratified by day of the week, hour of the day, and sampling month. 
Boxes show the median and IQR, whiskers show the 10th and 90th percentiles. 

 

https://doi.org/10.26434/chemrxiv-2024-np70t ORCID: https://orcid.org/0000-0002-9998-995X Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-np70t
https://orcid.org/0000-0002-9998-995X
https://creativecommons.org/licenses/by-nc/4.0/


 6 

 
Figure S4. Time-series of simulated PNC model residuals. There is little remaining temporal trend in PNC. 
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 7 

 
Figure S5. Distribution of PNC IQR (pt/cm3) for the unbalanced visits design, which categorizes sites as having low, medium, and 
high variability based on predicted IQR from PLS regression (see Methods for modeling details). The observed IQR used to fit the 
model is also shown. Boxes show the median and IQR, whiskers show the 10th and 90th percentiles. 
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2 Results 
 

 
Figure S6. Distribution of estimated annual average site concentrations for the all-data campaign (N=1 campaign x 309 sites) 
and each sampling design (N=30 campaigns per design x 309 sites each) for primary (NanoScan 10-420 nm) and sensitivity 
analyses. Boxes show the median and IQR, whiskers show the 10th and 90th percentiles. 
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 9 

 
Figure S7. Comparison of unadjusted and temporally adjusted business and rush hour campaign exposure models. Temporal 
adjustment almost never improves business hour campaign models, and only sometimes improves rush hour campaign models. 
Dashed lines indicate the 1-1 and ± 20% lines. 
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Figure S8. Absolute UFP prediction errors from the business and rush hour designs for a sample of 50 sites (n=30 prediction 
errors per site and adjustment approach, i.e., per boxplot). Prediction errors are calculated by comparing the cross-validated site 
prediction from each campaign to the all-data site observation. Sites are arranged by their all-data annual average 
concentration, with higher concentration sites near the top. Boxes show the median and IQR, whiskers show the 10th and 90th 
percentiles. 
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Figure S9.Cross-validated model performances (N=30 campaigns per design). The dashed lines indicate the all-data campaign 
performance for primary and sensitivity analyses. Boxes show the median and IQR, whiskers show the 10th and 90th percentiles. 
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(see below for caption) 
 

https://doi.org/10.26434/chemrxiv-2024-np70t ORCID: https://orcid.org/0000-0002-9998-995X Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-np70t
https://orcid.org/0000-0002-9998-995X
https://creativecommons.org/licenses/by-nc/4.0/


 13 

 

 
Figure S10. Smooth lines comparing predicted five-year average participant PNC (pt/cm3) exposure from the all-data campaign 
(N=1 campaign) to exposure predictions from other sampling designs (N=30 campaigns) for primary and sensitivity analyses. The 
black smooth line is the average trend for each design. The dashed lines indicate the 1-1 line as well as 25% above and below. 
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Figure S11. Pearson correlations (R) comparing predicted five-year average PNC participant exposure from all-data campaigns 
relative to each sampling design (N=30 campaign correlations per design) for primary and sensitivity analyses. Boxes show the 
median and IQR, whiskers show the 10th and 90th percentiles.
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Figure S12. Health effect estimates produced from different sampling designs for the adjusted association between PNC (1,900 
pt/cm3) and cognitive function (CASI-IRT) for primary (10-420 nm PNC) and sensitivity analyses. Percent difference is relative to 
the health effect estimate from the all-data exposure model. Boxes show the median and IQR, whiskers show the 10th and 90th 
percentiles. 
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(see below for caption) 
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Figure S13. Health effect estimates for the association between UFP (1,900 pt/cm3) and CASI-IRT for sensitivity analyses after 
adjusting for age, calendar year, sex, education. The horizontal black line and shaded gray area are the point and 95% 
confidence interval estimates from the all-data campaign, respectively. Each point-range is the estimated health effect and 95% 
CI for a given sampling campaign.  
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