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Homogeneous catalysts enable faster conversions of molecules with higher selectivities (stereo- and regioselectivity) in 
chemical reactions. Traditionally, catalyst improvements are made through empirical trials, where the catalyst is functionalised 
by adding, removing or modifying groups within its structure and, subsequently, reevaluating the new catalytic activity. This 
procedure is not efficient and leads to unsuccessful trials that waste resources. Machine learning (ML) approaches have been 
proposed to accelerate homogeneous asymmetric catalyst optimization. However, these often lack a general descriptor 
generation procedure to allow encoding of molecules from a broad region of chemical space. To overcome this, we propose 
a homogeneous catalyst graph neural network (HCat-GNet) for the prediction of selectivity of catalysts given the SMILES of 
participant molecules. We demonstrate its use in rhodium-catalyzed asymmetric 1,4-addition (RhCAA), a reaction of major 
importance in organic synthesis. We benchmark HCat-GNet against traditional ML methods for its ability to predict RhCAA 
stereoselectivity from two chiral diene ligand two datasets; one for learning and one for final testing. For the learning dataset, 
both traditional ML and HCat-GNet methods give comparable results. However, when presented with the new unseen test 
dataset, traditional ML models perform poorly, while HCat-GNet retains a general ability to accurately predict product 
absolute stereochemistry and reaction stereoselectivity. Furthermore, HCat-GNet allows model interpretability, permitting 
analysis of the effect of ligand substituents in determining reaction selectivity. HCat-GNet shows greater potential for catalyst 
optimization than traditional ML, as it allows the use of a non-fixed number of participant molecules to train the model, only 
requiring the SMILES of the molecules to create graph representations. HCat-GNet allows more general models that 
accurately extrapolate into unseen regions of chemical space.  

 
Introduction  
Catalysts are widely used in industry, driving 
around 85% of industrial chemical reactions.1 
While only 15% of these processes involve 
homogeneous catalysts, they typically allow 
higher selectivity compared with 
heterogeneous catalysts.1,2 Examples of 
industrially important process that use 
homogeneous catalysts include 
hydroformylation (for detergents),3 Suzuki-
Miyaura cross-coupling (for pharmaceuticals),4 
and Ziegler-Natta reactions (for polymers).5 
Adding a ligand to a homogeneous metal-
catalyzed reaction often increases its rate and 
selectivity, by an effect known as ligand-
accelerated catalysis (LAC), which allows the 
discovery of novel catalysts for more efficient 
transformations and improved synthetic routes 
to target compounds.6 

The process of homogeneous catalyst 
optimization from initial conception to final 
industrial application can take years. The 
reason for this is that classical catalyst 
development is typically done by changing one 
variable in the system (such as the core 
structure of a catalyst or its ligands) and re-

evaluating the new catalytic activity, which 
requires arduous synthetic work with no 
guarantee of a positive outcome.7,8 

Machine learning (ML) has gained 
popularity in chemical science as it allows 
quantitative structure-property relationship 
(QSAR) studies in an efficient, relatively 
inexpensive, yet accurate way.9–11 In these 
approaches, variables that depend on 
molecular structures, known as descriptors, are 
used to represent the molecule 
computationally.12 Dos Passos Gomes et al. 
highlighted the paucity of ML studies on 
asymmetric homogeneous catalysts and the 
need for more research in this area,13 while 
Hirst et al. and Kalikadien et al. encourage the 
use of these techniques for novel catalyst 
discovery.14,15 

Some research papers have been published 
in the area of machine learning for 
homogeneous catalysts;16–21 however, just a 
handful study asymmetric catalysis. An example 
of application of ML for asymmetric catalyst 
optimization is the strategy of Bretholomé et 
al.,22 where the stereoselectivity of a Michael 
addition to a benzylideneacetone substrate 
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was optimized. A lead ligand was identified and 
other ligands that only differed in one 
substituent were generated. A linear regression 
between the selectivity of the reaction and the 
calculated logP of the changed substituent was 
created, which allowed successful identification 
of a ligand that maximized reaction selectivity. 
Although this approach was successful, the 
explored variables were limited to only one 
substituent within the structure of the catalysts, 
thus, limiting the variable optimization space.  

In a second example, Zahrt et al. proposed a 
general strategy to generate descriptors of 
participant molecules in an catalytic asymmetric 
reaction.23 This strategy is reaction agnostic, 
allowing encoding of any participant molecule 
in any asymmetric reaction accelerated by 
homogeneous catalysts. However, their 
methodology does not allow interpretation, 
which in ML is desired. Their descriptors are not 
rotational nor translational invariant, which 
ultimately can lead to wrong predictions if a 
molecule is not well-oriented in 3D space.  

In another study, Owen et al. proposed a 
descriptor generation procedure for rhodium-
catalyzed asymmetric 1,4-additions (RhCAA) 
(Fig. 1a) using bridged bicyclic chiral 1,4 diene 
ligands (Fig. 1b).24 Inspired by the empirical 
Hayashi selectivity model (Fig. 1c),25 steric and 
electronic descriptors of substituents in the 
core structure of the substrate, chiral diene 
ligand, and organoboron reagent were used 
(Fig. 1d). Although their approach was simple 
and accurate for standard chiral diene ligands, 
it only allows encoding of molecules that share 
a core structure with those of the molecules in 
the training data, thus limiting its applicability to 
structurally different ligands. 

Other approaches are also found in the 
literature.26–28 However, these methods have 
common shortcomings, including: 
1. Most methods work for a very limited 

chemical space, where the exploration 
space is limited to only one set of ligands, 
substrate, or reagents that are all very 
similar in structure.24,26–28 

2. The ML algorithm is trained to only explore 
one variable at the time, such as just one 
ligand substituent.22,26 

3. Some methods lack interpretability, which 
is desired in machine learning to 
understand which chemical patterns the 
algorithm correlates with selectivity 
outcomes, to inspire chemists in the de 
novo design of catalysts.17,23 

Considering these points, it is highly 
desirable to develop a universal, easy-to-use, 
and highly interpretable method that allows 

accurate prediction of the stereochemical 
outcomes of chiral catalysts, which can 
potentially be applied to any reaction.  

Graph neural networks (GNNs) are a deep 
learning approach that has gained popularity in 
quantitative structure-activity relationship 
(QSAR) studies.29–32 These algorithms are able 
to discover high-level descriptors within 
molecular graphical representations of data to 
make chemical predictions.33,34 Advances in 
this area enabled the availability of code to 
transform digital representations of molecules 
(.cif files, SMILES strings, .vasp files) into graphs, 
allowing the training of models directly from 
simple input data. Methods to explain GNN 
predictions have also been used in 
chemistry,35,36 allowing understanding of those 
molecular fragments that contribute the most 
to the sought outcome.37–40  

Garrison et al. demonstrated the ability of 
GNN algorithms to predict DFT-calculated 
ground state energies of transition metal 
complexes.41 We concluded that GNN 
algorithms are suitable to identify both 
chemical patterns and interactions between 
catalysts, reagents, and substrates that 
correlate with reaction selectivity. To our 
knowledge, no one has tested this idea in 
asymmetric catalysis. The ability of GNNs to 
generate high-level features that correlate with 
a property automatically has potential to 
generate descriptors that are more general 
than those in prior ML strategies. GNN used in 
combination with explanation algorithms 
would overcome the limitations of current ML 
methods.  

Herein, we describe the Homogeneous-
Catalyst Graph-Network (HCat-GNet), the first 
interpretable GNN able to predict both the 
absolute stereochemistry of the product (R/S) 
and the enantiomeric ratio (er) of asymmetric 
reactions involving homogeneous chiral 
catalysts given only SMILES representations of 
the molecules involved. We tested HCat-GNet 
in a case study of rhodium-catalyzed 
asymmetric 1,4-additions (RhCAA) of 
organoboron reagents to prochiral Michael 
acceptors (Fig. 1a).25,42–44 We compared our 
approach to the methods described by Owen 
et al.,24 using three different traditional ML 
(TML) algorithms: linear regression, random 
forest, and gradient boosting (see Fig. 2a). 
RhCAA was selected because: 1) many 
examples have been described in the 
literature,42-44, which leads to a richer dataset, 2) 
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pre-existing TML models are available to use as 
benchmarks,24 and 3) a historical simple steric 
stereochemical model for the process existed 
(Fig. 1c),25 allowing comparison of our GNN 
approach against a human-derived 
explanation. With our experiments, we aimed 
to answer three research questions: 1) are 
GNNs suitable for predicting the 
stereoselectivity of asymmetric reactions 
accelerated by ligated homogeneous catalysts? 
If so, 2) how do the GNN models perform in 
predicting the stereoselectivity of genuinely 
unseen ligands (structurally distinct from the 
training data) compared to TML approaches? 3) 
Can explainability algorithms be applied to the 
GNN models to obtain information about 
chemical variables that can increase or 
decrease the stereoselectivity? 
 
Methods 
HCat-GNet graph representation  
HCat-GNet is designed to predict the (stereo) 
selectivity of reactions accelerated by 
homogeneous metal-ligand complexes. To be 
able to encode any reaction with any number of 
reacting molecules, we propose creating a 
graph representation of each molecule (this can 
be a solvent, ligand, substrate, or reagent) in 
the reaction and further to create a reaction-
level (containing all reactants) graph 
representation. 

In the first step, the algorithm iterates over 
all the atoms in one of the participating 
molecules. For each atom, the algorithm retains 
information on which other atoms share a bond 
with it, as well as its atomic properties, including 
its identity, degree (number of non-hydrogen 

atoms are attached to it), hybridization, whether 
or not it is part of an aromatic system, whether 
or not it is part of a ring, and the absolute 
configuration of the stereocenter at that atom 
(either R, S or none). Connectivity information is 
transcribed into an adjacency list, and atomic 
property information is retained in a node 
feature matrix, one-hot-encoded. The 
adjacency list along with the node feature 
matrix are the graph representation of the 
molecule. This is done automatically for all 
participant molecules, so that each molecule 
has a graph representation associated.  

When all graphs have been generated, the 
algorithm concatenates the molecular 
graphical representations into a single 
disconnected graph, so that a reaction graph 
consists of n graphs (where n is the number of 
participant molecules) that are disconnected 
between them. The node feature matrix is 
concatenated as well, and this along with the 
adjacency list, is the reaction-graph 
representation. This algorithm is ideal for 
asymmetric homogeneous catalysis reaction 
graph representation, as it allows it to include n 
different molecules in the model that correlate 
with a given reaction outcome. 

For our case study, the three molecules in 
the system (ligand, substrate, and organoboron 
reagent) are automatically converted into 
molecular graphs from their SMILES strings. 
Initially, the algorithm takes the SMILES 
representation of the ligand and creates a 

Fig. 1 The RhCAA reaction and representative chiral ligands. (a) General RhCAA, where the structure of the chiral ligand determines the 
absolute stereochemistry of the product. (b) Representative bridged bicyclic chiral 1,4-diene ligands. (c) The steric selectivity model 
proposed by Hayashi.25 (d) Substituent nomenclature used by Owen et al. in their descriptor generation procedure.24 (e) Examples of the 
new (genuinely unseen) chiral ligands of Rit et al.49 (f) The methodology used here to ‘cut’ the Rit ligands allowing the feature generation 
procedure proposed by Owen et al. 
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graph (see above). Next, it does the same for 
the substrate, and then for the organoboron 
reagent. We added a reaction-level feature to 
all three graphs) named as “configuration”, 
which identifies whether the chiral ligand has an 
(R,R) or (S,S) configuration (Fig. 1b). We do not 
use the edge features, as node level 
representation encompasses information 
about the electronic effects connecting 
neighbouring atoms. Lastly, the algorithm 
created the reaction-graph representation by 
concatenating the three molecular graph 
representation (see Fig. 2b). 
 
HCat-GNet architecture 
HCat-GNet consists of two phases: (i) message 
passing and (ii) readout. The first phase is a 
node-level operation block, which explores the 
topology of the graph to capture the complex 
relations between neighbouring nodes. This 
operation is known as convolution. We have 
used the Graph Convolutional Operator,45 
inspired from the usual convolutional operator 
applied to images, which can also be 
generalised to the graph structures where each 
node can have different numbers of 
neighbours. This operator is defined as shown 
in Eq. 1, where i is the central node that needs 
to be updated, ℎ!

(#) is the node i current state, 
𝑗 ∈ 𝑁(𝑖) represents all the neighbours j of i,   𝑑)% 
represents the number of neighbours of node 
x, 𝑊(#) is a learnable matrix, and ℎ!

(#&') is the new 
state of the central node i. This process is run in 
parallel for all nodes within the system, so that 
each node receives new node features after 
each convolution, and it can run as many times 
as the programmer states. 
 

ℎ(#&') = ∑ '

()!*)"*
ℎ+
(#)𝑊(#)

+∈-(!)                 [1] 

 
The second phase is the predictive phase 

occurring at the graph level. The first step is to 
summarise the information from all the nodes 
contained within the graph into a single graph-
level feature vector. This is achieved by an 
operation called pooling. This operation is 
usually an element-wise operation that runs for 
all the node’s feature vectors contained in the 
system. This allows encoding of molecules 
within a database that have different numbers 
of atoms. Each molecule (ligand, substrate, and 
organoboron reagent) has a different number 
of nodes, and consequently, a different number 
of total features. Pooling ensures that all the 
systems within the database attain a single fixed 
size vector representing it. Finally, this latter 
vector serves as an input into a multilayer 
perceptron (MLP) that outputs a final 
prediction. This way, HCat-GNet steps from 
graph input to prediction are: 
• The node features are taken (length of 24) 

and these are expanded to a final length of 
64 by a graph convolutional operator with 
leaky ReLU activation function, Rnodes×24 → 
Rnodes×64. 

• The graph convolution operator updates 
all the node states in parallel, updating the 
nodes features to graph aware features 
once with leaky ReLU activation function, 
Rnodes×64 → Rnodes×64. 

• Mean and max pooling is applied 
elementwise to all the node feature 
vectors to get a graph-level feature vector, 
Rnodes×64 → R1×128. 

• A fully connected layer with leaky ReLU 
activation function takes the graph-level 

Fig. 2 Comparison of strategies analysed in this study for prediction of stereoselectivity of RhCAA reactions. (a) Shows the approach of Owen 
et al.24 (b) Shows the HCat-GNet Strategy described herein. 
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vector and maps it to half of its length, 
R1×128 → R1×64. 

• A last fully connected layer with sigmoid 
activation function transforms the feature 
vector into a scalar number, this being the 
prediction of the model, R1×64 → R1. 

• The prediction is multiplied by 100 to give 
a percentage. 

 
Interpretability of HCat-GNet 
Explainable Artificial Intelligence (XAI) 
algorithms can be applied to HCat-GNet to get 
insights into those chemical patterns that 
contribute the most in making a catalyst more 
or less selective. The open-source package 
PyTorch Geometric allows for the 
implementation of numerous explainable 
approaches for graph neural networks. We use 
GNNExplainer,46 implemented in PyTorch 
Geometric 2.4.0, to understand the relevance 
of each node feature within the graph 
representation of the reaction and Shapley 
Value Sampling47,48 (implemented in PyTorch 
Geometric 2.4.0) to understand the 
contribution of each node (atom) within the 
graph to the selectivity of the reaction. 

GNNExplainer identifies subgraphs and 
subsets of the node features that are more 
influential for the model’s prediction.46 The 
mathematical definition of this approach is 
given in Eq. 2, where MI quantifies the change 
in the probability of prediction 𝑦. = Θ(𝐺. , 𝑋.)	 
when the computation graph is limited to the 
subgraph Gs and node features limited to Xs, 
and H is the entropy (uncertainty) of the model’s 
prediction Y. Effectively, GNNExplainer aims to 
’denoise’ the computation graph and remove 
edges, nodes, and node features that add to 
the uncertainty of the prediction. We used this 
algorithm to explore which node-level 
properties mostly drive the model to predict a 
certain outcome in each molecule separately 
(ligand, substrate, and organoboron reagent). 

 
max𝑀𝐼9𝑌, (𝐺/, 𝐴/)< = 𝐻(𝑌) − 𝐻(𝑌|𝐺/, 𝐴/)     [2] 

 
Shapley Value Sampling is a perturbation 

method that computes an attribution score for 
the node features within the graph using 
cooperative game theory. This method takes a 
random permutation of the input graph node 
features and sequentially adds the real value to 
the given feature baseline. The output 
difference after adding each feature 
corresponds to its attribution.47,48 This 
importance approximation method provides 
understanding of positive or negative impact of 
nodes to the prediction of the GNN. Thus, the 

most important fragments within the molecules 
can be identified with this method. 
 
The Rh-CAA case study 
Datasets. We tested our approach using two 
RhCAA datasets: classical chiral diene ligands 
(which we will refer to as the seen dataset or 
learning dataset), and new Rit et al.49 chiral 
diene ligands (which we will refer to as the 
unseen dataset or final testing dataset). The 
seen dataset was taken from directly from 
Owen et al.24 and a data augmentation strategy 
was applied. The unseen database was 
manually built from the new exemplars 
reported by Rit et al.49 The ligands in the 
unseen dataset differ structurally from those in 
the seen dataset (Fig. 1b vs Fig. 1e). With the 
seen dataset, we aimed to answer whether or 
not GNNs can be used for asymmetric catalysis 
prediction problems, while the unseen dataset 
would answer how do GNNs performs 
predicting on truly unseen ligand exemplars, by 
predicting stereoselectivity of those reactions 
when only training with samples in the seen 
dataset. 
Data labelling. As the Cahn-Ingold-Prelog 
(CIP) R/S nomenclature depends on the identity 
of the R1/R2 groups within the substrate (Fig. 
1a), we use the ‘%top’ target variable adopted 
by Owen et al., which consists of the 
percentage of the addition of the nucleophile 
to the ‘top’ face of the substrate, as defined by 
the face of the substrate seen when placing the 
electron-withdrawing group (EWG) on the top 
left corner of the alkene, as shown in Fig. 1a.24 
Prediction task. We aimed to predict two 
target variables: face of addition (‘top’ or 
‘bottom’) and %top. The former is a 
classification problem, where ‘1’ represents 
those reactions where the major product is the 
‘top’ isomer (%top>50%), and ‘0’ otherwise. To 
convert the continuous regression predictions 
of the ML models into discrete values, 
predicted values greater than 50% are 
considered as prediction of ‘top’ isomer, and 
‘bottom’ otherwise. For the %top regression 
task, the predicted values were taken as 
delivered by the algorithm. 
The benchmark descriptors. We used the 
Owen et al. descriptors to train the TML 
algorithms.24 These consist of electronic and 
steric parameters of substituents in the different 
positions of ligands, substrate, and 
organoboron reagent (see Fig. 1d and Fig. 
2a).24,50,51 This molecule encoding process 
leads to a total of 19 descriptors. For the unseen 
dataset, the ligand structure had to be adapted 
to be compatible with this descriptor 
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generation process. As the R2 and R7 
substituents are joint by a lactam bond, we cut 
this bond, which leads to a representation as an 
aldehyde and amine structure (Fig. 1f). 
Although this does not represent the real 
structure of the original molecule, it enables 
matching with the Owen et al. procedure. 
Model training and evaluation. To evaluate 
the transferability and robustness of both 
methods, we used a stratified nested cross 
validation approach, as proposed by García et 
al.52 for the ‘seen’ dataset. We created ten folds, 
which led to a total of ten test sets, each one 
being evaluated by nine different training and 
validation sets. This raised to a total of 90 
training-testing processes. The folds used in the 
TML and HCat-GNet are the same, meaning 
that both methods were trained and evaluated 
using the same sets of points. For the TML 
approach, linear regression, random forest, 
and gradient boosting are used as ML 
algorithms. For the face of addition task, we 
evaluate the models using the metrics of 
Precision, Recall, and Accuracy. In the case of 
the %top task, we report the metrics of mean 
absolute error (MAE), root mean squared error 
(RMSE) and determination coefficient (R2) for 
those datapoints that the face of addition was 
predicted correctly, as otherwise those 
datapoints would significantly increase the 
mean errors, not representing the real 
performance of the model in the predictive 
task. We present the results based on the mean 
of the metrics for each test set separately, and 
standard deviation as error bars. For the case of 
prediction selectivity of the ‘unseen’ dataset 
reactions, we took the 90 models trained with 
the ‘seen’ dataset and, with no further training, 
predicted their selectivity.  
 
Results and discussion 
Gradient boosting regression attained the best 
results in the classical ‘seen’ dataset, and therefore 
we report the results of this algorithm for both 
datasets. 
 
HCat-GNet applicability to homogeneous 
catalysis analysis 
Fig. 3a shows the results for predicting the face 
of addition. In the case of precision, test folds 1, 
2, 3, 4, 6, and 7 show both methods have scores 
within the same range of values. HCat-GNet 
shows superior performance for test folds 5, 8, 
and 10 while only for fold 9 the Gradient 
Boosting performs better. 

In the case of recall, only test folds 3 and 10 
show differences between the methods, with 
HCat-GNet showing better results. Lastly, in 

accuracy, only fold 10 shows differences, with 
Gradient Boosting showing worse results.  

Although slight differences were identified 
between the methods, the scores obtained for 
both methods are above 0.90 for all metrics. 
This demonstrates that both methods are 
suitable for predicting the face of addition of a 
reaction.  

For the TML method, the chirality of the 
ligand was implicitly encoded by the order 
given to the substituents within the chiral ligand 
(Fig. 1d). This differentiation makes possible 
the mapping of the relative positions of 
substituents (overall ligand 
stereoconfiguration) to the absolute 
stereoconfiguration of the product. For our 
HCat-GNet, we have explicitly encoded the 
configuration of the ligand more generally by 
both atom stereoconfiguration and ligand 
configuration variables. The results herein show 
the chirality descriptors in our method are 
excellent predictors of the absolute 
stereoconfiguration of the product, allowing 
accuracies ranging from 0.92 up to 1.00. 

Fig. 3b shows the results obtained for the 
‘%top’ task. In the case of mean absolute error, 
only folds 3 and 6 show a difference, with HCat-
GNet obtaining larger errors. For the RMSE and 
R2, no differences were noticed between the 
methods, which indicate that both methods are 
suitable for the predictive task. 

The violin plot in Fig. 3c shows that the 
distribution of errors generated by both 
methods is very similar. The strip plot in Fig. 3c 
shows that the error values of both methods 
occur in similar locations. These two last plots 
confirm that both the TML and HCat-GNet 
methods generate very similar predictions of 
the ‘%top’ variable. 

The results show that the performance of 
both methods is almost indistinguishable, 
meaning that either can be used for the 
predictive task. This is a positive result for HCat-
GNet, as the features generated by Owen et al. 
were specifically designed for this reaction. For 
HCat-GNet, the encoding was simply 
automatically obtained from the SMILES strings 
of the participating molecules. All high-level 
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features are only generated in a data-driven 
way. Although we explored the capabilities of 
the proposed method with the RhCAA study, 
the results demonstrate that HCat-GNet has the 
potential to generate predictions at least as 
good as TML approaches, without requiring 
bespoke optimized descriptors. The advantage 
of using SMILES representations is that 
formally, any molecule that can be represented 
by these types of strings can be used as an input 
into the model for learning and predicting 
structure-selectivity relationships. TML 
methods are usually limited by their fragment 
characterization processes that often cause the 
machine to become overly dependent on 
overly small regions of chemical space when 
predicting catalytic reactions. We hypothesize 
that this causes many TML methods to overfit 
and fail to predict closely related, but truly 
unseen catalysts.  To test this latter point, we 
sought to predict the selectivities of reactions 
catalyzed by ligands never seen by either TML 
or HCat-GNet. 
 
Model transferability evaluation 
Fig. 4a shows the results for face of addition 
prediction for reactions with unseen, 
structurally distinct ligands, described by Rit et 
al.49 HCat-GNet is 100% accurate in this task. It 
consistently predicts the correct product 
stereoconfiguration even though it has never 
been trained on structurally similar ligands. In 
comparison, TML Gradient Boosting struggles 

to deliver against the same challenge. In the 
case of precision, its values fall as low as 0.60 
for test fold 4. However, for fold 5 the score 
obtained is 1.00. In the case of recall, the worst 
value obtained is in fold 6, while fold 3 scores 
1.00. Lastly, accuracy shows ranges of values 
from 0.50 for fold 4 and 0.90 for fold 3. 

The results obtained show that although the 
models performed similarly for the seen 
dataset, TML is distinctly inferior at predicting 
genuinely unseen reactions. Thus, the chemical 
patterns found by HCat-GNet on the seen 
dataset are similar to those found by the 
Gradient Boosting but are more transferable to 
new chemistries.  

Similar results are obtained for ‘%top’ 
prediction, shown in Fig. 4b. HCat-GNet shows 
an MAE below 5%, RMSE below 15%, and R2 
close to 1.00 with low variance. In the case of 
Gradient Boosting, the MAE values range from 
15 to 20%, RMSE from 15 to 25%, and R2 from 
0.50 to 0.90.  The violin plot in Fig. 4c shows 
that the error distribution in TML is significantly 
broader than the HCat-GNet. From the strip 
plot it is also evident that HCat-GNet never 
produces errors greater than 50%, while the 
TML generated errors from -100 to 100%.  

We hypothesize that the seen dataset was 
useful for both methods to learn structure- 

Fig. 3 Summary of results obtained predicting selectivity of test set reactions in the seen dataset. The reported values are shown for 
each test fold separately, using the mean of the metrics for the value in the bar and the standard deviation as error bars. (a) Shows the 
results for the ’face of addition, classification task, (b) shows the results of ’%top’ regression task, and (c) shows the error distribution 
for all the predicted points in the nine train-testing procedures for each test fold. The colour key in (c) applies for all the metrics shown. 
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selectivity relationships close to the real 
ground-truth relationships. However, the 
nature of GNNs and the representation used 
provide greater transferable learning to new 
(genuinely unseen) ligands, whereas the TML is 
limited by the arbitrary component 
representation chosen.  

To analyse the overall performance of both 
models with both datasets, we created a parity 
plot of all predicted points within the 90 
training-evaluation processes. We grouped the 
plots by method and by dataset. Since all 
testing points are now present in a single plot, 
we calculated the metrics for all those points 
and present this instead of a mean metric 
(Table 1). In addition, Fig. 5 plots the parities of 
the data predictions for both seen and unseen 
data using both HCat-GNet and Gradient 
Boosting. 
Table 1 Summary of metrics obtained for the total of 6174 test 
datapoints from the Seen Dataset and 3060 test datapoints from 
the Unseen Dataset. Precision, recall, and accuracy metrics 
correspond to the classification task, while MAE, RMSE, and R2 
correspond to the regression task. 

Metric 
HCat-GNet Gradient Boosting 

Seen 
Dataset 

Unseen 
dataset 

Seen 
Dataset 

Unseen 
dataset 

Precision 0.963 1.000 0.954 0.740 
Recall 0.965 1.000 0.958 0.775 

Accuracy 0.964 1.000 0.956 0.752 
MAE / % 7.627 3.140 7.275 28.945 
RMSE/ % 17.410 5.912 17.393 39.538 

R2 0.852 0.985 0.852 0.342 

 
The plots of the seen dataset demonstrate 

that both TML and HCat-GNet methods 
generate similar distributions to those actually 
obtained from real experiments, indicating that 
both methods usefully predict the reaction 
stereoselectivities given access to the identical 
seen training set. As it is not trained on the 
unseen data, TML Gradient Boosting is unable 
to predict the distribution of real (experimental) 

Fig. 4 Summary of results obtained predicting selectivity of test set reactions in the unseen dataset. The reported values are shown for 
each test fold separately, using the mean of the metrics for the value in the bar and the standard deviation as error bars. (a) Shows the 
results for the ’face of addition, classification task, (b) shows the results of ’%top’ regression task, and (c) shows the error distribution for 
all the predicted points in the nine train-testing procedures for each test fold. The colour key in (c) applies for all the metrics shown. 

Fig. 5 Summary of results obtained by both approaches on both 
datasets. In the case of the seen dataset, the total number of test 
datapoints is 6174, and in the case of the unseen dataset the total 
number of test points is 3060. All the plots show the metrics 
obtained for both regression task and classification task. For this 
last report, the regression task metrics includes all datapoints 
(including the points with mis-predicted face of addition). 
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‘%top’ values. Although the classification 
metrics obtained by the TML are acceptable 
(0.752 accuracy), the values of predicted 
selectivity differ highly from the real lab 
experimental values. This means that although 
the TML could predict the face of addition, 
quantitative prediction of selectivity is not 
reliable, limiting its use for real-world new 
ligand discovery. 

On the other hand, HCat-GNet is able to 
predict the stereoselectivities from both its 
training set ligands and truly unseen (but 
related) ligands. We hypothesize that the GNN 
has an ability to learn high-level features that 
approximate to the important factors of a 
chemical reaction that determine the 
experimental selectivity. Another possibility is 
that the HCat-GNet representation is more 
universal due to SMILES encoding of all 
molecular components. Both options deliver 
the same conclusion: HCat-GNet is more robust 
and general, while the TML method(s) 
evaluated herein are more limited because of 
their representation or overfitting issues. This 
answers our second research question (how 
TML methods compare to GNNs in predicting 
truly unseen exemplar reactions), confirming 
the limitations of TML approaches when trying 
to extrapolate to truly unknown regions of 
chemical space. 

Even though the GNN models developed 
could be improved by using more 
sophisticated convolutional operators or by 
adding edge features to the graph, we argue 
that the success of our models in predicting 
unseen ligands is due to its simplicity. The 
minimal graph representation combined with a 
simple GNN architecture allow the models to 
gain more general insight about the chemistry 
of the process, making the GNN to be more 
transferable than the TML approach. The GNN’s 
ability to predict the behaviour of unseen 
ligands give it an ’intuitive’ character that allows 
patterns found by the model to be correlated 
with real world chemistries meaningful to 
human chemists. We predict that these traits 
will be useful for de novo design of (chiral) 
ligands. 
 
Structure-selectivity relationships from 
HCat-GNet 
Fig. 6 shows the results of the GNNExplainer 
tool applied to HCat-GNet. This reveals that 
ligand node features have higher attribution 
scores than either boron reagent and substrate 
node features. The node feature with the 
highest scores for the ligand are atom degree 
(i.e. primary, secondary, tertiary substitution), 

followed by atom identity, atom hybridization, 
atom stereoconfiguration, and then overall 
ligand chirality. We argue that the first node 
feature is related to the steric factor of the 
process, since atoms with a higher degree of 
substitution correspond to groups with higher 
volumes. Such steric analysis is also transferable 
to hybridization of the ligand atoms, where 
atoms with sp2 and sp3 hybridization frequently 
correspond to high-volume groups, while sp 
hybridization indicate lower volume alkynes. 
Atom identity has a lower importance because 
the majority of atoms in the ligands are carbon 
atoms and the effect of any heteroatoms 
present is minimal. The data suggests the GNN 
attributes greater importance to the 
electronegativity of each atom in determining 
the selectivity of the process. Lastly, both atom 
absolute stereoconfiguration and ligand overall 
configuration importance shows that the 
models are able to learn the correlation 
between the chirality of the ligand and the 
stereochemical outcome. 

 
Hybridization, atom identity, degree, and 

chirality of the substrate also rank highly while 
the boron reagent properties show less 
importance in the stereochemical outcome of 
the reaction. This makes sense as the 
organoboron reagent causes smaller changes 
in selectivity (~5%) in comparison to the ligand, 
where a change in configuration leads to a 
completely different enantiomeric product. As 
would be expected, the system level overall 
chirality descriptor (where the ligand 
configuration is tagged to all the components 
reacting) showed less relevance for the 
substrate and the boron reagent than for the 
ligand. We argue that this means that the GNN 
is learning that this descriptor is not relevant for 
the non-ligand components. Finally, the 
aromaticity of the atoms (nodes) and whether 

Fig. 6 Attribution score of node features separated by molecule 
in the system approximated by GNNExplainer XAI algorithm, 
where L symbolises the atoms of the catalyst, S to the atoms of 
the substrate and BR to the atoms of the organoboron reagent. 
Further information about these node features is given in 
Methods Hcat-GNet graph representation section. 
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they belong to a ring system or not are found to 
be of less relevance for most predictions. We 
hypothesize this is the case because such 
features can be derived from pre-existing low-
level node features, such as atom identity and 
degree. Thus, the electronic and steric effects 
of these high-level features are already learnt in 
the training process.  

The agreement of the (ranked) important 
GNN node features with experimental (human) 
learnt RhCAA characteristics shows the GNN 
can independently learn and identify which 
structural variables within the reacting 
molecules correlate with the stereoselectivity of 
the process. Although for RhCAA a previous 
human-derived (Hayashi24) stereochemical 
model is available, this is not used in HCat-
GNet, which independently derived 
correlations that make sense from the chemical 
point of view. Importantly, HCat-GNet can in 
principle be used for other processes where the 
reaction mechanism is unknown. 

To understand the electronic effects of a 
given substituent within the ligand, we use 
Shapley Value Sampling. While the steric 
selection factors in RhCAA are well-
understood, this is not the case for electronic 
effects. We decided to probe this using six 
different reactions, where five of them differ 
only in the R4 substituent in the ligand (see Fig. 
1d): para-substituted C6H4R (R = H, Me, t-Bu, 
OMe, or CF3) group, together with the 

enantiomer of one ligand (R = H) as a control. 
We aimed to understand how the electronics of 
the substituent affects the GNN facial selectivity 
decision. To do this, we created code that plots 
the ligand in 3D with colors depicting the 
contribution of each edge and node to the final 
decision of the GNN (Fig. 7a). For these 
experiments, we chose identical reaction 
conditions (organoboron reagent, substrate, 
temperature, and solvent, Fig. 7b), with only 
the ligand differing in each case. The results are 
shown in Fig. 7c. 

The ligands L3.40 and ent-L3.40 (virtual) 
are enantiomers. Ligand ent-L3.40 (virtual) 
corresponds to a data (inversion) augmentation 
strategy used to train the GNN in enantiomeric 
behaviour. L3.40 and ent-L3.40 (virtual) are, by 
definition, expected to give opposite product 
enantiomers but with the same degree of 
stereoselectivity. As shown in Fig. 7c, the GNN 
successfully identifies L3.40 as a positive 
contributor (higher %top or top face addition), 
while ent-L3.40 (virtual) is identified as 
negative contributor (lower %top or bottom 
face addition). This agrees with the Hayashi 
stereochemical model,25 and shows the GNN is 
able to effectively model the effect of both 
relative and absolute ligand stereochemistry on 
reaction enantiofacial selectivity. 

For the case of ligands L3.40, L3.46, L3.47, 
L3.50, and L3.51, we manually correlated the 
GNN-derived and experimental %top of these 

Fig. 4 Results of Shapley Values Sampling Analysis to different reactions that only change on the structure of the ligand. (a) Representative 
image of the output of the software developed to visualise the importance of each edge and node within a molecule to the final decision of the 
GNN, (b) shows the structure of the substrate and organoboron reagent of the reaction analysed, and (c) shows the structure of the ligands with 
highlighted edges and nodes that show their impact in the final decision of the GNN. Van der Waals volumes were approximated using the 
Zhao method,51 and Hammett parameters were extracted from an extensive review.50 
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reactions with the Hammett parameters50 and 
calculated van der Waals volume51 of the 
different R substituents in the para-substituted 
C6H4R ligand group. Negative Hammett values 
(electron-donating groups) engender an 
increase in %top compared to L3.40, while 
positive Hammett parameters correspond to 
lower %top. Even though the GNN does not 
exactly predict the selectivity for these ligands, 
the trend of impact of the substituent in the 
reaction outcome is the same as that 
experimentally observed (Me, t-Bu, and OMe 
increase %top, and CF3 decreases it). 

Shapley Value Sampling analysis suggests 
HCat-GNet can augment these electronic 
deductions from low-level node-features. In the 
case of ligand L3.40, no specific negative 
contributions are found. For inductive electron-
donating R groups (L3.46, Me and L3.47 t-Bu), 
the GNN successfully identifies them as positive 
contributors to the %top. In the case of L3.50, 
the GNN identifies an electron-withdrawing 
inductive effect (–I) from the electronegative 
oxygen atom as a negative contributor and its 
methyl substituent as a positive contributor. 
This is different to just considering OMe as an 
electron-donating (+M) substituent. Potentially, 
the GNN is reasoning is that inductive effects 
are more important in the reaction, and 
therefore classifying the oxygen as negative 
contributor towards the selectivity, while the 
methyl group is considered a positive 
contributor. This could be because of two 
reasons: 1) the GNN is capturing that the real 
importance of inductive effects are higher than 
mesomeric effects, or 2) the lack of samples 
with mesomeric effects creates a bias in the 
models that makes them overestimate 
inductive effects. Lastly, for L3.51, the Shapley 
analysis confirms the CF3 group as a negative 
contributor due to its inductive electron-
withdrawing properties. 

Comparing the Shapley Value Sampling 
method and the Hayashi stereochemical 
model,25 the former is more information-rich 
compared with the latter, purely empirical 
model. Thus, the GNNExplainer along with 
Shapley Value sampling can present a fuller 
picture of asymmetric catalytic reactions.  
The agreement between the real RhCAA 
selectivity data and the GNN-determined 
values suggests that valuable information 
regarding the factors that determine that 
stereoselectivities of reactions may well be 
possible for a wide range of asymmetric 
catalytic reactions using the GNNExplainer, 
complemented by Shapley Value Sampling. 
Thus, HCat-GNet is not only useful in making 

accurate predictions of selectivity, but also in 
understanding underlying phenomena that 
human scientists have not yet deciphered or 
observed. This opens a wide range of 
opportunities for asymmetric catalysis 
optimization and de novo ligand design. 
 
Conclusions 
We have developed a homogeneous catalyst 
graph network (HCat-GNet), which consists of a 
Graph Neural Network model predicting the 
stereoselectivity and absolute 
stereoconfiguration of the major product of an 
asymmetric reaction accelerated by a metal-
ligand complex ML* (L* = any chiral ligand). We 
demonstrated the applicability of HCat-GNet 
by predicting the face of addition and the 
quantitative selectivity of >500 experimental 
RhCAA reactions using only SMILES inputs. Our 
method had a comparable performance to 
previously published approaches,26 but without 
the need for bespoke descriptors/curation. Our 
GNN was able to find human-understandable 
high-level features demonstrating that HCat-
GNet can be successfully used to create 
machine learning models of asymmetric 
homogeneous asymmetric catalysts with little 
or no human intervention. We further tested the 
robustness of HCat-GNet by predicting the 
selectivity associated with 30 new completely 
unseen ligands49 without further chemical 
space training, showing that HCat-GNet is 
much better at extrapolation tasks than 
traditional machine learning. Our results 
suggest that overfitting in current TML 
approaches might be more common than is 
presently appreciated. Conversely, HCat-
GNet’s use of molecular graphs makes it more 
robust in providing insights into (at least 
‘nearby’) unknown chemical space. Lastly, the 
use of GNNExplainer and Shapley Value 
Sampling allows the unmasking of both ligand 
steric and electronic effects making HCat-GNet 
a potentially useful tool for probing catalytic 
reaction mechanisms where the underlying 
phenomena have not yet been fully elucidated, 
and for optimal ligand design. 
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