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Chemical phenomena involving near-degenerate electronic states, such as conical intersections or avoided crossing, can be properly
described using quasi-degenerate perturbation theory (QDPT). This study proposed a highly scalable quasi-degenerate second-order
N-electron valence state perturbation theory (QD-NEVPT2) using the local pair-natural orbital (PNO) method. Our recent study
showed an efficient implementation of the PNO-based state-specific (SS) NEVPT2 method using orthonormal localized virtual
molecular orbitals (LVMOs) as an intermediate local basis. This study derived the state-coupling (or off-diagonal) terms to imple-
ment QD-NEVPT2 in an alternative manner to enhance efficiency based on the internally contracted basis (ICB) and PNO overlap
matrices between different references. To facilitate further acceleration, a local resolution-of-the-identity (RI) three-index integral
generation algorithm was developed using LMOs and LVMOs. Although the NEVPT2 theory is considered to be less susceptible
to the intruder-state problem (ISP), this study revealed that it can easily suffer from ISP when calculating high-lying excited states.
We ameliorated this instability using the imaginary level shift (LS) technique. The PNO-QD-NEVPT2 calculations were performed
on small organic molecules for the 30 lowest-lying states, as well as photoisomerization involving the conical intersection of 1,1-
dimethyldibenzo[b,f] silepin with a cis-stilbene skeleton. These calculations revealed that the PNO-QD-NEVPT2 method yielded
negligible errors compared to the canonical QD-NEVPT2 results. Furthermore, we tested its applicability to a large photoisomeriza-
tion system using the green fluorescent protein model and the 10-state calculation of the large transition metal complex, showcasing
that off-diagonal elements can be evaluated at a relatively low cost.

Keywords: quasi-degenerate perturbation theory; pair-natural orbitals; localized virtual molecular orbitals; excited states; second-
order N-electron valence state perturbation theory

I. Introduction

The incorporation of multireference (MR) character is important
when modeling chemical reactions involving the formation or cleav-
age of covalent bonds. Moreover, various chemical species, such as
doubly excited states and low-spin open-shell species with antifer-
romagnetically coupled electron pairs, exhibit strong MR character.
The complete-active space self-consistent field (CASSCF) theory1,2

can capture the static correlation, thus providing a good zeroth-
order description of such complicated electronic states. By consid-
ering the dynamic electron correlation, MR perturbation theoretical
(MRPT) approaches often provide quantitative accuracy for various
phenomena. The most widely-used variants of MRPT schemes in-
volve the complete-active space perturbation theory (CASPT2) and
N-electron valence state perturbation theory (NEVPT2) methods pi-
oneered by Roos et al.3–5 and by Angeli et al.,6,7 respectively, as
well as the MR Møller–Plesset perturbation (MRMP) by Hirao8

and multi-configurational quasi-degenerate perturbation theory (MC-
QDPT) by Nakano9.

The CASPT2 scheme is among the first MRPT methods based
on the so-called internally-contracted basis (ICB) functions10 and
its reliability has been validated against various systems includ-
ing transition metal11,12 and heavy metal13–15 systems, singlet-
fission,16 active-site models of bio-mimetic systems17,18 to only
name a few. Owing to the complete one-electron nature of the zeroth-
order Hamiltonian, the CASPT2 scheme is prone to the intruder-state
problem (ISP), and thus suffers from small denominators in the per-
turbative energy expression. Accordingly, real19 and imaginary20

level-shifting techniques have been developed. The imaginary shift
in the CASPT2 method can be regarded as a diagonal Thikonov
regularization,21 which shifts the singularity towards the imaginary

axis. Recently, the so-called σ p-regularization22,23 was introduced
to remove the ISP from the CASPT2 framework.24 Another type
of modifications in zeroth-order Hamiltonian focus on a more bal-
anced treatment between closed-shell and open-shell configurations
in the CASPT2 scheme. The ionization potential and electron affinity
(IPEA) shift introduces an empirical shift parameter in the CASPT2
denominator.25

The complete two-electron interactions inside the active space
are treated at the zeroth-order level in the NEVPT2 method by
employing Dyall’s Hamiltonian26 as the zeroth-order part. Con-
sequently, the NEVPT2 scheme is considered less susceptible
to ISP, or is often regarded as an ISP-free method.27 A fully
internally-contracted (FIC)-NEVPT2 computation requires a full di-
agonalization of Dyall’s Hamiltonian matrix over ICBs. A sim-
pler, diagonalization-free variant called the strong-contraction (SC)
scheme7 has been proposed to alleviate this step. On a side note,
to effectively take into account the two-electron interactions at the
zeroth-order level in the CASPT2 scheme, Kollmar and co-workers
developed the so-called CASPT2-K scheme,28 which uses a shift pa-
rameter determined using the Dyall’s Hamiltonian.

Modeling the photo-chemical processes often requires electronic
structure computations on ground- and excited-state potential en-
ergy surfaces (PESs) to locate the minimum, the conical intersec-
tion (CI), and the avoided-crossing (AC) states. Conventional single-
state perturbative methods, such as state-specific (SS)-CASPT2 and
NEVPT2, are often insufficient for constructing a correct wave func-
tion representation around the CI or AC, where multiple PESs be-
come near-degenerate. In fact, the coupling of near-degenerate
states are properly taken into account using a perturbative expan-
sion of an effective Hamiltonian matrix,29–32 which is known as
quasi-degenerate perturbation theory (QDPT). The QDPT variant
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of CASPT2 approach was originally pioneered by Finley et al.33

as the multi-state (MS)-CASPT2 scheme. The extended multi-state
(XMS)-CASPT2 scheme was developed by Shiozaki et al.34 to guar-
antee the invariance to reference rotations in a similar vein to the ex-
tended MC-QDPT approach by Granovsky.35 Along a similar line,
the QD-NEVPT2 scheme27,36 was formulated for both FIC and SC
schemes.

Numerous attempts have been made to accelerate the MRPT com-
putations. Aquilante et al. introduced frozen-natural orbital (FNO)
truncation in the CASPT2 method37–39 combined with the Cholesky
decomposition of electron repulsion integrals (ERIs).40–43 Song
and Martínez developed a tensor hyper-contraction-based (THC)-
CASPT2 scheme and the XMS variant, and further extended them
to analytical energy gradient computations.44–46

A further compaction of ERIs as well as many-body amplitudes
was achieved by exploiting the underlying locality of the electronic
wave function.47–49 Guo et al. developed a domain-based local pair-
natural orbital implementation of the NEVPT2 scheme, termed as
the DLPNO-NEVPT2 method, and demonstrated its applicability to
MR systems comprising hundreds of atoms and thousands of atomic-
orbital (AO) basis functions.50 The concept of local PNOs was in-
troduced to SS- and MS-CASPT2 schemes by Kats et al.51,52 on
a virtual machine framework for sparse tensor objects.53 Recently,
we developed the PNO-CASPT2 and NEVPT2 schemes using or-
thonormal localized virtual molecular orbitals (LVMOs) in place of
traditional projected atomic orbitals (PAOs) as an intermediate local
basis.54,55

The concept of local correlation was realized in the 1960s,47,48

and the actual computer implementation was first achieved by Pu-
lay et al. in the 1980s.49,56,57 Combined with the domain selec-
tion algorithm by Boughton and Pulay58 as well as Werner, Schütz,
Manby and co-workers developed local versions of Møller–Plesset
(MP) and coupled-cluster (CC) approaches and implemented them
into efficient computer codes.59–65 Later, the concept of PNOs was
reintroduced by Neese et al. in the local PNO-based coupled-
electron pair approximation (LPNO-CEPA)66 and CC with singles
and doubles (LPNO-CCSD) schemes67–71 with full exploitation of
resolution-of-the-identity (RI) approximation of ERIs.72–74 The idea
of PNO framework was initially pioneered in the 1960s so as to ef-
fectively truncate the configuration expansion of many-electron wave
functions.75–83

To further reduce the number of RI integrals for computation,
the locality of the wave function was fully utilized in the PNO-
based CC schemes, resulting in the development of the DLPNO-
CC method.84,85 The initial DLPNO-CC implementation exhibited
a desirable near-linear scaling behavior for linear one-dimensional
systems and was applicable to Crambin, a small protein compris-
ing more than 600 atoms. The PNOs for diagonal pairs are often
referred to as orbital-specific virtuals (OSVs),86–88 and OSV-based
local CC programs were developed.89,90 The DLPNO algorithm was
further improved using the so-called sparse map framework,91,92 and
was extended to property computations,93–95 open-shell species,96

explicit correlation,97–99 and analytical energy gradient.100,101 In a
similar vein, efficient local PNO-based MP and CC schemes were
formulated and implemented by Werner et al.102–110 On a footnote,
by using different sets of truncation thresholds for pairs belonging
to different fragments, multilevel (ML) treatment has been rendered
available at the DLPNO-CC level.111 When tracing a reaction pro-
file using ML-DLPNO approaches, the selection of orbital pairs is
crucial for the accurate calculation of the relative energies.112,113

Reduced-scaling excited-state methods are particularly impor-
tant in photochemistry. For such purpose, the local ver-

sions of CC approaches have been extended to the excited
states.114–116 The second-order CC (CC2) and algebraic diagram-
matic construction (ADC(2)) schemes were formulated in the PNO
basis.117–119 Nooijen’s similarity-transformed equation-of-motion
(STEOM) approach120–122 was incorporated into DLPNO frame-
work using either back-transformed PNO amplitudes for the ground
state123 or fully PNO-based ionization-potential (IP)124 and electron
affinity (EA)125 EOM machineries.126

The MR character is often more pronounced in the excited states.
From this perspective, reduced-scaling MR-QDPT approaches such
as the PNO-MS-CASPT252 and THC-XMS-CASPT245 schemes are
of central importance as versatile tools for exploring the PESs of
various electronic states. However, to the best of our knowledge,
reduced-scale NEVPT2 schemes have not yet been extended to
QDPT variants. This motivated us to develop the PNO-QD-NEVPT2
method for the accurate photochemical modeling of large, real-life
systems.

In a PNO-based wavefunction computation, the construction of
the Fock operators and local RI 3-index integral transformation
are often the most time-consuming steps. Therefore, to minimize
such steps, in our PNO-QD-NEVPT2 formalism, a single set of
LMOs/LVMOs was used to solve the SS-PNO-NEVPT2 equations
and off-diagonal couplings in the effective Hamiltonian. Meanwhile,
as a zeroth-order Hamiltonian, the state-specific Dyalls Hamiltonian
was used instead of the state-averaged counterpart.

In the process of developing and benchmarking the PNO-QD-
NEVPT2 scheme, we realized that the ISP is a common issue in
NEVPT2 calculations for higher-lying states, even without local
truncation. Numerical analysis revealed that ISPs in the canonical
and PNO-NEVPT2 schemes likely arose from a semi-internal ICB
manifold (V (−1′)a subspace) and can easily be remedied by using
the well-known imaginary shift, with no notable increase in com-
putational costs. Moreover, by evaluating the Hylleraas functional
only for that subspace using the converged NEVPT2 amplitudes with
the level shift, the full NEVPT2 energies can be recovered for those
states.

The remainder of this study is organized as follows. In Sec. II, we
present a brief summary of the LVMO-based PNO formalism and
the local RI 3-index integral generation algorithm using LMOs and
LVMOs. Off-diagonal elements in the PNO-QD-NEVPT2 effective
Hamiltonian were formulated by inserting a projection operator into
a state-specific ICB manifold. With this choice, an off-diagonal ele-
ment term was written as the product of the right-hand side (RHS),
PNO-NEVPT2 amplitudes, and interreference ICB and PNO over-
lap matrices. The former two quantities were computed and stored
in the PNO-NEVPT2 computations for diagonal elements, whereas
the remaining off-diagonal elements were easily constructed on-the-
fly with negligible costs. In Sec. III, the accuracy of the PNO-QD-
NEVPT2 scheme was benchmarked for small organic molecules, and
the impact of ISP was assessed. The photoisomerization profiles of
the silepin derivatives were computed at the PNO-QD-NEVPT2 level
and compared with the canonical variant. To demonstrate its applica-
bility to large real-life systems, the PNO-QD-NEVPT2 scheme was
applied to a green fluorescent protein (GFP) model system and large
transition metal complexes. The largest was composed of 4,200 AOs
with a triple-zeta basis set. Finally in Sec. IV, conclusions are drawn.
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II. Theory

In this section, we will start by providing a brief introduction to
the conventional QD-NEVPT2 theory. We then discuss our new ap-
proaches to accelerate it using the PNO method and local RI algo-
rithms. We also provide a brief review of the domain construction
scheme that we developed in our previous work.54,55 In addition, we
present a level-shift method for NEVPT2 to mitigate the ISP found
in excited-state calculations. Unless otherwise mentioned, the same
notation for the indices was used, as in a previous study [Ref. 55].

A. QD-NEVPT2 Theory

The QD-NEVPT2 theory was developed as an extension of the
original NEVPT2 theory7 to the multi-state (MS) regime. It was
developed based on the multipartitioning quasidegenerate perturba-
tion theory,127 wherein the electronic Hamiltonian is divided into the
state-specific zeroth-order Hamiltonian and perturbation terms as fol-
lows:

H = H(0)
α +Vα (α = 1,2, · · · ,N) , (1)

where α represents the reference index. In the NEVPT2 theory,
the Dyall Hamiltonian,26 denoted HDyall

α , is employed as the zeroth-
order Hamiltonian,

H(0)
α = PHDyall

α P+QHDyall
α Q . (2)

The operator P is a projector for the model space spanned by the
reference CASSCF wave functions Ψ(0)

α (α = 1,2, · · · ,N)

P =
N

∑
α
|Ψ(0)

α ⟩⟨Ψ(0)
α | , (3)

and the complementary projector Q is expressed as

Q = 1−P. (4)

The Dyall Hamiltonian comprises three terms,

HDyall
α = H inact

α +Hact +Cα . (5)

The terms H inact
α and Hact are defined as

H inact
α = ∑

i j
Fi j,α E i

j +∑
ab

Fab,α Ea
b , (6)

Hact = ∑
pq

hcore
pq E p

q +
1
2 ∑

pqrs
(pr|qs)E pq

rs , (7)

with the one-electron core Hamiltonian hcore
pq given as

hcore
pq = hpq +∑

i
[2(pq|ii)− (pi|iq)] . (8)

Eq. (6) encompasses the generalized Fock matrix Fxy,α as a function
of the state α , which is written as

Fxy,α = heff
xy +∑

pq
[(xy|pq)− 1

2
(xp|yq)]Dp

q,α , (9)

where Dp
q,α are elements of the one-body reduced density matrix (1-

RDM). The Cα in Eq. (5) is defined as follows:

Cα = ∑
i

hii +∑
i j
[2(ii| j j)− (i j|i j)]−2∑

i
Fii,α . (10)

This zeroth-order construction allows the CASSCF wave functions
to form as eigenfunctions of the Dyall Hamiltonian:

HDyall
α |Ψ(0)

α ⟩= E(0)
α |Ψ(0)

α ⟩ , (11)

where the eigenvalues E(0)
α correspond to the associated CASSCF

energies.

Two variants exist for the multiroot treatment of the QD-NEVPT2
theory: the state-specific (SS) and state-average (SA) schemes.128

They primarily differ in the 1-RDMs, Dp
q,α , used to evaluate the gen-

eralized Fock matrix Fxy,α (Eq. (9)); the SS-RDMs and SA-RDMs
are used for the SS and SA schemes, respectively, and the result-
ing Fxy,α are designated as SS and SA generalized Fock matrices,
respectively. We employed the SS scheme in this study; thus, the
1-RDM elements were evaluated as Dp

q,α = ⟨Ψ(0)
α |E p

q |Ψ
(0)
α ⟩. The

multipartitioning technique developed by Zaitsevskii and Malrieu is
fundamental to treating the state-specific zeroth-order Hamiltonians.

Let us consider the following model-space states Ψ̃α , which are
obtained by applying P to the exact wave functions Ψα , as:

Ψ̃α = PΨα . (12)

We introduce the wave operator Ω, which offers the exact wave func-
tions Ψα when acting on Ψ̃α as follows:

ΩΨ̃α = Ψα . (13)

In the framework of the QDPT, the operator Ω can be determined as
a solution for the generalized Bloch equation129

ΩPHΩ−HΩ = 0 . (14)

The following entity is defined as the effective Hamiltonian

Heff = PHΩ . (15)

Now, we express the wave operator Ω and the effective Hamiltonian
Heff in the perturbation expansion as

Ω = P+Ω(1)+Ω(2)+ · · · (16)

and

Heff = H(0)
eff +H(1)

eff +H(2)
eff + · · · (17)

respectively. Substituting these expansions into Eq. (14) yields the
following second-order effective Hamiltonian H2nd

eff , which is ex-
pressed using the first-order wave operator Ω(1) as:

H2nd
eff = H(0)

eff +H(1)
eff +H(2)

eff

= PHP+PHΩ(1)P . (18)

The central tasks of the QD-NEVPT2 calculation are twofold: (1)
the SS-based determination of the first-order perturbations to the ref-
erence wavefunctions and (2) the evaluation of the diagonal and off-
diagonal matrix elements of H2nd

eff in the reference state basis.

Next, we describe the formulae for evaluating H2nd
eff in the QD-

https://doi.org/10.26434/chemrxiv-2024-7zqx1 ORCID: https://orcid.org/0009-0005-9968-2818 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-7zqx1
https://orcid.org/0009-0005-9968-2818
https://creativecommons.org/licenses/by-nc-nd/4.0/


PNO-QD-NEVPT2 Theory with LVMO Bases 4

NEVPT2 approach. Diagonal elements of H2nd
eff correspond to the

SS-NEVPT2 energies E2nd
α as follows:

⟨Ψ(0)
α |H2nd

eff |Ψ(0)
α ⟩= E2nd

α , (19)

where the PT2 energy for the α-th state is calculated to be E(2)
α =

⟨Ψ(0)
α |H|Ψ(1)

α ⟩. The off-diagonal elements are expressed as

⟨Ψ(0)
β |H2nd

eff |Ψ(0)
α ⟩= ⟨Ψ(0)

β |HΩ(1)|Ψ(0)
α ⟩

= ⟨Ψ(0)
β |H|Ψ(1)

α ⟩ . (20)

The first-order wave functions Ψ(1)
α are determined by solving the

first-order equation:

(HDyall
α −E(0)

α ) |Ψ(1)
α ⟩=−(Vα −E(1)

α ) |Ψ(0)
α ⟩ . (21)

Eq. (21) is solved via the expansion of Ψ(1)
α into eight types of non-

redundant ICB sets (nrICBs),

|Ψ(1)
α ⟩= ∑

i≤ j
∑
ab

t i j
ab,α |Φab

i j,α ⟩

+ ∑
ρ(−1)i

[
∑
a≤b

t
ρ(−1)i
ab,α |Φ̃ab

ρ(−1)i,α ⟩+ ∑
a<b

t ′
ρ(−1)i
ab,α |Φ̃′ab

ρ(−1)i,α ⟩

]

+ ∑
ρ(−2)

∑
ab

t
ρ(−2)
ab,α |Φ̃ab

ρ(−2),α ⟩+ ∑
iρ(0′)

∑
a

t
iρ(0′)
a,α |Φ̃a

iρ(0′),α ⟩

+ ∑
ρ(+1)a

[
∑
i≤ j

t i j
ρ(+1)a,α |Φ̃ρ(+1)a

i j,α ⟩+∑
i< j

t ′i j
ρ(+1)a,α |Φ̃′ρ(+1)a

i j,α ⟩

]
+ ∑

ρ(−1′)

∑
a

t
ρ(−1′)
a,α |Φ̃a

ρ(−1′),α ⟩+∑
i j

∑
ρ(+2)

t i j
ρ(+2),α |Φ̃ρ(+2)

i j,α ⟩

+∑
i

∑
ρ(+1′)

t
ρ(+1′)
i,α |Φ̃ρ(+1′)

i,α ⟩ , (22)

where |Φab
i j ⟩, |Φ̃ab

ρ(−1)i⟩, |Φ̃
ab
ρ(−2)

⟩, |Φ̃a
iρ(0′)

⟩, |Φ̃ρ(+1)a
i j ⟩, |Φ̃a

ρ(−1′)
⟩, |Φ̃ρ(+2)

i j ⟩,

and |Φ̃ρ(+1′)
i ⟩—where the state index α is omitted—correspond to the

nrICBs for the subspaces S(0)i j,ab, S(−1)
i,ab , S(−2)

ab , S(0
′)

i,a , S(+1)
i j,a , S(−1′)

a ,

S(+2)
i j , and S(+1′)

i , respectively. The eight types of amplitudes, t i j
ab,

t
ρ(−1)i
ab , t

ρ(−2)
ab , t

iρ(0′)
a , t i j

ρ(+1)a, t
ρ(−1′)
a , t i j

ρ(+2)
, and t

ρ(+1′)
i are variables com-

putationally determined as a solution of Eq. (21).
Tangible expressions of the nrICBs have been shown in previous

studies, including the original study.7,54,55 For example, the nrICBs
for the subspace S(−2)

ab were constructed based on the following gen-
eralized eigenvalue equation:

KαXα =−D2,αXαeα , (23)

where D2,α is the two-body RDM (2-RDM), the eigenvector ma-
trix Xα is used to form the nrICBs, and the eigenvalues eα are the
associated energies. The Koopmans matrix Kα is given as

K pq
rs,α = ⟨Ψ(0)

α |E pq
ab [Hact,Eab

rs ]|Ψ
(0)
α ⟩ . (24)

Using the matrix Xα , the nrICBs |Φ̃ab
ρ(−2),α ⟩ are represented as fol-

lows:

|Φ̃ab
ρ(−2),α ⟩= ∑

pq
X pq

ρ(−2),α |Φab
pq,α ⟩ , (25)

where |Φab
pq,α ⟩ are the non-orthonormalized redundant ICB (rICB).

The rICBs are fundamental many-body bases in the IC multirefer-
ence PT treatment and are obtained by applying the spin-free excita-
tion generators Eab

pq to the reference |Ψ(0)
α ⟩ as follows:

|Φab
pq,α ⟩= Eab

pq |Ψ
(0)
α ⟩ . (26)

Determination of the amplitude t
ρ(−2)
ab,α is equivalent to finding a sta-

tionary point of the Hylleraas functional

E(2)
α = 2⟨Ψ(1)

α |H|Ψ(0)
α ⟩+ ⟨Ψ(1)

α |HDyall
α −E(0)

α |Ψ(1)
α ⟩ . (27)

When canonical molecular orbitals are used, the diagonal nature of
the Fock matrix yields the formula for t

ρ(−2)
ab,α in a closed form:

t
ρ(−2)
ab,α =−

⟨Φ̃ab
ρ(−2),α |H|Ψ(0)

α ⟩

⟨Φ̃ab
ρ(−2),α |H

Dyall
α −E(0)

α |Φ̃ab
ρ(−2),α ⟩

, (28)

where the denominator in Eq. (28) can be rewritten in a simplified
form as

⟨Φ̃ab
ρ(−2),α |H

Dyall
α −E(0)

α |Φ̃ab
ρ(−2),α ⟩= εa,α + εb,α − eρ(−2),α . (29)

The amplitude of this subspace t
ρ(−2)
ab,α contributes to a segment of

the SS-NEVPT2 energy, as evaluated using the energy formula

∑ρ(−2) ∑ab ⟨Ψ
(0)
α |H|Φ̃ab

ρ(−2),α ⟩ t
ρ(−2)
ab,α . These formulas indicate that the

NEVPT2 energy can be calculated in a noniterative manner using
canonical orbitals.

The evaluation of the single off-diagonal element in Eq. (20) is as
expensive as computing the NEVPT2 energy. As the number of ref-
erence states (i.e., N) increases, the number of off-diagonal elements
that must be computed increases quadratically, rendering the con-
struction of the effective Hamiltonian a demanding task. To avoid
this problem, we use a state-based RI approximation for these el-
ements. This allowed them to be effectively represented using the
overlap matrix between the ICB bases as a much simpler substitu-
tion. Considering the subspace S(−2)

ab as an example, the off-diagonal
element is written using the state-based RI treatment as:

⟨Ψ(0)
β |H|Ψ(1)

α ⟩
(−2)

= ∑
ρ(−2)

∑
ab

⟨Ψ(0)
β |H|Φ̃ab

ρ(−2),α ⟩ t
ρ(−2)
ab,α

≈ ∑
ρ(−2)

∑
ab

∑
τ(−2)

⟨Ψ(0)
β |H|Φ̃ab

τ(−2),β ⟩ S̃
τ(−2),β
ρ(−2),α t

ρ(−2)
ab,α , (30)

where the ICB overlap matrix S̃ is defined as

S̃
τ(−2),β
ρ(−2),α = ⟨Φ̃ab

τ(−2),β |Φ̃
ab
ρ(−2),α ⟩ . (31)

Notably, the term ⟨Ψ(0)
β |H|Φ̃ab

τ(−2),β
⟩ in Eq. (30) also arises as the

RHS term of the first-order equation (Eq. (21)) solved in the preced-
ing SS-NEVPT2 calculation step. Furthermore, the amplitudes t

ρ(−2)
ab,α

were determined in the SS-NEVPT2 calculation. Therefore, these
two numerical objects were obtained prior to the QD calculation step
and stored in the high-speed memory. Their compressed representa-
tions, enabled by the PNO approach, enabled to significantly reduce
storage demands. Consequently, the off-diagonal elements can be
evaluated efficiently by retrieving data for these terms from memory,
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thus avoiding the large cost of recalculating the RHS terms. Our im-
plementation for off-diagonal elements requires extra computation of
the ICB overlap between different references, which is of relatively
low cost.

The effective Hamiltonian (Eq. (18)), derived from the general-
ized Bloch formalism with the intermediate normalization (Eq. (14)),
is non-Hermitian. Symmetric matrices are preferred for numerical
handling; thus, the QD-NEVPT2 variant based on the canonical Van
Vleck130 was used in this study. Then, the effective Hamiltonian is
then expressed as

(H2nd
eff )αβ = E(0)

α δαβ +
1
2
[⟨Ψ(0)

β |H|Ψ(1)
α ⟩+ ⟨Ψ(0)

α |H|Ψ(1)
β ⟩] . (32)

Ref. 130 presented the implementation of the hermitized QD-
NEVPT2 formalism with the SC treatment, whereas this study im-
plemented it based on the FIC scheme. The diagonalization of the
matrix H2nd

eff yields the QD-NEVPT2 energy EQD-NEVPT2
κ ,

∑
β
(H2nd

eff )αβUβκ =Uακ EQD-NEVPT2
κ , (33)

where U are the normalized eigenvectors. The QD-NEVPT2 wave
function for the κ-th state is expressed as

|ΨQD-NEVPT2
κ ⟩= ∑

α
Uακ (|Ψ

(0)
α ⟩+ |Ψ(1)

α ⟩) . (34)

Mixing the multiple references {|Ψ(0)
α ⟩} and their perturbations

{|Ψ(1)
α ⟩} delivers the effective representation of quasi-degenerate

states.

B. The LVMO domain construction and local RI algorithm

We briefly summarize the domain construction scheme for LV-
MOs developed in our previous studies.54,55 To simplify the domain
and integral generations, in our computer implementation, the active
MOs were included in both occupied and virtual MO spaces, result-
ing in an overlap of MO subspaces as in the case of the open-shell
DLPNO-CC formalism.96 Hereafter, ĩ and ã represent the occupied
and virtual LMO subspaces, respectively, both of which commonly
include the active MOs.

A key quantity is the so-called differential overlap integrals
(DOIs) between occupied and virtual LMOs;

DOIĩã =

√∫
R3

|ϕĩ(r)|2 |ϕã(r)|2 dr. (35)

The DOIs were first introduced by Pinski et al.91 as an approximation
to Schwartz prescreening integral

SPIĩã =
√

(ϕĩϕã|ϕĩϕã). (36)

The LVMOs with larger value of DOI than TCutDOI with a given
occupied LMO ĩ constituted the LVMO domain for ĩ. Thus, the
L(ĩ → ã) map was created.

The auxiliary basis was truncated using the fitting domain con-
structed using the following quantity

MĩA = ∑
µ∈A

Cµ ĩ [SC]µ ĩ (37)

where C and S matrices represent the LMO coefficient and the AO
overlap matrices, respectively. All the auxiliary basis functions cen-
tered on atom A were included in the fitting domain for ĩ if MĩA was
larger than TCutMKNFit threshold. The fitting domain is represented
as L(ĩ → I) or equivalently L(ĩ → A).

Special care must be taken for domains associated with active
MOs; as the amplitude equations are solved in the nrICB representa-
tion, all the active MOs must share the same domain. Thus, a union
of all the maps for the active MOs was evaluated and shared by each
active MO as the universal active domain.

To perform the PNO-QD-NEVPT2 computations, the required RI
integrals were limited to the following type:

(I|ĩã) = ∑
µ

Cµ ĩ ∑
ν

Cν ã (I|µν). (38)

The formal scaling of a straightforward RI 3-index transformation
(Eq. (38)) is of O(N4). The dipole-based prescreening of i j pairs
achieved a drastic speedup of local construction of (I|ĩã) integrals. In
fact, in Eq. (38), the Gaussian-type orbital (GTO) integrals and ma-
trix multiplications associated with the AOs and MOs required only
by the prescreened pairs were not required in the following compu-
tational steps. The whole sets of LVMOs and auxiliary basis for ĩ
needed at the following semi-local screening and the iterative PNO-
NEVPT2 steps can be represented as

L̂(ĩ → ã) =
∪

j̃∈survived (i, j) list

L( j̃ → ã) (39)

and

L̂(ĩ → I) =
∪

j̃∈survived (i, j) list

L( j̃ → I), (40)

respectively.

The LVMO-based local RI 3-index integral transformation closely
resembled the sparse-map-based algorithm used in the DLPNO
framework developed in Ref. 91. To reduce the number of GTO
integrals to compute and the matrix multiplication operations with
the MO coefficient matrices, the L(ĩ → µ) and L(ĩ → ν) maps were
constructed by analyzing the occupied and virtual LMO coefficient
matrices, respectively. Using these maps, the following maps were
further formed;

L̂(I → µ) =
[
L̂(ĩ → I)

]−1 ⊂ L(ĩ → µ), (41)

L̂(I → ν) =
[
L̂(ĩ → I)

]−1 ⊂ L̂(ĩ → ã)⊂ L(ã → ν) (42)

where [· · · ]−1 and ⊂ represent inversion and chaining operations on
maps, respectively. The local RI 3-index integral generations in the
LVMO basis is presented in Algorithm 1.
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Algorithm 1 Local RI 3-index integral transformation algorithm
1: // 1) Computation of transformed RI integrals
2: for I ∈ {auxiliary basis functions} do
3: for µ ∈ L̂(I → µ) do
4: for ν ∈ L̂(I → ν) do
5: Compute (I|µIνI)
6: end for
7: end for
8: (I|ĩI ãI) = ∑µI CµI ĩI

[
∑νI CνI ãI (I|µIνI)

]
// 2× DGEMM operations

9: Store (I|ĩI ãI) for I
10: end for
11: // 2) Sorting of transformed integrals
12: for i ∈ {occupied LMOs} do
13: for I ∈ L̂(i → I) do
14: Get (I|ĩI ãI) for I
15: for a ∈ L̂(i → a) do
16: if a /∈ IL̂(I → a) then
17: continue
18: end if
19: (Iĩ|ĩãĩ) = (I|ĩI ãI)
20: end for
21: end for
22: Store (Iĩ|ĩãĩ) for i
23: end for

C. LVMO-PNO-QD-NEVPT2 Theory

Our study proposed a new approach that combined the PNO
scheme with the QD-NEVPT2 theory, extending its applicability to-
wards large quasi-degenerate multireference systems. This is here-
after referred to as the PNO-QD-NEVPT2 theory. The LVMOs are
used to approximate the pair function, pair energy, and pair density.
To illustrate, in the subspace S(0)i j,ab, these terms are expressed as fol-
lows:

|Ψi j,α ⟩= ∑
ai jbi j

t i j
ai jbi j ,α |Φai jbi j

i j,α ⟩ , (43)

ei j,α = ⟨Ψ(0)
α |H|Ψi j,α ⟩ , (44)

and

(Di j,α )ai jbi j = ⟨Ψi j,α |E
ai j
bi j
|Ψi j,α ⟩ , (45)

respectively. As also discussed in Ref. 55, the PNOs {|âi j⟩} were
obtained by diagonalizing the pair density matrix. Thus, they are
represented by a linear combination of the LVMOs associated with
the pair domain, as follows:

|âi j,α ⟩= ∑
ai j

di j
ai j âi j,α

|ai j⟩ , (46)

where |ai j⟩ are canonicalized within the given LVMO subspace. The
PNO coefficients di j

ai j âi j,α
and the occupied number η i j

âi j,α
are deter-

mined by solving the eigenvalue equation:

Di j,α di j
âi j,α

= η i j
âi j,α

di j
âi j,α

. (47)

In the PNO-QD-NEVPT2 computation, we discarded the PNOs with
their occupied numbers η i j

âi j,α
less than the threshold TCutPNO. This

truncation underlies efficient computation of local correlation. On
an important note, the LVMOs and domains were state-averaged and
-universal, whereas the PNOs were state-specific or uniquely defined
as a function of the reference state α .

In our implementation of the PNO-NEVPT2 theory, the doubly

external subspaces (S(0)i j,ab, S(−1)
i,ab , S(−2)

ab ) and the semi-internal sub-

space (S(−1)
i j,a ) were expanded using the PNO basis. The first-order

wave function PNO-NEVPT1 can then be written as:

|Ψ(1)
α ⟩= ∑

i≤ j
∑

âi j,α b̂i j,α

t i j
âi j,α b̂i j,α ,α

|Φâi j,α b̂i j,α
i j,α ⟩

+ ∑
ρ(−1)i

∑
âiρ(−1) ,α≤b̂iρ(−1) ,α

t
ρ(−1)i
âiρ(−1),α b̂iρ(−1) ,α ,α

|Φ̃
âiρ(−1),α b̂iρ(−1) ,α

ρ(−1)i,α ⟩

+ ∑
ρ(−2)

∑
âρ(−2) ,α b̂ρ(−2) ,α

t
ρ(−2)

âρ(−2) ,α b̂ρ(−2) ,α ,α
|Φ̃

âρ(−2) ,α b̂ρ(−2) ,α
ρ(−2),α ⟩

+ ∑
iρ(0′)

∑
aiρ(0′)

t
iρ(0′)
aiρ(0′)

,α |Φ̃
aiρ(0′)
iρ(0′),α

⟩+∑
i≤ j

∑
ρ(+1)âi j,α

t i j
ρ(+1)âi j,α ,α |Φ̃ρ(+1)âi j,α

i j,α ⟩

+ ∑
ρ(−1′)

∑
aρ(−1′)

t
ρ(−1′)
aρ(−1′)

,α |Φ̃
aρ(−1′)
ρ(−1′),α ⟩+∑

i j
∑

ρ(+2)

t i j
ρ(+2),α |Φ̃ρ(+2)

i j,α ⟩

+ ∑
i

∑
ρ(+1′)

t
ρ(+1′)
i,α |Φ̃ρ(+1′)

i,α ⟩ , (48)

where âi j , âiρ(−1) , and âρ(−2) are the PNOs for the subspaces S(0)i j,ab,

S(−1)
i,ab , and S(−2)

ab respectively. In this study, we newly introduced the

domain truncation in the subspaces S(0
′)

i,a and S(−1′)
a compared with

the previous work.55

The PNO-NEVPT2 residuum for the α-th state is expressed as

rI,α = ⟨Φ̃I,α |H|Ψ(0)
α ⟩+ ⟨Φ̃I,α |HDyall

α −E(0)
α |Ψ(1)

α ⟩ , (49)

where I denotes the index of the eight nrICBs types. The converged
Ψ(1)

α satisfied the following, also called the amplitude equation,

rI,α = 0 ∀ I . (50)

which served as a linear equation to determine Ψ(1)
α . The off-

diagonal elements of the diagonal DOMO and LVMO blocks of the
Fock matrix in arising in Eq. (50) can be non-zero. This led us to
iteratively solve the amplitude equation. We used the preconditioned
conjugated gradient (PCG) algorithm or direct inversion in the itera-
tive subspace (DIIS) as iterative solvers.

In general, obtaining a converged solution using iterative methods
is challenging. We experienced poor convergence in determining the
solution to Eq. (50) for high-lying excited states, for instance, when
calculating more than 20 states. This convergence issue arises even
in the absence of local truncation. Thus, we focused on improving
the condition of the linear equation. To mitigate the convergence
issues, we used the canonicalized VMOs in the subspaces S(0

′)
i,a and

S(−1′)
a and the DOMOs in the subspace S(+1′)

i . The use of canonical

orbitals altered the amplitude formulae in the subspaces S(−1′)
a and

S(+1′)
i to the following closed forms:

t
ρ(−1′)
aρ(−1′)

,α =−
⟨Φ̃

aρ(−1′)
ρ(−1′),α |H|Ψ(0)

α ⟩

⟨Φ̃
aρ(−1′)
ρ(−1′),α |H

Dyall
α −E(0)

α |Φ̃
aρ(−1′)
ρ(−1′),α ⟩

(51)
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and

t
ρ(+1′)
i,α =−

⟨Φ̃ρ(+1′)
i,α |H|Ψ(0)

α ⟩

⟨Φ̃ρ(+1′)
i,α |HDyall

α −E(0)
α |Φ̃ρ(+1′)

i,α ⟩
, (52)

respectively, which can offer the amplitudes t
ρ(−1′)
aρ(−1′)

,α and t
ρ(+1′)
i,α in a

non-iterative manner. The canonicalization of the LVMOs is carried
out within the domain space in all the ICB subspaces. As for the
DOMOs, the scaling of canonicalization was in the subspace S(+1′)

i
is O(N3), given that the number of active MOs is constant with re-
spect to the system size. Due to the fact that the LVMOs in the S(0

′)
i,a

subspace was canonicalized in the {iρ(0′)} domain, the canonical-
ization of DOMOs led to a complete breakdown of local nature of
both VMOs and DOMOs. This resulted in a non-iterative O(N4)
operation. Therefore, it was decided to canonicalize only the DO-
MOs in the S(+1′)

i subspace, while those in S(0
′)

i,a counterpart were
left untouched, i.e., localized. Again, the amplitudes in the subspace
S(−1′)

a and S(+1′)
i were non-iteratively obtained using Eqs. (51) and

(52). However, in contrast to the canonical NEVPT2, the integrals in
Eqs. (51) and (52) were calculated using the approach described in
Sec. II B. Further, for Eq. (51), the virtual MOs were truncated within
the domain. This canonicalization approach was found to be very ef-
fective in improving the convergence, thus facilitating the 30-state
PNO-QD-NEVPT2 computations.

The major task in implementing the PNO-QD-NEVPT2 theory on
top of the PNO-based SS-NEVPT2 program is the development of
an additional module to evaluate the off-diagonal elements of H2nd

eff

(Eq. (32)). For example, in the subspace S(−2)
ab , the off-diagonal ele-

ments are written as

⟨Ψ(0)
β |H|Ψ(1)

α ⟩
(−2)

= ∑
ρ(−2)

∑
âρ(−2) ,α

∑
b̂ρ(−2) ,α

∑
τ(−2)

∑
âτ(−2) ,β

∑
b̂τ(−2) ,β

⟨Ψ(0)
β |H|Φ̃

âτ(−2) ,β
b̂τ(−2) ,β

τ(−2),β
⟩

×S̃
τ(−2),β
ρ(−2),α S

âτ(−2) ,β
τ(−2),β

âρ(−2) ,α ρ(−2),α S
b̂τ(−2) ,β

τ(−2),β

b̂ρ(−2) ,α ρ(−2),α
t
ρ(−2)

âρ(−2) ,α b̂ρ(−2) ,α ,α
, (53)

where S
âτ(−2) ,β

τ(−2),β
âρ(−2) ,α ρ(−2),α is the element of the PNO overlap matrix be-

tween the α and β reference states and is obtained as a product of
eigenvectors of pair density

S
âτ(−2) ,β

τ(−2),β
âρ(−2) ,α ρ(−2),α = ∑

a
d

τ(−2)
aâτ(−2) ,β

d
ρ(−2)
aâρ(−2) ,α

. (54)

Certain parts of the off-diagonal elements associated with the sub-
space S(0)i j,ab vanished based on the state-based RI approximation
(Eq. (30)) because the corresponding ICB overlap was zero.

As mentioned previously, our implementation used state-averaged
LMOs that served as common bases across all reference states This
condition enabled us to readily reuse the data arrays of the RHS terms
and amplitudes to compute the off-diagonal (or state-coupling) el-
ements (Eq. (30)). In our implementation, these data arrays were
stored in memory and reused where needed to avoid redoing the com-
putation. Importantly, the compression with the PNO basis represen-
tation is beneficial for significantly reducing the size of the data ar-
rays, compared with the canonical QD-NEVPT2 case. As expressed
in Eq. (30), H2nd

eff was calculated using the ICB and PNO over-
lap matrices between different reference states. The preparation of

these matrices is an additional major step compared to the PNO-SS-
NEVPT2 theory, but it is computationally rather facile. Therefore,
the total computational time for the PNO-QD-NEVPT2 calculation
did not differ significantly from that for PNO-SS-NEVPT2 calcula-
tion.

D. Imaginary shift for NEVPT2 theory

As mentioned earlier, the NEVPT2 theory is considered less sus-
ceptible to ISP or is often regarded as ISP-free. This consensus is
based on the fact that NEVPT2 uses Dyalls Hamiltonian involving
complete two-electron interactions as the zeroth order instead of the
one-electron Fock matrix employed in the CASPT2 theory. However,
the benchmark calculations presented in Sec. III C revealed that the
critical ISP were obtained in the NEVPT2 calculations for high-lying
excited states, even without using the PNO basis. The denominator
analysis showed that severe instability was caused by perturbations
in the subspace S(−1′)

a .
As introduced in a previous study addressing the ISP in the

CASPT2 method,131 we employed the imaginary level shift (LS) for
the NEVPT2 theory. In contrast to the CASPT2 method, the shift
was introduced only to the subspace S(−1′)

a . This partial LS treat-
ment was allowed because the different types of the ICBs were not
coupled via the Dyall Hamiltonian HDyall

α . The imaginary LS of iε
was added to the Dyall Hamiltonian as follows:

HDyall
α → HDyall

α + iεQ . (55)

The use of the shifted zeroth-order Hamiltonian yields the amplitude
formula in the subspace S(−1′)

a to be rewritten as

t
ρ(−1′)
a,α =−

⟨Φ̃a
ρ(−1′),α |H|Ψ(0)

α ⟩

⟨Φ̃a
ρ(−1′),α |H

Dyall
α −E(0)

α + ε2

HDyall
α −E(0)

α
|Φ̃a

ρ(−1′),α ⟩
. (56)

The second-order energy was computed by inserting the regulated
amplitude into the Hylleraas functional (Eq. (27)).

E(2)
α += ∑

ρ(−1′)

∑
a

[
2t

ρ(−1′)
a,α ⟨Φ̃a

ρ(−1′),α |H|Ψ(0)
α ⟩

+ ∑
ρ ′
(−1′)

∑
a′

t
ρ(−1′)
a,α ⟨Φ̃a

ρ(−1′),α |H
Dyall
α −E(0)

α |Φ̃a′
ρ ′
(−1′),α

⟩ t
ρ ′
(−1′)

a′,α

]
(57)

None of the subspaces other than S(−1′)
a are affected by the shift;

therefore, the effect of the shift was expected to be smaller.

III. Results and discussion

A. Computational details

We implemented a QD extension of the highly-scalable PNO-
NEVPT2 theory coupled with the LVMO scheme in our in-house
quantum chemistry program suite, ORZ. It was built upon the state-
specific PNO-NEVPT2 computer program developed in the previous
study.55 Note that our PNO-NEVPT2 implementation used the FIC
ansatz based on Eq. (48), although we do not explicitly mention this
explicitly thereafter. The workflow of the PNO-QD-NEVPT2 imple-
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mentation is sketched in Fig. 1. The truncation thresholds used to
construct the PNOs and the related domains for the PNO-NEVPT2
and PNO-QD-NEVPT2 calculations were obtained from Ref. 55;
however, the threshold TCutDOIActive was lowered to 5.0×10−3 from
its previous value (7.0 × 10−3). The first-order power-of-second-
moment (PSM) method132 was employed throughout this study as a
localization method. The frozen core approximation was used in all
NEVPT2-based calculations. Unless otherwise stated, we used an
imaginary level shift (LS) of 0.1 Eh for the NEVPT2 calculations, as
proposed in Sec. II D. In Secs. III E and III F, the PNO-QD-NEVPT2
calculation was performed on a single computer node with 52 cen-
tral processing unit (CPU) cores of Intel® Xeon® Gold 5320 pro-
cessors and 512 GB of core memory. The timings of a single PNO-
QD-NEVPT2 calculation were measured in hybrid parallel execu-
tion using eight Message Passing Interface (MPI) processes and four
OpenMP threads per process. The ORCA quantum chemistry pack-
age version 5.0.3133 was used for the state-averaged CASSCF (SA-
CASSCF), SC-NEVPT2, and QD-SC-NEVPT2 calculations. The
CASSCF orbitals used in our PNO-(QD-)NEVPT2 calculations were
obtained using ORCA.

Start

Calculate the RDM and TRDM for all states

Calculate the Fock matrix for all states

Localize orbitals

Prescreening and construction of the orbital domain

Three-center and two-center integral generation and 
integral transformation

Crude and Semi-local screening (Ref. 53)

Construction of the LVMO-based PNO

Solve the amplitude equation (Eq. (50))

Calculate the PNO-NEVPT2 energy (Eq. (27), Eq. (57))

Stored RHS 
and amplitude

Calculate the ICB overlap between α and β states (Eq. (31))

Calculate the PNO overlap between α and β states (Eq. (54))

Calculate the off-diagonal elements of the effective Hamiltonian 
(Eq. (20), Eq. (53))

Diagonalize the effective Hamiltonian (Eq. (32))

End

loop reference state β (< α)
loop reference state α

store

restore

loop reference state α

FIG. 1. Flowchart for the PNO-QD-NEVPT2 implementation.

B. Performance of LVMO-based local RI integral transfor-
mation for linear systems

We applied the LVMO-based local RI algorithm to linear pheny-
lalkane systems to reveal the scaling behavior. The geometries were
obtained from Refs. 54 and 55. A computer node equipped with
an AMD EPYC™ 7453 processor and 448 GB of physical mem-
ory was used without competing jobs. For all computations, 12 MPI
processes and two OpenMP threads were employed. The def2-SVP
orbital134 and the def2/JK auxiliary basis sets135 were used.

In our local RI algorithm, when generating maps for screening
GTOs and matrix multiplication operations, active MOs were in-
cluded in both occupied and virtual MO spaces. As addressed in
Sec. II B, this choice greatly simplified the RI integral generation
step, because a single type of 3-index integral was sufficient to com-
pute the PNO-NEVPT2 energy and amplitude. To assess the effect
of such an overlapping orbital space, the timings for the local integral
generations for the CASSCF(6e,6o) and HF references are shown in
Fig. 2.

In the CAS(6e,6o) case, the computational time for generating
(I|ĩã) integral was reduced from O(N4) to O(N2) as a function of
system size. This is consistent with the computational scaling of the
integral transformation in the open-shell DLPNO-CCSD scheme,96

which uses the overlapping orbital subspaces. In contrast, in the HF
reference case, where there are no active MOs, the scaling is further
lower than that in the CAS(6e,6o) case.
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FIG. 2. Timings of local RI integral generations for (a) CASSCF(6e,6o)
and (b) HF or CAS(0e,0o) references. The def2-SVP orbital and def2/JK
auxiliary basis sets were used. The 1s orbitals of carbon atoms were frozen.

C. Accuracy of the PNO-QD-NEVPT2 method for small
size organic molecules

In our previous study, we revealed that our ground-state LVMO-
PNO-NEVPT2 implementation could recover more than 99.85 % of
the canonical NEVPT2 correlation energy and was applicable to sys-
tems comprising 200 or more atoms.55 Our main interest was thus
to confirm that the QD extension in conjunction with the PNO treat-

https://doi.org/10.26434/chemrxiv-2024-7zqx1 ORCID: https://orcid.org/0009-0005-9968-2818 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-7zqx1
https://orcid.org/0009-0005-9968-2818
https://creativecommons.org/licenses/by-nc-nd/4.0/


PNO-QD-NEVPT2 Theory with LVMO Bases 9

ment can maintain reliability and applicability to a degree similar to
the ground-state case. Herein, we focused on verifying the accuracy
of the predicted excitation energies. For this purpose, benchmark
calculations for the LVMO-based PNO-QD-NEVPT2 method were
performed on 21 small organic molecules, which were also tested
in Ref. 55. The structures in Ref. 51 were used. The vertical ex-
citation energies of the low-lying singlet excited states were calcu-
lated using SS- and QD-NEVPT2 treatments. The following refer-
ence states were examined: 1, 2, 5, 10, 15, 20, 25, and 30. The
SA-CASSCF references were prepared with the active space consist-
ing of all the valence π and π∗ MOs for all the benchmark systems
except biphenyl. We used a reduced active space CAS(10e, 10o) for
biphenyl to mitigate the high computational expense that arises from
the computation of RDMs and transition RDMs (TRDMs) for the
full-π CAS(12e,12o) treatment. In the QD-NEVPT2 and PNO-QD-
NEVPT2 calculations, the 1s orbitals of all atoms except hydrogen
were treated as frozen core. The aug-cc-pVDZ orbital basis136 and
corresponding JK-fit auxiliary basis137 were used.

Fig. 3 displays the errors in the total energies of all the states
predicted using the PNO-QD-NEVPT2 method as a function of the
number of reference states considered in the MS treatment. The
errors were measured relative to the predictions obtained using the
canonical QD-NEVPT2 method. The values were found to be less
than 0.04 eV in most cases. There was a slight tendency for the er-
rors to increase with the number of states. Outliers were observed for
cases using a small number of reference states; however, the maxi-
mum error was only 0.082 eV for the five-state tryptophan calcula-
tion.

We focused on the excitation energies, which were evaluated as
relative energies compared with the ground-state total energies. As-
sessing their errors can provide insight into practical performance.
Fig. 4 shows that the errors in the predicted excitation energies were
lower than 0.02eV in almost all cases. The maximum error was
0.05 eV in the 30-state PNO-QD-NEVPT2 calculation for pyridox-
ine. The use of the PNO treatment had a lesser impact on the errors
of the excitation energies compared with those of the total energies.
This suggests that the preferable error cancellation occurred in the
energy differences. Overall, the PNO approximation combined with
the QD-NEVPT2 method resulted in only minor errors.

We focused on the impact of imaginary LS on the NEVPT2 pre-
dictions. Fig. 5 shows a heatmap of the minimum absolute values of
the original, non-shifted denominator in the energy formula for the
subspace S(−1′)

a in the 30-state NEVPT2 calculations. The evaluated
denominator is expressed as

⟨Φ̃
aρ(−1′)
ρ(−1′),α |H

Dyall
α −E(0)

α |Φ̃
aρ(−1′)
ρ(−1′),α ⟩ . (58)

This heatmap indicates that without the imaginary LS, the absolute
value of several denominators fell below 0.001 Eh. These near-zero
values (much smaller than the tested LS value) caused instability as-
sociated with the ISP. Notably, the higher-lying excited states were
more likely to encounter small denominators and therefore suffer
from ISP. Fig. S4 (Fig. S5) shows a heat map of the absolute differ-
ences between the SS-NEVPT2 energies with and without the imag-
inary LS for canonical basis (PNO basis); these energies serve as
diagonal elements (eq. (57)). They clearly indicate that the imagi-
nary LS had a substantial impact on the PT2 energies of the states
lying above the 5-th states, which thus seem to exhibit the ISP. This
observation is unprecedented, as the NEVPT2 theory is considered
ISP-free and thus requires no LS treatment. Nonetheless, we also
confirmed that the denominators were rarely small for the ground
state and up to the five lowest-lying excited states, reflecting the re-

sistance of the NEVPT2 theory to ISP.
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FIG. 3. Errors in the PNO-QD-NEVPT2 total energies (eV) for 21 organic
molecules compared with the canonical version.
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FIG. 4. Errors in the PNO-QD-NEVPT2 excitation energies (eV) for 21
organic molecules compared with the canonical version.

D. Accuracy of the PNO-QD-NEVPT2 method for the sys-
tem with conical intersection

The QD or MS approach is crucial for studying near-degenerate
states including conical intersections, avoided crossings, and d-d
transitions. In such applications, the off-diagonal PT2 terms, that
is, Eq. (20), plays a significant role and causes strong mixing be-
tween the SS-NEVPT2 states. We assessed the accuracy of the PNO-
QD-NEVPT2 method for systems involving quasidegenerate states
by calculating the S0 and S1 energies of the organic fluorescent 1,1-
dimethyldibenzo[b,f] silepin, or silepin. Fig. 6 shows the chemical
structure of silepin. The previous study predicted that this molecule
undergoing photoisomerization can encounter CI state-crossing on
the nonradiative decay pathway.138 We used three types of opti-
mized structures at the TDDFT/TDA level of theory, as shown in
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formula in subspace S(−1′)

a of the NEVPT2 calculation without imaginary
shift for the 30 singlet states.

Ref. 138. These structures were obtained in the Frank-Condon (FC),
fluorescent (Flu), and conical intersection (Con) states. The S0 and
S1 energy levels approached closely in the Con geometry, involv-
ing the twisting of the central C-C bond. The (PNO-)QD-NEVPT2
calculations were performed on top of the SA-CASSCF reference
states, which were based on the previous calculations.138 These SA-
CASSCF wavefunctions were calculated considering ten states using
(10e,10o) as the active space, denoted as 10SA-CASSCF(10e,10o).
We employed the aug-cc-pVDZ (for C and H) and aug-cc-pV(D+d)Z
for Si and used the corresponding JK-fit auxiliary basis.139–141

The accuracy was examined by comparing the energies obtained
from the canonical QD-NEVPT2 and PNO-QD-NEVPT2 calcula-
tions for the S0 and S1 states with those of the FC, Flu, and Con
structures (Fig. 7). The energies shown in Fig. 7 are given relative to
those of the S0 state in the FC geometry. These relative energies were
quantitatively consistency for the canonical QDNEVPT2 and PNO-
QD-NEVPT2 predictions. Table I lists the vertical excitation ener-
gies of S1 along with the errors between the canonical QD-NEVPT2
and PNO-QD-NEVPT2 results. Overall, the errors were sufficiently
small, and the largest error was found to be as small as 0.016 eV
for the structure Flu. The negligible error in the PNO-QD-NEVPT2
prediction for the Con structure (0.001 eV) indicates that our PNO
treatment facilitated the evaluation of the off-diagonal terms of the
QD-NEVPT2 theory with considerably small errors.

Si

FIG. 6. Chemical structure of 1,1-dimethyldibenzo[b,f] silepin

FIG. 7. Relative energies (eV) for the ground (S0) and first excited (S1)
states computed with QD-NEVPT2 and PNO-QD-NEVPT2 methods for
1,1-dimethyldibenzo[b,f] silepin.

TABLE I. Vertical excitation energies and errors (eV) between QD-
NEVPT2 and PNO-QD-NEVPT2 methods for 1,1-dimethyldibenzo[b,f]
silepin.

FC Flu Con
QD-NEVPT2 4.118 3.067 0.339
PNO-QD-NEVPT2 4.123 3.083 0.340
Error 0.005 0.016 0.001

E. Performance of the PNO-QD-NEVPT2 method for large
photochemical systems

Next, we discuss applicability checks toward large sys-
tems. As a benchmark, the PNO-QD-NEVPT2 method was ap-
plied to a green fluorescent protein (GFP) photoreceptor unit
model. This GFP model comprised a 4-hydroxybenzylidene1,2-
dimethylimidazolinone (HBDI) chromophore and surrounding
amino acids. Using UCSF Chimera142, hydrogen atoms were added
to the structure named QM-5, as described in Ref. 45. The result-
ing molecular system is displayed in Fig. 8, comprising 291 atoms,
and was treated quantum mechanically (QM) as a whole. PNO-QD-
NEVPT2 calculations were performed to obtain the energy levels of
the two lowest-lying singlet states, S0 and S1, for structures with
three different percentages of GFP core isomerization: 0, 50, and
100 %. We used the def2-SVP basis set (2652 AO basis functions)
and the corresponding JK-fit auxiliary basis set. CAS(4e,3o) was
employed as the active space, as was similarly used in Ref. 45. For
comparison, we also used the QD-SC-NEVPT2 method, which is a
strongly contracted (SC) variant. This SC approach is based on a
smaller set of perturber functions, facilitating a reduction in compu-
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tational cost compared to the FIC-based NEVPT2 approach utilized
in our study. However, it is important to note that the difference in
costs between FIC and SC may not be significant in this test case
because we used a small active space.

The plot in Fig. 9 shows the relative energies of the S0 and S1
states computed using the QD-SC-NEVPT2 and PNO-QD-NEVPT2
methods, along with the SA-CASSCF energies. The PNO-QD-
NEVPT2 method produced results that were almost identical to those
obtained using the QD-SC-NEVPT2 method. The vertical excitation
energies are presented in Table II, which reveal that the errors be-
tween the two methods were less than 0.05 eV. In addition, these
PNO-QD-NEVPT2 energies were in good agreement with the results
obtained by the QM/MM calculation using the THC-XMS-CASPT2
theory.45 This QM/MM calculation in Ref. 45 treated the structure
QM-5 at the QM level based on THC-XMS-CASPT2/6-31G* and
further considered the rest of the protein environment and water
molecules at the MM level, which were discarded in our PNO-QD-
NEVPT2 and QD-SC-NEVPT2 calculations. This result indicated
that the QM-only model used in this study (Fig. 8) was sufficienlty
large to capture the quantitatively relevant protein effect on the exci-
tation energies of the HBDI chromophore.

Table III compiles the detailed computational timings of the PNO-
QD-NEVPT2 calculations for the S0 and S1 states of the QM-5
model, along with the calculated values of the dynamic correlation
energy, as a function of the percentage of isomerization. As evident,
the percentage correlation energy of the PNO-NEVPT2 method rela-
tive to the canonical NEVPT2 method was greater than 99.91 % in all
cases. These results indicate that the diagonal elements in the effec-
tive QD-NEVPT2 Hamiltonian were accurately evaluated. The com-
putational timings for the PNO-QD-NEVPT2 calculations were com-
parable across all isomerization percentages. In all the structures, the
computation of the off-diagonal elements required considerably less
time than the diagonal PNO-SS-NEVPT2 computation. This was
owing to the fact that in our implementation, the RHS and ampli-
tudes resulting from the PNO-SS-NEVPT2 calculation were stored
and reused for the computation of the off-diagonal terms (Eq. (53)).
Table IV shows that using the PNO method, the amplitude was com-
pressed to approximately 0.004% of its canonical (or uncompressed)
form, and thus can be readily stored in the high-speed memory stor-
age.

FIG. 8. HBDI chromophore and around neighboring residues (291 atoms).
The structure is from Ref.45 and hydrogen atoms were added.
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FIG. 9. Relative energies (eV) for the ground (S0) and first excited
(S1) states computed with SA-CASSCF, QD-SC-NEVPT2, and PNO-QD-
NEVPT2 methods for the system in Fig. 8.

TABLE II. Vertical excitation energies (eV) with CASSCF, QD-SC-
NEVPT2, and PNO-QD-NEVPT2 methods. The table also shows the
QM/MM (with small QM) calculation results using CASSCF and THC-
XMS-CASPT2 computed by Martínez and co-workers.45

0 50 100

CASSCF /def2-SVP 4.089 2.779 1.517
CASSCF /6-31G* (QM/MM) 45 4.107 2.801 1.163

QD-SC-NEVPT2 /def2-SVP 2.807 2.143 1.193
PNO-QD-NEVPT2 /def2-SVP 2.757 2.122 1.188
THC-XMS-CASPT2 /6-31G* (QM/MM) 45 2.569 1.903 1.000
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F. Performance of the PNO-QD-NEVPT2 method for large
transition metal complexes

In Ref. 50, Guo and co-workers50 demonstrated the efficiency of
DLPNO-NEVPT2 by applying it to large transition metal (TM) com-
plexes with moderate active spaces using the def2-TZVP basis set.
We tested our PNO-QD-NEVTP2 method on two TM complexes
studied by Guo et al. involving a few hundred atoms: the iron com-
plex FeC72N2H100

143 and the nickel complex NiC90N20H120.144

The structures taken from the study by Guo and co-workers50 are
shown in Fig. 10. The def2-TZVP and the corresponding JK-fit aux-
iliary basis sets were employed. The number of AO basis functions
was 2939 (iron complex) and 4175 (nickel complex). The active
spaces used were CAS(6e,5o) for the iron complex and CAS(8e, 5o)
for the nickel complex. We calculated the 10 lowest-lying states
for the singlet and triplet states of iron and nickel complexes, re-
spectively, using the corresponding 10SA-CASSCF wave functions
as references. For comparison, several variants of the NEVPT2
theory were tested at the SC-NEVPT2, SS-NEVPT2, and QD-SC-
NEVPT2 levels with canonical orbitals as well as at the PNO-based
SS-NEVPT2 level of theory.

The excitation energies of the two complexes are plotted in
Fig. 11. The plots show that the canonical NEVPT2 and PNO-
NEVPT2 methods have provided almost similar predictions. The
maximum errors in the excitation energies of the iron and nickel
complexes were 0.0071 and 0.0063 eV, respectively. Table S2 in-
dicates that the PNO-NEVPT2 method recovered 99.85% or more of
the canonical NEVPT2 dynamic correlation energy of the iron com-
plex. For the Ni complex, 99.80% or more of the canonical NEVPT2
dynamic correlation energies were captured (Table S4). The energy
spectra provided by the SCNEVPT2 and NEVPT2 methods appeared
to be similar, presumably because of the use of small active spaces.
The PNO-QD-NEVPT2 method yielded results that were consis-
tent with the other QD results obtained using the QD-SC-NEVPT2
method. These findings suggest that, for these TM complexes, the
PNO-QD-NEVPT2 method produced results with an accuracy com-
parable to that of the canonical QD-NEVPT2 method. A comparison
of the results for PNO-NEVPT2 and PNO-QD-NEVPT2 indicated
that the multi-state treatment had a noticeable effect on the spectrum
of the iron complex, whereas this effect was minor for the nickel
complex.

Tables S2 and S4 show that the computational times of the PNO-
based SS-NEVPT2 calculations for single states appeared to be state-
independent. Notably, only 2.3 and 1.6 % of the total time was used
to compute all the off-diagonal elements of the effective Hamiltonian
matrix for the iron and nickel complexes, respectively. This small
amount of computational time for off-diagonal elements is reflected
in our approach in the implementation to avoid the recalculations of
the intermediate terms, as discussed in Secs. II A and II C.

IV. Conclusion

As a computationally efficient multi-state MRPT approach, we
developed the QD extension of the PNO-NEVPT2 scheme, which
utilized the LVMO scheme for the underlying local orbital represen-
tation. Using the state-based RI treatment, we derived a decomposed
formula for the off-diagonal elements of the effective Hamiltonian
matrix using the PNO representation. This formula facilitated the ef-
ficient evaluation of the off-diagonal elements via the restored ampli-
tudes and intermediates obtained in the PNO-SS-NEVPT2 calcula-

tion step. With the PNO basis representation, the amplitudes and in-
termediates were drastically compressed; therefore, the storage size
of the required data did not limit the application.

Illustrative tests revealed that NEVPT2 calculations for obtaining
highly excited states had critical instability issues associated with
ISP, regardless of the use of the PNO method. This instability was
unexpected, as NEVPT2 was considered to be ISP-free. The analy-
sis of the SS-NEVPT2 energy contribution revealed that certain de-
nominators in the higher-lying excited states could be very small in
absolute value, whereas this was not observed in the ground state or
a certain number of lowest-lying excited states. To mitigate the ISP,
we introduced an imaginary LS into the NEVPT2 and PNO-NEVPT2
methods.

The LVMO-based implementation of the PNO-QD-NEVPT2
method has been proven to reproduce 99.8% or more of the canoni-
cal QD-NEVPT2 correlation energies for all computed excited states,
including high-lying states. The maximum error in excitation en-
ergies was only 0.05 eV for the PNO-QD-NEVPT2 calculations
across 30 states of 21 organic molecules. This level of accuracy
was maintained even for the conical intersection structures of 1,1-
dimethyldibenzo[b,f] silepin, which served as quasi-degenerate test
cases. We performed the PNO-QD-NEVPT2 calculations on the
HBDI chromophore and the surrounding residues, comprising 291
atoms, in GFP as an example of a large-scale photochemical sys-
tem. The results obtained using the PNO-QD-NEVPT2 method with
the large QM treatment were comparable with those obtained using
the QM/MM calculation with the THC-XMS-CASPT2 method.45

To demonstrate its scalability, we performed the 10-state PNO-QD-
NEVPT2 calculation on the iron (175 atoms) and nickel (231 atoms)
complexes. The computational timing for the off-diagonal elements
of the PNO-QD-NEVPT2 calculation were negligibly small com-
pared with that of the PNO-SS-NEVPT2 calculation for the diagonal
elements.

The search for chemically significant points on energetically com-
peting potential surfaces necessitates the development of appropriate
analytical nuclear gradients. The analytical nuclear gradient of the
QD-NEVPT2 theory has been intensively studied in recent years.
The introduction of a PNO extension to the QD-NEVPT2 analyti-
cal gradient is desirable.

Supplementary Material

Supplementary Material presents data regarding the errors in the
total energies of the PNO-QD-NEVPT2 method relative to the QD-
NEVPT2 method for each of the 21 molecules. Errors in the excita-
tion energies are also compiled. The absolute values of the dynamic
correlation energy errors between the canonical NEVPT2 method
with the imaginary LS and canonical NEVPT2 method without imag-
inary LS are shown. Numerical data obtained using the PNO method
are also presented. Active MOs for the GFP photoreceptor unit and
two TM complexes are shown. Information on the TM complex cal-
culations, including computational timings and dynamic correlation
energies, is provided.
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FIG. 10. Molecular structures used for the calculations
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