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Abstract 

Central nervous system (CNS) drugs have had a significant impact on human health, e.g., treating 

a wide range of neurodegenerative and psychiatric disorders. In recent years, deep learning-based 

generative models, particularly those for designing drugs from scratch, have shown great potential 

for accelerating drug discovery, reducing costs and improving efficacy. However, specific 

applications of these techniques in CNS drug discovery have not been widely reported. In this study, 

we developed the CNSMolGen model, which uses a bidirectional recurrent neural networks (Bi-

RNNs) system for de novo molecular design of CNS drugs by learning from compounds with CNS 

drug properties. Result shown that the pre-trained model was able to generate more than 90% of 

completely new molecular structures, and these new molecules possessed the properties of CNS 

drug molecules and synthesizable. In addition, transfer learning was performed on small datasets 

with specific biological activities to evaluate the potential application of the model for CNS drug 

optimization. Here, we used drugs against the classical CNS disease target serotonin transporter 

(SERT) as a fine-tuned dataset and generated a Focused database against the target protein. The 

potential biological activities of the generated molecules were verified using the physics-based 

induced fit docking study. The success of this model demonstrates its potential in CNS drug design 

and optimization, which provides a new impetus for future CNS drug development. 

Keywords: Bidirectional recurrent neural network; Transfer learning; De novo drug design; Central 

nervous system drug; Selective serotonin reuptake inhibitor 

 

1. Introduction 

Along with the social construction of population aging, the incidence of CNS disorders, 

including Alzheimer disease (AD), Parkinson disease (PD), and depression, is continuously 

increasing[1]. However, the number of approved drugs targeting these diseases remains limited, 

partially attributed to the blood-brain barrier (BBB) that prevents the access of drug molecules into 

the CNS[2]. Consequently, discovery and development of novel and effective drugs for the 

treatment of human CNS disorders remains a crucial responsibility in the field of pharmaceutical 

sciences[3]. 
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To address this problem, several innovative approaches have been developed and used in CNS 

drug discovery, including molecular drug targets identification and drug design aided by either 

physics-based modeling or deep-learning based artificial intelligence (AI)[4, 5]. For example, 

monoamine transporters (MATs), including dopamine transporter (DAT), norepinephrine 

transporter (NET), and serotonin transporter (SERT), play a crucial role in regulating 

neurotransmitters through reuptake and have been identified as important molecular targets of CNS 

disorders’ medications (e.g. anti-neurodegenerative drugs and antidepressants)[6]. Nonetheless, 

currently approved MATs-targeted drugs still exhibit certain side effects, including addiction and 

drug resistance[5]. Therefore, rational design of new drugs acting on MATs are urgently needed[7]. 

For the traditional computer-aided drug design (CADD) approach, it is often necessary to conduct 

virtual screening on molecular libraries with large size to identify molecules with specific 

characteristics[8-10]. Despite significant progress has achieved in the computational power for 

processing these databases, the enormous size of the chemical space 1023-1060 drug-like 

molecules[11], continues to pose challenges in efficiently identifying molecules that specifically 

bind to molecular drug target[12]. While the recent advent of deep learning-based molecular 

generation techniques may offer viable solutions to this predicament[13]. 

In 2016, Gómez-Bombarelli et al. first introduced a method which converts discrete 

representation of molecules into a multi-dimensional continuous representation, representing an 

early application of the variational autoencoder (VAE) model in the field of molecular 

generation[14]. Subsequently, an array of different deep learning models has been developed in 

this field[15-17]. Among them, recurrent neural networks (RNNs) (Fig. 1) have shown remarkable 

performance. This is because RNN can obtain high precision and good performance when 

processing time series predictions based on a large number of data sets[18]. In particular, Bjerrum 

and Threlfall introduced RNN to generate chemically plausible and novel molecules by 

incorporating the Long Short-Term Memory (LSTM) network to overcome the challenges 

associated with vanishing gradient or explosion problems[19]. In addition, Wu et al. proposed 

bidirectional long short-term memory (BiLSTM) attention network (BAN) to enhance the 

extraction of crucial features from the simplified molecular input line entry specification (SMILES) 

strings, leading to improved performance in molecular property prediction[20]. However, no deep 

learning-based model specifically for generating molecules with CNS drug properties has been 

reported yet. 

 

Fig. 1. Schematic diagram of a typical recurrent neural network (RNN) structure and the loop 

unrolled. xt denotes the input at moment t, yt is the output corresponding to xt, and hidden denotes 

the hidden layer, which is related to both the input xt and the previous state (at t-1). 

In this work, we present CNSMolGen, a generative model specifically constructed for de novo 

design of CNS drugs. The model employs a bidirectional RNNs (Bi-RNNs) based on SMILES 

string representation[21-23] to design target molecules from scratch. First, an RNN model based 

on LSTM units to generate small molecule datasets with specific properties was pre-trained using 

the large dataset of ChemBridge-MPO which contains 504,853 compounds with good CNS drug 
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properties and synthetic accessibilities. Then, using the representative CNS diseases molecular 

drug target SERT as an example[24-26], transfer learning technique was employed to fine-tune the 

pre-trained model with the aim of generating target-specific small molecule datasets under the 

condition of limited data size. Finally, the physics-based induced fit docking (IFD) was used to 

verify the binding mode and binding affinities of de novo designed molecules to SERT. 

 

2. Materials and methods 

2.1. Data preparation 

Pre-training dataset 

In this work, we selected the ChemBridge-MPO database for use in training pre-trained models 

in CNSMolGen. This database was created by ChemBridge to provide a library of small molecule 

compounds for the CNS drug discovery and contains 504,853 high quality, PAINS-free small 

molecule compounds (https://chembridge.com/targeted-and-specialty-libraries/cns/). The CNS 

MPO is a well- recognized algorithm that assigns a score based on six key physicochemical 

properties (cLogP, cLogD, MW, TPSA, HBD and pKa) related to the blood-brain barrier (BBB) 

penetration, which is critical for CNS drug development[27]. The CNS MPO score with scores ≥ 

4.0 was widely used as a cut-off to select compounds for hit discovery in drug discovery programs 

in the CNS therapeutic area. 

Fine-tuning dataset 

In the meantime, we have screened 44 small molecule compounds from the most recent review 

literature on monoamine transporter protein drugs[7]. All of these compounds are selective 

serotonin reuptake inhibitors (SSRIs) either on the market or under clinical investigation. To meet 

the training needs of the CNSMolGen model, we removed the stereochemical information of these 

compounds and finalized 36 compounds as the fine-tuned training dataset. 

RDKit calculation 

The molecules in each dataset were processed using RDKit (https://www.rdkit.org/) and saved 

as canonical SMILES strings. During this processing we removed salts and stereochemical 

information from the molecules. In addition, to reduce the degree of data heterogeneity, we only 

retained compounds with SMILES strings between 10 and 74 characters in length. After completing 

these steps, we obtained a pre-trained dataset containing 504,853 SMILES strings and a fine-tuned 

dataset containing 36 SMILES strings. 

2.2. Architecture of CNSMolGen 

CNSMolGen consists of two basic models (Fig. 2), the first model is mainly a bidirectional 

RNNs model based on SMILES[22]. 
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Fig. 2. The workflow of model training and compound design. CNSMolGen consists of two basic 

models, the pre-trained model and fine-tuning model. Each model contains four groups of layers, 

including Batch Normalization, LSTM layers, Batch Normalization, linear. 

Its bidirectionality and holistic nature makes it more suitable for molecular generation process 

compared to traditional RNNs, also known as pre-trained model. And the second one is the transfer 

model based on the same architecture as the previous model and used to migrate the general 

knowledge to learn the focused knowledge by sharing the previous network and reweighting the 

layers. Here, to illustrate the difference between the pre-trained model in CNSMolGen and the 

traditional RNN, we compare their objective functions. The objective function of the classical RNN 

is given by 

P(𝑥𝑡+1 = 𝑘|𝑥1,… , 𝑥𝑡) =
exp⁡(𝑦𝑡

𝑘 𝑇⁄ )

∑ exp⁡(𝑦𝑡
𝑖 𝑇⁄ )𝐾

𝑖=1

                     (1) 

where 𝑦𝑡
𝑘 represents the model output for the k-th token at time t, and i iterates over the set K, 

which encompasses all tokens. The token sampling process is regulated by the temperature 

parameter T. In this study, the start and end tokens for SMILES strings were denoted by “G” and 

“E” respectively. The key difference between the pre-trained model and traditional RNNs is that 

the pre-trained model consists of two RNNs that estimate two conditional probability distributions 

for the forward and backward directions as follows 

P(𝑥𝑚+𝑡′+1 = 𝑘|𝑥𝑚−𝑡′ , … , 𝑥𝑚+𝑡′ =
exp⁡(𝑦

𝑚+𝑡′
𝑘 𝑇⁄ )

∑ exp⁡(𝑦
𝑚+𝑡′
𝑖 𝑇⁄ )𝐾

𝑖=1

                (2) 

where⁡𝑡′ =
𝑡 − 1

2
(odd⁡𝑡⁡values) 

P(𝑥𝑚−𝑡∗−1 = 𝑘|𝑥𝑚−𝑡∗ , … , 𝑥𝑚+𝑡∗ =
exp⁡(𝑦𝑚−𝑡∗

𝑘 𝑇⁄ )

∑ exp⁡(𝑦𝑚−𝑡∗
𝑖 𝑇⁄ )𝐾

𝑖=1

                (3) 

where⁡𝑡∗ =
𝑡

2
(even⁡𝑡⁡values) 

where 𝑦𝑚+𝑡′
𝑘  and 𝑦𝑚+𝑡∗

𝑘 are the model output for the k-th token at the considered time step (𝑚 −

𝑡′and𝑚 + 𝑡∗, respectively). At any given t-th temporal interval, the pre-trained model interprets the 

sequence x = {𝑥𝑚 , 𝑥𝑚+1 , ,, 𝑥𝑡   in a bidirectional manner forward from 𝑥𝑚  to ⁡𝑥𝑡  and 
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backward from 𝑥𝑡 to 𝑥𝑚. The construction of the sequence commences with the initial token “G” 

and advances in both orientations until the concluding token “E” is produced. 

The pre-trained model for bidirectional RNNs is consistent with the non-univocal nature of 

SMILES coding. Although most of the time we choose the standard SMILES encoding for the 

application, the molecule itself does not have a starting point and direction, i.e., the SMILES 

encoding can be written in any direction starting from any non-hydrogen atom. Therefore, it is 

more beneficial to generate molecules with a non-directional CNSMolGen model when performing 

deep learning[22]. 

2.3. Model evaluation 

The evaluation of molecular generation models involves the analysis of numerous 

parameters[28]. Here, we will primarily focus on cross-entropy loss and molecular properties to 

evaluate the model CNSMolGen trained on the datasets of ChemBridge-MPO Library. 

Cross-entropy loss 

The cross-entropy loss is a loss function that measures the discrepancy between the predicted 

results and the actual outcomes of a model[29]. It serves as a crucial metric for optimizing model 

parameters. A lower value of L is indicative of a narrower gap between the model’s predictions and 

the actual outcomes, thus reflecting superior model performance. The value of L typically declines 

within the initial epochs, yet prolonging the training duration can further ameliorate the model. 

Caution is advised as neural network models may reach a saturation point, at which the learning 

curve will exhibit overfitting. 

Number of valid, unique, and novel smiles strings 

The efficacy, novelty, and uniqueness of generated molecules are the most critical criteria for 

evaluating molecular generation models[30]. Efficacy refers to the percentage of generated 

SMILES strings that are chemically valid; uniqueness pertains to the percentage of unique SMILES 

strings (after canonicalization) within the generated set; and novelty denotes the percentage of 

generated SMILES strings that represent molecules not included in the training set. These three 

metrics collectively reflect the model’s capacity to learn molecular structures, explore chemical 

space, and innovate in molecular design. 

Molecular property 

Molecular property predictions are conducted for small molecules generated by the model before 

and after fine-tuning. The properties of LogP, LogD, polar surface area, molecular weight, HBD, 

and pKa are calculated using ChemAxon[31], while the synthetic accessibility score (SAScore) is 

predicted using RDKit (http://www.rdkit.org/). 

2.4. Induced fit docking 

Molecular docking is one of the most esteemed and efficacious structure-based computational 

methodologies to predict the interactions between drugs and targets at the atomic level[32]. In 

recent years, researches have substantiated the significant impact of protein conformational 

flexibility, especially the ligand binding site, on the formation of protein-ligand complex[33]. 

Hence, we utilize the Induced Fit Docking (IFD) method for predicting the binding mode to 

estimate the binding energy between target protein and de novo designed molecules[34]. 

Prior to IFD, the designed compounds were energy optimization using LigPrep in Schrödinger 

software with OPLS3 force field[35], resulting in the generation of corresponding 3D 

conformations. Subsequently, the Epik algorithm[36] was employed for ionization handling at a 

pH value of 7.0 ± 2.0. The target protein structure was retrieved from PDB database[37]. The grid 
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box on SERT was defined using the co-crystalized ibogaine. During the IFD, 20 poses were 

generated for each compound. The IFD complexes were evaluated and ranked based on energy 

using the Prime[38] and Glide XP scoring function[39]. All graphical images are generated using 

the PyMOL software[40]. 

 

3. Results and discussion 

3.1. Pre-trained model of CNSMolGen 

As shown in Fig. 3, the pre-trained model of CNSMolGen network was composed of four groups 

of layers, including Batch Normalization[41], LSTM layers (each LSTM layer group consisted of 

a forward and a backward LSTM layer), Batch Normalization, linear. For the pre-trained model of 

CNSMolGen, the parameters including the number of epochs as well as the size of the hidden units 

and the number of layers of LSTM layers were important and were explored. 

 
Fig. 3. Schematic diagram of two layers of bidirectional LSTM. The output result of the first layer 

LSTM, y, is used as input to the second layer LSTM. Each layer of bidirectional LSTM (green) 

consists of two independent LSTM layers, a forward layer and a reverse layer. These two layers 

process the forward and reverse versions of the input sequence, respectively. 

The pre-trained model training: 20 epochs 

In this study, we used cross-validation to assess the performance of the models and compared 

them by calculating the average results of three cross-validations[42]. The performance of the 

model is measured by the loss values on the validation set (Fig. 4). During the initial 20 epochs of 

training, the loss values on the validation set continued to decrease and stabilize, indicating that 

neither overfitting nor underfitting occurred during model training. Therefore, in subsequent 

experiments, we chose the training results of the 20th epoch as the evaluation criterion. 
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Fig. 4. Cross-entropy loss of the pre-trained model of CNSMolGen. As the number of hidden units 

increases, the complexity of the model increases and more epochs are required to learn the patterns 

in the data. At the 20th epoch the loss curve levels off, which means that the model has started to 

converge. 

Parameter selection: hidden units and LSTM layers 

We then adjusted two key parameters in the pre-trained model: the size of the hidden units and 

the number of LSTM layers[43]. This was done to evaluate and compare the model’s ability to 

learn to generate SMILES strings under different configurations and to determine the optimal 

parameter settings. 

At the 20th training epoch, the models with different parameter settings were able to generate 

more than 70% of novel, unique and valid SMILES strings. This result indicates that by pre-trained 

on a large set of molecules, the model has effectively mastered the SMILES syntax and is able to 

reliably generate molecules with potential drug properties (Fig. 5A). Adjusting the size of the 

hidden layer had a significant effect on training speed and model performance. For example, when 

the hidden layer size was set to 64, the ability to generate new molecules was relatively weak 

despite the shortest training time. In contrast, when the hidden layer size was set to 128 or 256, the 

model showed very similar and positive results, with around 90% of the molecules generated being 

valid and completely new. At the same time, increasing the number of LSTM layers resulted in the 

model requiring more training cycles to converge (Fig. 5B). Considering the training effect and the 

required computational resources, we found that the model with two LSTM layers showed an 

excellent ability to generate molecules at the 20th training epoch, successfully synthesizing more 

than 90% of the novel molecules. 

Therefore, we chose the model with 2 sets of LSTM layers and each LSTM layer consisting of 

128 hidden units, giving a total of 512 hidden units, as the default pre-trained model for the 

subsequent study. 
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Fig. 5. Statistics on the number of molecules generated by the model under different parameter 

settings. (A) Number of molecules generated by pre-trained models with different sized hidden 

layers. (B) Number of molecules generated by pre-trained models with different number of 

recurrent neural network layers. (C) Number of molecules generated by the fine-tuning model with 

different data augmentations. (D) Number of molecules generated by the fine-tuning model with 

different dropout. (E) Number of molecules generated by the fine-tuning model with different 

sampling temperature. 

3.2. Molecular generation ability of the pre-trained model 

The molecular generation ability of the pre-trained model of CNSMolGen was further 

investigated by evaluate the MPO scores and SAScore. 
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Evaluation of CNS properties: MPO scores 

To verify whether the properties of the generated molecules match those of the training data, we 

randomly selected 100 molecules from the 20th epoch of the ChEMBL-MPO training set and 

calculated their attributes, including LogP[44], LogD, polar surface area[45], molecular weight, 

HBD, and pKa[46], along with their average MPO scores[31]. The high degree of similarity 

between the two sets indicates that the generated molecules have successfully replicated the 

characteristics of the training molecules and conform to the physicochemical properties of CNS 

drugs (Table 1). 

Table 1. Comparison of molecular properties between generated molecules by pre-trained model 

and pre-training datasets (ChemBridge-MPO) 

Property Generated ChemBridge-MPO 

Log_P 2.21 2.55 

Log_D 1.89 2.16 

MW 345.94 339.59 

TPSA 57.90 61.23 

HBD 0.71 1.1 

PEA 4.55 5.66 

CNS 5.35 5.27 

SAScore 2.59 2.79 

Evaluation of synthesizability: SAScore 

We used the SAScore to assess the synthetic difficulty of the generated molecules. This method 

describes the accessibility of molecule synthesis as a score between 1 (easy to make) and 10 (very 

difficult to make) based on molecular complexity and fragment contribution. 

The average SAScore of molecules in ChemBridge-MPO dataset is 2.79, while molecules 

generated by the pre-trained model have a lower average SAScore of 2.59. This suggests that 

molecules generated by CNSMolGen’s pre-trained model generally have a lower synthetic 

difficulty and, compared to molecules in the pre-trained set, the synthetic accessibility scores of 

these new molecules have decreased. This result confirms that the CNSMolGen model performs 

well in generating molecules that are easy to synthesize. 

3.3. De novo design of focused library by fine-tuning model 

The second part of CNSMolGen contains a transfer learning model. In this part, transfer learning 

updates the pre-trained model using a specific data set. In our study, we chose the fine-tuning 

dataset containing 36 compounds to fine-tune the pre-trained model. 

Accurate parameter settings are critical for training deep learning models, as these choices 

impact the learning duration and the quality of the generated outcomes. During molecular 

generation, the greater the number of SMILES strings produced, the higher the probability of 

exploring the chemical space. Here, we opted to generate 1,000 SMILES strings per fine-tuning 

cycle. 
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The fine-tuning model training: epoch 

Transfer learning models have additional constraints on the properties of the molecules generated 

during training compared to pre-trained models. Extending the fine-tuning epoch of the model may 

result in the generation of molecules that are closer to those in the fine-tuned dataset, but it may 

also result in a decrease in the diversity and uniqueness of the molecules generated. Therefore, we 

chose to perform 45 epochs of fine-tuning as the loss values converged, and used the molecules 

generated in the last 5 epochs for subsequent parameter analyses. To optimize the training results, 

we will also tune and analyze the following three parameters: argument, dropout and temperature. 

Parameter selection: data augmentation, dropout and temperature 

Data augmentation, the practice of artificially increasing the volume of training data to improve 

model performance, was implemented by altering the starting position of the marker, allowing the 

model to learn from any point within the SMILES encoding. Comparative analysis showed that 

quintupling the data augmentation in the last five training cycles yielded the best effectiveness and 

novelty in the generated compounds (Fig. 5C). 

Dropout, a technique to combat overfitting by deactivating a subset of neurons during training, 

slows down the training rate as the dropout value increases. After altering the dropout value, the 

overall model showed no significant difference in molecular generation outcomes, leading to the 

selection of an intermediate value of 0.3 (Fig. 5D). 

The model, trained in this study, employed temperature sampling for SMILES encoding. At 

lower temperature values, token generation is primarily based on estimated probabilities. However, 

as the temperature value increases, token generation tends towards uniform probability selection. 

The effectiveness of generating new molecules decreases with higher temperature values due to the 

increased randomness of token generation, leading to errors in the SMILES strings, such as missing 

or mismatched parentheses or ring closures. Nonetheless, higher temperature values exhibited 

superior performance in terms of the novelty and effectiveness of generated molecules. This is 

attributed to the increased randomness of token generation, which enhances molecular diversity 

and expands the explorable chemical space. In this experiment, the model demonstrated optimal 

uniqueness and novelty in generated molecules at a temperature value of 1.1 (Fig. 5E). 

Taking all of these factors into account, we determined that setting the data augmentation value 

to 5, the temperature parameter to 1.1 and the dropout value to 0.3 would serve as the default 

parameter settings for the fine-tuning model in subsequent experiments. 

3.4. Comparison of molecules generated by pre-trained model with molecules generated by 

fine-tuning model 

In this section we compare the properties of the molecules generated by the pre-trained and fine-

tuned models, as well as the properties of the molecules in the pre-trained and fine-tuned datasets. 

We randomly select 100 molecules from each molecule source to analyse (if the number of 

molecules from a source is less than 100, all molecules are used) and compare the properties of 

these molecules separately. In Fig. 6, the molecules in the ChemBridge-MPO dataset have the 

highest average MPO scores, while the molecules generated by the pre-trained model have the next 

highest MPO scores. This indicates that CNSMolGen as a molecule generation model has a strong 

learning capability to effectively master the rules of molecular SMILES representation and 

accurately capture the features of CNS molecules. In addition, the average MPO scores of the 

model-generated molecules decreased after transfer learning, which may be related to the lower 

average MPO scores of the molecules in the transfer learning dataset. Nevertheless, the MPO scores 

of the molecules generated after transfer learning were still high and met the MPO criteria for CNS 
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drugs, indicating that they are potential CNS drug candidates. It is important to note that of all the 

parameters affecting CNS scores, the molecules generated by deep learning had lower scores for 

LogP and LogD, suggesting future improvement of molecule generation models. 

 
Fig. 6. Quantitative evaluations for molecules generated by fine-tuning model of CNSMolGen. (A-

F) Distributions of properties, including LogP, LogD, Molecular weight (MW), total polar surface 

area (TPSA), number of hydrogen bond donors (HBD) and pKa. (G) The CNS-MPO of the 

generated molecule was calculated based on the above six properties. When the CNS-MPO score 

of the molecule is greater than or equal to 4, the molecule can be considered to be more compatible 

with the properties of CNS drugs. 

3.5. CNSMolGen based on ChemBridge-MPO dataset show greatest performance 

To investigate how the selection of pre-trained datasets affects the molecular design capability 

of CNSMolGen, two additional datasets were selected for analysis, the ChemBL-MPO dataset and 

the ChemBL-ACT dataset. A detailed description of the ChemBL-MPO dataset and the ChemBL-

ACT dataset collection methods can be found in the Supporting Information. We trained these two 

datasets using the same training procedure and default parameter settings and compared the results 
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of the molecules generated. The results show that CNSMolGen based on the ChemBridge-MPO 

dataset performs best. 

In this study, we used different pre-training datasets as well as a unified transfer learning dataset 

to train the CNSMolGen model and compared the results for the compounds generated (Table 2). 

The results showed that the model generated the highest number of new compounds when using 

the ChemBridge-MPO dataset, followed by the use of the ChemBL-smiles dataset, while the lowest 

number of new compounds was generated when using the ChemBL-MPO dataset. This 

phenomenon may be related to the number and diversity of compounds in the datasets. The 

SAScore of the three datasets were further analyzed, and it was found that the average SA scores 

of the compounds when using the ChemBridge-MPO, ChemBL-MPO and ChemBL-smiles 

datasets were 2.77, 2.69 and 2.63, respectively, which were relatively close and with low mean 

values, suggesting that different training datasets have a synthetic approachability is limited. 

Subsequently, we compared the CNS scores of the three datasets and found that the average CNS 

scores corresponding to the ChemBridge-MPO, ChemBL-MPO and ChemBL-smiles datasets were 

4.15, 4.19 and 4.35, respectively, which suggests that differences in the training datasets do not 

affect the chemical properties of compounds generated by the model. This suggests that the change 

in the pre-trained dataset does not have an impact on the final properties of molecule generation, 

but it is worth noting that the largest number of molecules were generated after transfer learning 

when ChemBridge-MPO was selected as the pre-trained dataset, followed by ChemBL-MPO. We 

analyzed this to be due to the fact that ChemBridge-MPO contains more data, while the molecules 

in ChemBL-MPO are more consistent with the results of transfer learning. This result suggests that 

the size of the original dataset will have a more direct impact on the final generated results during 

the transfer learning process. The selection of suitable similar datasets will also have a good impact 

on the generation of molecules. 

Table 2. Comparison of generation results of three different pre-training datasets corresponding to 

CNSMolGen model 

 ChemBL-ACT ChemBL-MPO ChemBridge-MPO 

CNS-MPO 4.35 4.19 4.15 

SAScore 2.63 2.69 2.77 

No. of molecules 44 65 215 

3.6. Verification of the de novo designed molecules targeting SERT 

In order to entirely evaluate the promising application of the CNSMolGen in the field of CNS 

drug design, the 215 candidate molecules generated from the fine-tuned model were submitted for 

a comparative analysis of their binding modes and binding affinities to target protein SERT[47]. 

Notably, four approved drugs that cocrystalized with SERT were used as controls. They are 

escitalopram-SERT (PDB ID: 5I71)[48], sertraline-SERT (PDB ID: 6AWO)[49], fluvoxamine-

SERT (PDB ID: 6AWP)[49], and paroxetine (PDB ID: 6W2C)[50], respectively. Here, all of the 

215 molecules were first docked into the ibogaine binding pocket of SERT by considering the 

pocket flexibility. And the ibogaine binding site was selected because of the relatively large volume 

of the pocket[47], which were more suitable for IFD study of molecules with different scaffolds. 
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Fig. 7. The conformational superimposition between the crystal structure (cyan) and induced fit 

docking poses (salmon) of (A) escitalopram, (B) sertraline, (C) fluvoxamine, and (D) paroxetine. 

As a result, the redocking scores of escitalopram, sertraline, fluvoxamine, and paroxetine were -

9.771 kcal/mol, -9.403 kcal/mol, -8.448 kcal/mol, and -8.467 kcal/mol, respectively (Fig. 7). For 

all of the 215 generated molecules, using the docking score of fluvoxamine (-8.448 kcal/mol) and 

escitalopram (-9.771 kcal/mol) as a reference, the number of generated molecules that have 

potential higher binding affinities were 129 (60.00%) and 89 (41.40%), respectively. Thus, 

compared to the known SSRI molecules, the generated molecules (e.g., compounds 1 (-10.435 

kcal/mol) and 2 (-10.453 kcal/mol)) may have comparable or even better binding affinities. The 

detailed binding mode of the compounds 1 and 2 in SERT were shown in Fig. 8A and 8B. Among 

them, the ligand-receptor interaction of compound 1 is mainly due to the hydrogen bond interaction 

formed by amino acid residues Y95, A96, S336 with the ligand; compound 2 is mainly due to the 

hydrogen bond interaction of D98, F335 with the ligand. In addition, it was found that although the 

generated molecules have different structures from the approved drugs, they share similar binding 

conformations at the pocket (Fig. 8C and 8D). Despite the inherent limitations of molecular 

docking techniques, the results of this study suggest that the CNSMolGen opens up new 

possibilities for drug design targeting SERT. However, the actual biological effects of the generated 

molecules on SERT need to be further verified by subsequent experimental studies. 
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Fig. 8. Induced fit docking poses of the generated compounds in SERT. (A) the interactions of 

compound 1 (slate) and SERT (cyan). (B) the interactions of compound 2 (slate) and SERT (cyan). 

(C) Structural superimposition of sertraline (slate) and compound 1 (salmon). (D) Structural 

superimposition of sertraline (slate) and compound 2 (salmon). The hydrogen bond was represented 

as a red dashed line. 

4. Conclusions 

In this study, we introduce CNSMolGen - a novel molecular generation model designed to design 

central nervous system (CNS) drugs from scratch. The model combines pre-training and transfer 

learning to generate new compounds with CNS activity by learning the SMILES strings of the 

molecules and shows superior performance on small datasets, opening up new avenues for drug 

design. Further, we investigated the effect of using different pre-training datasets on the model 

performance and found that pre-training on large datasets helps to improve the performance of the 

generated molecules, while pre-training on CNS-specific datasets is more favorable for generating 

molecules with CNS properties. The application of CNSMolGen in the actual generation of CNS 

drug molecules was validated using SSRI as an example. The model generated a total of 215 
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molecules, 129 of which showed good binding affinity in molecular docking. In conclusion, the 

CNSMolGen model demonstrated significant effectiveness in generating CNS drugs, especially in 

handling small datasets, and also demonstrated its potential to provide valuable support for future 

drug design and discovery. With the increasing role of AI tools in drug design and optimization, 

experimental validation of their results remains indispensable. 

Data and Code Availability 

The training datasets used in this work were provided as csv files in 

https://github.com/xueww/CNSMolGen/data. The code of CNSMolGen and other in-house script 

for data analysis are open for academic usage and available in the 

https://github.com/xueww/CNSMolGen/, and the source code partially referenced from 

https://github.com/ETHmodlab/BIMODAL/. Models in this work were trained on a NIVDIA GTX 

3080. Programming language: Python. Other requirements: Python3.7, Tensorflow, RDKit. 
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Appendix A. Supplementary data 

Details of CHEMBL-MPO and CHEMBL-ACT datasets preparation 

ChEMBL-MPO: First, we collected 504,228 molecules in ChEMBL database 

(https://www.ebi.ac.uk/chembl/) annotated with CX LogP, CX LogD, polar surface, molecular 

weight, HBD, and CX Basic pKa. Then, the MPO values of these molecules were calculated and 

filtered using the rules: (1) RO5 violations = 0; (2) 250 ≤molecular weight ≤ 450; (3) 0 ≤ Polar 

surface area ≤ 100; and (4) MPO ≥ 4. As a result, a total of 412,154 molecules were obtained. 

ChEMBL-ACT: a selection of 271,914 compounds with annotated Kd/Ki/IC50/EC50 < 1 μM 

from the ChEMBL22 database (10.6019/CHEMBL.Database.22.), while removing salts and 

stereochemical information. 
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