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Abstract 

Calculating the Gibbs energies of binding of ligand-receptor systems with a thermochemical accuracy of ± 1 kcal/mol is 

challenge to computational approaches.   A semi-empirical quantum chemical exploration of the conformational space of 

host, ligand and complexes followed by a multi-level refinement of poses in terms of electronic energies and solvation is 

able to give Gibbs energies of binding of drug molecules to CB[8] and β-CD macrocyclic receptor with such an accuracy. The 

accurate treatment of a small number of poses outperforms system-specific force-matching and alchemical transfer model 

approaches without an extensive sampling and intergration.

Introduction 

The calculation of ligand-receptor Gibbs energies of binding 

with thermochemical accuracy is still a major challenge for 

state-of-the art computational approaches1, 2 for example in 

drug discovery3. An accuracy of, at most, 1-2 kcal/mol can be 

achieved from quantitative modelling using force fields and 

extensive sampling techniques to compute relative Gibbs 

energies of binding.3 In particular, charged guests were a 

challenge to the accuracy in SAMPL7.4 Here, we show that this 

chemical accuracy can also be obtained using a combination of 

a fast tight-binding quantum chemical exploitation of the 

conformational space, plus a systematic and sequential 

refinement of describing solvation and interaction energies.5, 6 

The semi-empirical quantum chemical (SQM) GFN2 Hamiltonian 

allows an efficient exploration of the conformational space of 

complex molecular systems without the need for a re-

parametrization of interaction terms even for non-standard 

binding situation, such as open-shell transition metal 

complexes.7, 8 SAMPL (Statistical Assessment of the Modeling of 

Proteins and Ligands) are blind challenges to validate and 

improve computational methods as predictive tools in drug 

design. 

For blind prediction of ligand-receptor Gibbs energies of 

binding, macrocyclic containers such as cucurbit[n]urils (CB[n])9, 

10 and cyclodextrins (CDs)11, 12 with unreleased experimental 

data are sometimes chosen.    

Here, we systematically refine the calculated Gibbs energies of 

binding from SQM calculations for the ‘drugs of abuse’ 

molecules to CB[8] of the SAMPL8 host-guest challenge. This 

challenge focused on binding of this host to nine drug molecules 

including morphine, hydromorphone, methamphetamine, 

cocaine, and others (see Figure 1).13 It also included previously 

considered cycloheptanamine and cyclooctanamine (G8 and 

G9). Experimental data were obtained from Isothermal Titration 

(ITC) and NMR spectroscopy.14 

In addition, we address the calculation of Gibbs energies of 

binding of phenothiazine drug molecules to the β-cyclodextrin 

receptor, which was part of SAMPL9. 

Results and discussion 

Cucurbit[8]uril and drugs of abuse Gibbs energies of binding 

Curcurubituril[8] is a host with only a few conformers accessible 

thus enabling a fast sampling of host conformations.15 However, 

with certain force fields, cucurbituril hosts have been observed 

to collapse during simulations. CB[8] and guest molecules form 

1:1 complexes with experimental Gibbs energies of binding in a 

range between -7.05 (for G1) and -14.07 kcal/mol (for G6).14 

High affinity measurements have attributed this to an 

interaction between the guest’s ammonium group interacting 

and the carbonyl oxygen of CB[8].  

Figure 1. CB[8] host and guest structures G1 – G9.  

Figure 2 shows the deviation of calculated Gibbs energies of 

binding of CB[8] to ligands G1-G9 from experiment.  The 

conformer-rotamer ensemble from our SAMPL8 GFN2-

xTB/MetaMD/GBSA work15 was refined using a systematic 
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improvement of description of electronic energies and 

solvation. We are using a three level approach with increasing 

refinement thresholds to reduce the number of structures to be 

considered at the next level (see Methods and ESI for more 

details). The original GFN2 CRE had a mean absolute deviation 

(MAD) of 3.16 kcal/mol from experiment which is already close 

to the top-ranked force matching approach with a MAD of 2.03 

kcal/mol in SAMPL8.13  

 Since calculations at ‘Level 0’ are mere approximate energies 

and not Gibbs energies of binding to remove high-lying 

complexes, they cannot be directly compared with experiment 

and are not discussed further. A negative ΔΔGbind indicates an 

overbinding in Figure 2. GFN2 systematically overestimates the 

Gibbs energies of binding (only for cyclic amines G8 and G9 an 

underbinding by 1-2 kcal/mol is seen). The composite mGGA 

method r2scan-3c at Level 1 gives significantly better Gibbs 

energies of binding even for single-point calculations. It was 

originally found to outperform hybrid functionals in terms of 

conformational energies and non-covalent interactions at a 

significantly lower computational cost.16 However, from Figure 

2 it becomes apparent that the structural re-optimization of 

GFN2 poses significantly reduces the deviation from experiment 

(MAD decreases from 4.6 kcal/mol at Level 1 to 2.45 kcal/mol 

at Level 2). The hybrid meta-GGA PW6B95 at Level 3 gives an 

additional reduction of MAD by ~ 1 kcal/mol (see Table 1) and a 

final MSE of -0.6 kcal/mol.  

Table 1. Analysis of error of calculated Gibbs energies of binding in kcal/mol for 
SAMPL8 entries. 

 MSEa SEMb MADc 
GFN2 -1.79 1.13 3.16 

Level 0 -16.84 1.71 16.84 

Level 1 +0.11 1.78 4.61 

Level 2 +1.75 0.76 2.45 

Level 3 -0.60 0.79 1.82 

amean signed error, bstandard error of mean, c mean absolute 
deviation. 

For the CB[8] host, the top-performer was using classical 

bonding and non-bonding parameters obtained via QM force-

matching (FM) methods, QM-derived atomic charges and 

bonded parameters to yield a final MAD of 2.03 kcal/mol.13, 17 

Derivation of QM charges and the molecular force matching 

was computationally expensive and required 10,000s of DFT 

force calculations. As an alternative approach with much less 

extensive sampling and a systematic refinement of QM 

interaction energies, a MSE of -0.60 kcal/mol and a MAD of 1.82 

kcal/mol clearly outperforms the FM and MD ansatz. 

Gibbs energies of binding of β-cyclodextrin and drug molecules 

The recent SAMPL competition included the prediction of host-

guest Gibbs energies of binding between β-cyclodextrin and five 

phenothiazine-based antipsychotic drugs (see Figure 3).18 In β-

cyclodextrin, seven glucose subunits are α-1,4 linked to give a 

cone-shaped host with ~6 Å diameter, a hydrophobic interior 

and a slightly hydrophilic exterior surface. Cyclodextrins bind a 

range of guest molecules in aqueous solution by both 

hydrophobic and polar interactions and confer solubility, 

stability, and bioavailability to drug molecules and are thus used 

as drug carriers.11, 12  

Figure 3. Structures of the β-cyclodextrin host and phenothiazine-derived guest 

molecules  

 

Gibbs energies of binding were obtained from ITC and NMR  to 

characterize the non-covalent interactions and revealed the 

formation of 1:1 complexes.19 Gibbs energies of binding are in a 

 Figure 2. Deviation of calculated Gibbs energies of binding from experiment (ΔΔGbind, in kcal/mol) for G1 to G9 ligands to the CB[8] receptor. 

https://doi.org/10.26434/chemrxiv-2024-x41ts-v2 ORCID: https://orcid.org/0000-0001-7793-0052 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-x41ts-v2
https://orcid.org/0000-0001-7793-0052
https://creativecommons.org/licenses/by-nc/4.0/


 | 3  

very narrow range between -4.5 and -5.7 kcal/mol and thus 

represent a challenge to current computational methods.  

Some of the phenothiazines (CPZ, TDZ, TFP) are substituted at 

the phenothiazine entity to give an asymmetric guest molecule. 

Increasing hydrophobicity at position 4 (-Cl and -CF3 groups), 

varying alkyl chain lengths, branching and different terminal 

tertiary amines were found to be critical determinants for their 

biological activity.20   

The conformational search yielded highly ranked poses in 

agreement with NMR studies. Part of the phenothiazine moiety 

is located at the secondary face of the host and part of the 

phenothiazine moiety penetrates deep into the host's cavity.  

Only the relatively bulky side-chains of TDZ and TFP were 

sufficiently locked to generate definite nuclear Overhauser 

effect (NOE) signals to suggest an interaction with the hydroxyl 

group. For all phenothioazine ligands, binding poses in 

agreement with structural interpretation from NMR were 

obtained (see Figure 4). They all reveal a bifurcated 

ammonium–hydroxyl interaction and an incorporation of the 

largely hydrophobic phenothiazine ring into the hydrophobic β-

CD binding cavity. In medicinal chemistry, introduction of a 

chlorine atom is frequently used to increase the lipophilicity of 

drug compounds.19  Promazine (PMZ) and chlorpromazine (CPZ) 

differ only in the replacement of a hydrogen by a chlorine, but 

chlorpromazine binds only slightly tighter than promazine (0.5 

kcal/mol in experiment vs. 1.3 kcal/mol in calculations). This 

suggests that introducing the chlorine substituent is not 

significantly stabilizing ligand-receptor binding but may be 

beneficial for the drug’s bioavailability.  

Figure 4. Top-ranked binding pose of CPZ binding to β-CD. Left: side view, right: top view. 

Table 2 gives the analysis of errors of phenothiazine binding to 

β-CD.  

Table 2. Analysis of deviation of calculated (S)QM Gibbs energies of binding in kcal/mol 

for phenothiazine drug molecules to β-CD. 

 

 MSEa SEMb MADc 

GFN2 -18.4 2.3 18.4 

Level 0 +4.8 1.5 4.8 

Level 1 +2.1 1.9 2.4 

Level 2 +2.4 0.4 2.4 
Level 3 +0.4 0.7 0.7 

amean signed error, bstandard error of mean, cmean absolute 
deviation. 

 

 

 

Figure 5. MAD from experiment in kcal/mol of calculated Gibbs 

energies of binding of phenoziatine drug molecules to β-CD. 

 

As for the CB[8] receptor binding challenge, GFN2 generated 

structures are very plausible but the deviation in energies from 

experiment is even larger. Calculations at Level 0 and Level 1 

reduce the MSE and MAD significantly (see Table 2). Structural 

optimizations at Level 2, however, do not lead to systematically 

lower errors. High-level double-hybrid DFT calculation generate 

very accurate Gibbs energies of binding with chemical accuracy 

(MSE +0.4 kcal/mol, MAD 0.7 kcal/mol). Figure 5 shows that the 

MAD from experimental data can systematically be reduced 

from Levels 1 to 3. 

For β-CD phenothiazine binding, the best SAMPL submission 

was using an alchemical transfer model (ATM)21, 22 with a 

proprietary ligand force field to give a MSE of -0.9 kcal/mol and 

a MAD of 1.6 kcal/mol. In total, 64 individual alchemical Gibbs 

energy calculations and hundreds of nanoseconds of simulation 

needed to be performed.  Our approach gives results that are 

outperforming the most accurate SAMPL submissions. 

Computational Details 

Ligands were manually positioned inside the host entities. The 

complexes were minimized using GFN2. Ensembles of non-

covalent binding poses were generated using CREST5 and an 

ALPB continuum solvent representation for water. The CENSO 

workflow6 with SPH thermostatistical corrections and the 

modified  rigid-rotor harmonic oscillator (mRRHO) was used.23 

Solvent contributions were incorporated at various levels such 

ALPB, DCOSMO-RS and COSMO-RS (see ESI for details). 

 

 Level 0: SP B97-D/def2-SV(P) + Esolv(GFN2-ALPB) 

 Level 1: SP r2scan-3c/def2-mTZVPP + Esolv(GFN-ALPB) 

+ GmRRHO(GNF2-ALPB-SPH)  

 Level 2: OPT r2scan-3c/def2-mTZVPP/DCOSMO-RS + 

Gsolv(COSMO-RS) + GmRRHO(GFN2-ALPB-SPH) 

 Level 3: SP PW6B95-D/def2-TZVPD + Gsolv(COSMO-RS) 

+ GmRRHO(GFN2-ALPB-SPH) 

 

Since calculations at ‘level 0’ are mere energies of binding, they 

cannot be directly compared with experiments and are not 

discussed in the main text.  
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Conclusions 

The quantum chemical refinement of a moderate number of 

SQM poses in combination with an increasing level of 

description of electronic energies and (implicit) solvation is able 

to provide very accurate Gibbs energies of binding of drug 

molecules to CB[8] and β-CD receptors. Machine learning (ML) 

approaches are now alternatives to obtain such accurate Gibbs 

energies of binding.  For example, for the pillar[n]arene WP624  

host-guest binding challenge,21 ML results trained on extensive 

experimental datasets were superior.25  For realistic host-guest 

complexes26, however, training data may be scarce. Here, a ML 

framework to control the error of DFT calculations may be more 

appropriate.27 Our approach is able to provide such 

computational Gibbs energies of binding that are of comparable 

accuracy as experimental. It does not require a system-specific 

force matching or force field parametrization. At every step in 

this systematic workflow, it also allows the control of accuracy 

of results and possible ranges of errors  
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