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The proper balancing of information from experiment and theory is a long-standing problem in the analysis
of noisy and incomplete data. Viewed as a Pareto optimization problem, improved agreement with the
experimental data comes at the expense of growing inconsistencies with the theoretical reference model.
Here, we propose how to set the exchange rate a priori to properly balance this trade-off. We focus on gentle
ensemble refinement, where the difference between the potential energy surfaces of the reference and refined
models is small on a thermal scale. By relating the variance of this energy difference to the Kullback-Leibler
divergence between the respective Boltzmann distributions, one can encode prior knowledge about energy
uncertainties, i.e., force-field errors, in the exchange rate. The energy uncertainty is defined in the space of
observables and depends on their type and number, and on the thermodynamic state. We highlight the relation
of gentle refinement to free energy perturbation theory. A balanced encoding of prior knowledge increases
the quality and transparency of ensemble refinement. Our findings extend to non-Boltzmann distributions,
where the uncertainty in energy becomes an uncertainty in information.

I. INTRODUCTION

In the natural sciences, we frequently encounter the
challenge of analyzing noisy and incomplete experimental
data using theoretical models. The number of parameters
in the models often exceeds the number of available data
points. Image reconstruction is the textbook example of
this class of ill-defined inverse problems.1 Another im-
portant class of problems is ensemble refinement, as per-
formed in integrative structural biology and hybrid mod-
elling. Experimentally averaged observables are used to
refine an ensemble of biomolecular structural models.2–4
In such cases, we have to take into account statistical
and systematic errors in the model and in the data, and
balance the information provided by experiment and the-
ory. While maximum entropy (MaxEnt) and Bayesian
methods address these challenges, the balancing of in-
formation has proven to be a long-standing and difficult
problem.5

The balancing of information from experiment and the-
ory can be viewed as a Pareto optimization problem (Fig-
ure 1). In a multi-objective optimization, we seek to min-
imize both the mean-squared deviations from the experi-
mental data, χ2, with respect to the statistical weights in
the refined model, and the deviation of these weights from
a given reference model, as quantified by the Kullback-
Leibler (KL) divergence6 SKL. In the plane spanned by
SKL and χ2, the set of weights where one is optimal for
a fixed value of the other defines a Pareto front. On this
Pareto front, we then seek a particular solution for which
we consider the trade-off between increases in SKL and χ2

to be fair. To encode the relative value given to SKL and
χ2, we introduce a parameter θ that sets the so-called
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FIG. 1. Bayesian/MaxEnt ensemble refinement as a Pareto
optimization problem. The curve of optimal solutions in the
plane spanned by the deviations from experiment, χ2, and
the deviations from theory, SKL, determines the Pareto front
or L-curve (red line). Sub-optimal solutions (orange shaded
area) lie above this curve. We encode our prior knowledge by
choosing a value of the so-called marginal rate of substitution,
given by −2θ here. We use this rate to trade off the two de-
viations according to our prior experience, dχ2 = −2θ dSKL,
which gives a unique solution (blue disk). At this point, the
slope of the Pareto front is exactly the marginal rate, as in-
dicated by the blue line.

marginal rate of substitution, dχ2/dSKL = −2θ. Mini-
mization of a loss function χ2/2 + θSKL with respect to
the model weights then gives us a specific set of refined
weights on the Pareto front (or L-curve7) with an optimal
trade-off.

The proper choice of the θ value5 has been tackled
by different workarounds. As a result, various meth-
ods to image reconstruction, ensemble refinement, and
related problems can be distinguished by their choice
of a solution parameterized by a multiplicative param-
eter θ of the KL divergence: solutions are chosen by
L-curve analysis;7–10 by using algorithms to determine
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an elbow of the L-curve;11,12 so that the resulting er-
ror is the most-likely according to some statistic;1 by
putting a prior on θ and integrating it out;13,14 by se-
lecting a perfect fit ignoring errors completely as in clas-
sical MaxEnt methods;15,16 by not including θ as param-
eter at all, which corresponds to setting θ = 1;17 or by
cross-validation.18 While these workarounds are useful in
practice, they generally do not balance information from
experiment and theory properly in the sense of using a
priori knowledge. As a result, the solutions obtained
tend to be overfitted or underfitted. Moreover, a solu-
tion is not always guaranteed to exist for some of these
workarounds.10

Here, we propose how to choose the θ parameter a
priori for gentle ensemble refinement. Often, ensemble
refinement is quite crude, such that the optimal ensem-
ble deviates drastically from the reference ensemble. In
gentle refinement, we take care that this is not case. In
this regime, the expected KL divergence S̄KL can be ap-
proximated in terms of the mean-squared error of the
potential energy surface U defining the force field used
to create the reference ensemble, S̄KL ≈ var(β∆U)/2.
Here, energies are measured in units of the thermal en-
ergy, β = 1/(kBT ), in the equilibrium Boltzmann distri-
butions of reference and refined ensembles, with kB the
Boltzmann constant and T the absolute temperature. We
propose to use this physically meaningful relation to en-
code prior knowledge about the expected force-field error
by setting

θ ∼=
1

S̄KL
≈ 2

var(β∆U)
(1)

to fix the Pareto exchange rate at −2θ. The mean-
squared energy error depends on the type and number
of observables used for refinement, and on the thermody-
namic state.

The article is organized as follows. In Sec. II A, we
first introduce ensemble refinement with a focus on the
Bayesian inference of ensembles (BioEn) method.8,9 We
relate the KL divergence for Boltzmann distributions to
the mean of the reduced energy difference in Sec. II B.
We derive an approximation for the KL divergence as half
the variance of the reduced energy difference in subsec-
tion II C. Moreover, the KL divergence is approximately
symmetric with respect to its arguments. In subsection
IID, we show that these approximations are exact in the
Gaussian case. In subsection II F, we discuss how to use
this information to encode our prior knowledge in the
entropic prior used in BioEn and related methods. In
subsection II G, we describe how to estimate the relevant
energy uncertainty. We present three example systems
in Sec. III. For these examples, we quantify the validity
of the approximation of the KL divergence by the energy
variance and illustrate the benefits and limits of gentle
ensemble refinement in Sec. IV. In Sec. V, we discuss
how we build prior knowledge about simulations. We
end with Concluding Remarks in Sec. VI and the impli-
cation of our results for ill-defined inverse problems in

general.

II. THEORY

A. Background

The BioEn posterior9 for a sampled ensemble with N
conformations and normalized reference weights w(0) =

(w
(0)
1 , . . . , w

(0)
N ) is given by

p(w|data) ∝ p(w|w(0))p(data|w) (2)

where w = (w1, . . . , wN ) is the vector of the normalized
weights we want to find by refinement. The so-called
entropic prior19 is given by

p(w|w(0)) ∝ e−θSKL(w||w(0)) (3)

where θ is the confidence parameter and SKL(w||w(0)) is
the KL divergence or relative entropy

SKL(w||w(0)) =

N∑
α=1

wα ln
wα

w
(0)
α

(4)

θ encodes how much we trust our original ensemble. For
independent Gaussian errors, for example, the likelihood
of the measured data is given by

p(data|w) ∝ e−
χ2(w)

2 (5)

where

χ2(w) =

M∑
i=1

(
⟨yi⟩ − Yi

σi

)2

(6)

Here, ⟨yi⟩ =
∑N

α=1 wαy
α
i are the averages of the cal-

culated observables yαi for conformation α with indices
i = 1, . . . ,M for the measured averages Yi with associ-
ated errors σi, both theoretical and experimental. The
theoretical errors primarily reflect uncertainties in cal-
culating the observables y(x) for given conformations x
using simplified models of the experiment. By contrast,
we account for errors in the weights in the entropic prior,
Eq. (3), through the confidence parameter θ. Note that
the structural ensembles do not have to come from molec-
ular simulations20–22 and that the data do not necessarily
have to be from experiment.

To find the optimal solutions, we maximize the BioEn
posterior or, equivalently, minimize the negative log-
posterior given by

L = θSKL(w||w(0)) +
χ2(w)

2
(7)

which is the loss function mentioned in the Introduc-
tion. This formulation has been originally developed
for the EROS method8 based on a method for image
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reconstruction.1 Since then it has entered into the BME
method23, for example. Note that any method that is
equivalent to refinement by replica simulations24,25 is also
equivalent to the EROS/BioEn method with properly
chosen coupling constant and in the limit of infinite num-
bers of replicas.9 As discussed in Ref. 9, the dependence
on the number of replicas can be removed with a subse-
quent BioEn refinement.

We explain next how we calculate and approximate the
KL divergence for Boltzmann distributions. In the fol-
lowing, we focus on the continuous distributions q(x) and
p(x) underlying the reference weights w(0) and optimal
weights w, respectively.

B. Kullback-Leibler divergence for Boltzmann distributions

For continuous probability densities p(x) and q(x) the
KL divergence6 is defined as

SKL(p||q) =
∫

dx p(x) ln
p(x)

q(x)
=

〈
ln

p(x)

q(x)

〉
p

(8)

In the refinement of an isothermal ensemble, x represents
3N -dimensional conformations, q(x) is the reference dis-
tribution underlying simulations and p(x) is the refined
distribution. The angular brackets with subscript ‘p’ in-
dicate the expectation value with respect to p(x).

For the sake of generality, we point out here that the
KL divergence in Eq. (8) is the expectation of the infor-
mation difference

∆h(x) = ln
p(x)

q(x)
= ln

m(x)

q(x)
− ln

m(x)

p(x)
(9)

with respect to p(x). The Jayne’s measure26 m(x) guar-
antees invariance of information under variable transfor-
mation. Although it cancels in the expression above,
m(x) is needed to define a proper difference between
the information of the two ensembles. As we shall
see below, this difference becomes a difference in ener-
gies for Boltzmann distributions, as has been established
previously.8–10,16,17,27

Let us assume that probability distributions are given
by Boltzmann distributions. For a potential energy sur-
face Uq(x) defining the reference ensemble, we then have

q(x) =
e−βUq(x)

Qq
(10)

where the normalization constant Qq is the partition
function,

Qq =

∫
dx e−βUq(x) ≡ e−βFq (11)

with Fq = −kBT lnQq the free energy. We analogously
define p(x), Qp, and Fp for the potential energy surface
Up(x) of the refined ensemble. In an isothermal ensem-
ble at inverse temperature β = 1/(kBT ), the energy of

conformation x is given by Uq(x) = Eq(x), where Eq(x)
is its potential energy. In an isobaric-isothermal ensem-
ble, Uq(x) = Eq(x)+ pVq(x), where p is the pressure and
V (x) is the box volume for conformation x.

To evaluate the KL divergence, Eq. (8), for Boltzmann
distributions, we use that

p(x)

q(x)
= e−β∆U(x)Qq

Qp
(12)

where ∆U(x) ≡ Up(x) − Uq(x) is the energy difference.
Using that the free-energy difference is given by ∆F ≡
Fp − Fq, we obtain

ln
p(x)

q(x)
= −∆u(x) (13)

where we introduced the reduced energy difference

∆u(x) = β∆U(x)− β∆F (14)

between the force fields of the two Boltzmann distribu-
tions p(x) and q(x). Importantly, these energy differences
are uniquely determined because additive constants in
the energies cancel in the Boltzmann distributions due
to normalization.

Consequently, for Boltzmann distributions the KL di-
vergence can be written as an average of the reduced
energy difference

SKL(p||q) = −⟨∆u⟩p (15)

The reduced energy differences tell us how we have to
change the energies of the reference Boltzmann distribu-
tion q(x) to sample the optimal ensemble according to
Eq. (13), i.e.,

p(x) = q(x) e−∆u(x) (16)

as a physical interpretation of the information differences
introduced in Eq. (9).

To estimate the reference and refined weights, and thus
the reduced energy differences, we do not need to calcu-
late any partition functions. On the contrary, we actu-
ally numerically estimate the free-energy difference and
thus the log-ratio of partition functions. For two differ-
ent force fields, we can estimate the free-energy difference
from the KL divergence using Eqs. (14) and (15),

∆F = ⟨∆U⟩+ kBT SKL(p||q) (17)

This expression is akin to the definitions of the Helmholtz
free energy for the isothermal ensemble and to the Gibbs
free energy for the isothermal-isobaric ensemble, where
kBSKL(p||q) corresponds to the negative entropy. We
obtain more familiar looking equations if we perform the
average in the q-ensemble,

∆F = ⟨∆U⟩q − kBT SKL(q||p) (18)

For finite ensembles, we estimate the KL divergence,
Eq. (8), numerically using Eq. (4). In Appendix A, we
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show how to properly interpret discrete reference weights
w

(0)
α and refined weights wα for ensembles sampled from

arbitrary distributions. Thus, all results derived here for
continuous distributions also apply to discrete ensembles.
We next use that the KL divergence is given by the mean
reduced energy differences and relate it to the variance
for gentle ensemble refinement.

C. KL divergence approximations

In the following, we rewrite averages of exponen-
tial functions as cumulant expansions, which lead to
simple expressions for Gaussian distributions of the
exponent.28,29 We calculate the mean energy change de-
termining the KL divergence, Eq. (15), introducing the
refined distribution function p(∆u) of the energy differ-
ences,

p(∆u) =

∫
dx p(x) δ[∆u−∆u(x)] (19)

δ[·] is the Dirac delta function. Analogously, we define
q(∆u) for the reference distribution. Equation (16) be-
comes

q(∆u) = p(∆u)e∆u (20)

We integrate both sides of this equation over ∆u and use
that q(∆u) is normalized, such that∫

d∆u p(∆u)e∆u =
〈
e∆u

〉
p
= 1 (21)

Introducing the cumulant generating function,

G(t) = ln
〈
et∆u

〉
p
=

∞∑
n=1

κn
tn

n!
, (22)

we have ln
〈
e∆u

〉
p
= G(1) = 0. κn is the nth cumulant

of the p-ensemble. By solving G(1) = 0 for κ1, we obtain

⟨∆u⟩p = −varp(∆u)

2
−

∞∑
n=3

κn

n!
(23)

We have used that the first two cumulants are the mean
κ1 = ⟨∆u⟩p = µ and the variance κ2 = varp(∆u) = σ2.

Consequently, the KL divergence, Eq. (15), is given
by a sum of the higher-order cumulants. The leading
term is half the variance. For small errors in the energy,
|∆u| ≪ 1, the cumulants of order n = 3 and higher can
be ignored,

κ1 ≈ −κ2

2
(24)

allowing us to approximate the KL divergence in Eq. (15)
by

SKL(p||q) = −⟨∆u⟩ ≈ var(∆u)

2
(25)

We have dropped the sub-script ‘p’ for average and vari-
ance. That is, these quantities without a subscript always
refer to the refined ensemble p(x).

The KL divergence is equally approximated by the
variance of the configurational energy difference β∆U .
The free-energy difference ∆F cancels in the variance,
Eq. (14), such that var(∆u) = var(β∆U) and

SKL(p||q) ≈
var(β∆U)

2
(26)

We next show that for small errors |∆u| in the force
field, where higher cumulants can be ignored, the KL
divergence is approximately symmetric with respect to
its arguments, SKL(p||q) ≈ SKL(q||p), where

SKL(q||p) = ⟨∆u⟩q (27)

We can express the average of ∆u in the q-ensemble,
using the cumulant expansion as before. Using that
p(∆u) is normalized, we obtain ln

〈
e−∆u

〉
q
= H(−1) = 0,

where we introduced the cumulant generating function
for the q-ensemble

H(t) = ln
〈
et∆u

〉
q
=

∞∑
n=1

λn
tn

n!
, (28)

Evaluating H(−1) = 0, we obtain

⟨∆u⟩q =
varq(∆u)

2
+

∞∑
n=3

(−1)n
λn

n!
(29)

where we used that
∫
d∆u q(∆u)e−∆u =

〈
e−∆u

〉
q
= 1,

Eq. (20). λn is the nth cumulant of the q-ensemble. For
|∆u| ≪ 1,

λ1 ≈ λ2

2
(30)

such that

SKL(q||p) ≈
varq(β∆U)

2
(31)

The cumulants of the p-ensemble can be expressed
by the cumulants of the q-ensemble and the other way
round.28 From Eq. (20) follows that G(t) = H(t−1). In-
serting the corresponding cumulant expansions on both
sides of this equation and collecting equal powers of t by
applying the binomial theorem to (t− 1)n, we obtain

κk =

∞∑
n=0

(−1)nλn+k

n!
(32)

Correspondingly we obtain from H(t) = G(t+ 1) that

λk =

∞∑
n=0

κn+k

n!
(33)
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From Eq. (32) and for |∆u| ≪ 1, we obtain , κ1 =
λ1 − λ2 ≈ −λ1, where have used λ2 ≈ 2λ1, Eq. (30). We
find that the two definitions of the KL divergence are
approximately equivalent,

SKL(p||q) = −⟨∆u⟩p ≈ ⟨∆u⟩q = SKL(q||p) (34)

We obtain the same result using Eqs. (24) and (33).

D. Exact results for Gaussian energy distributions

If the refined distribution p(∆u) of the energy error is
Gaussian, then the approximations above are exact.28,29
This case not only serves as a reference, but it is also of
practical interest, as we shall see below (Ala5).

For the Gaussian distribution, only the average and
variance are non-zero. All higher-order cumulants are
zero. Eq. (23) becomes

µ = −σ2

2
(35)

This constraint on the Gaussian distribution derives from
Eq. (20) for normalized distribution p(∆u) and q(∆u).

In this Gaussian case, the approximation of the KL
divergence by the variance half, Eqs. (25) and (26), is
exact, i.e.,

S(p||q) = −µ =
σ2

2
(36)

In the Gaussian case, the KL divergence is exactly sym-
metric with respect to its arguments, i.e., SKL(p||q) =
SKL(q||p).30 Using Eq. (20), we can rewrite

SKL(q||p) = ⟨∆u⟩q =

∫
d∆u q(∆u)∆u (37)

as

SKL(q||p) =
∫

d∆u p(∆u)e∆u∆u

= (µ+ σ2)eµ+
σ2

2 = −µ = SKL(p||q) (38)

where we used Eq. (35).

E. Relation to free energy perturbation theory

We can now use the different expressions for the KL
divergence to approximate the free-energy difference ∆F
as in free energy perturbation theory.31 Inserting Eq. (26)
into Eq. (17), we obtain

∆F ≈ ⟨∆U⟩+ β
var(∆U)

2
(39)

Usually, ∆F is calculated in the q-ensemble, Eq. (18),

∆F ≈ ⟨∆U⟩q − β
varq(∆U)

2
(40)

These approximations become exact for Gaussian distri-
butions of the potential energy difference ∆U ,30 where
SKL(p||q) = SKL(q||p) = var(β∆U)/2 = varq(β∆U)/2.

F. Encoding prior knowledge in ensemble refinement

The relation of the KL divergence to the reduced en-
ergy differences allows us to relate the more abstract in-
formation difference expectation of Eq. (8) to the more
physical quantity of the variance of the reduced energy
difference, Eq. (26). We use the latter to choose the con-
fidence parameter θ, which defines the rate at which the
entropic prior exp(−θSKL) in Eq. (3) decreases with in-
creasing KL divergence.

The choice of the prior as an exponential function
of the KL divergence can be motivated with the maxi-
mum entropy principle.15 If we only know the expecta-
tion value of the KL divergence, S̄KL, then the maxi-
mum entropy distribution of the KL divergence is given
by exp(−SKL/S̄KL). In this case,

θ =
1

S̄KL
(41)

In gentle ensemble refinement, we demand that SKL ≲ 1,
SKL(p||q) ≈ SKL(q||p), and SKL ≈ var(β∆U)/2 accord-
ing to Eq. (26). For a given force-field error, we then
expect S̄KL ≈ var(β∆U)/2. According to Eq. (41), we
set θ ∼= 2/var(β∆U) a priori as in Eq. (1). Beyond gentle
ensemble refinement, where the expectation of the KL di-
vergence is no longer determined by var(β∆U), we have
to set S̄KL directly to encode our prior knowledge.

The choice of θ in the prior can be validated by check-
ing its consistency with the optimal value of the KL di-
vergence a posteriori. If we evaluate the prior for given θ
and the corresponding optimal SKL value, then we expect
a reasonably high value of the prior. That is, θSKL is of
the order of one after refinement. If it is much larger,
then the information from the experiment dominates the
ensemble. We might have underestimated the quality of
our ensemble or the size of the errors in the data. If it is
much smaller, then the reference distribution dominates
the ensemble. We might have overestimated the quality
of our reference ensemble or the size of the errors in the
data.

G. How to determine the energy uncertainty

In gentle ensemble refinement, we have to choose the
energy uncertainty var(β∆U) a priori to properly set the
confidence parameter θ according to Eq. (1). To do so, we
go from configuration space to the space of observables.
As introduced in the Appendix of Ref. 9, the probability
density of the reference ensemble in observable space is
given by

q(y) =

∫
dx q(x)

M∏
i=1

δ[yi(x)− yi] (42)

where yi is the ith component of the observable vector y.
δ[·] is Dirac’s delta function. The probability density of
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the refined ensemble p(y) in observable space is defined
analogously.

Refining in the space of observables is equivalent to
refining in the space of conformations. By design, the
average observables entering the likelihood are equal in
both spaces. As we show in Appendix C, also the KL
divergence in configuration space is equal to the KL di-
vergence in observable space for the optimal solutions.

The observable space is a coarse-grained representa-
tion of the configuration space.32 We introduce a coarse-
grained energy potential energy Vq(y) using

q(y) =
e−βVq(y)

Qq
(43)

which gives

βVq(y) = − ln q(y)− lnQq (44)

Analogously we introduce the coarse-grained energy
Vp(y) in the p-ensemble. Note that Qq and Qp and thus
∆F are the same as introduced above in the configura-
tion space. The coarse-grained reduced energy difference
becomes

∆v(y) = − ln
p(y)

q(y)
= βVp(y)− βVq(y)− β∆F (45)

The reduced energy uncertainty in observable space
is a free-energy difference. Expressing q(x) in Eq. (42)
by Eq. (16), we obtain for the free-energy difference in
Eq. (45)

∆v(y) = ln

∫
dx p(x) e∆u(x)

∏M
i=1 δ[yi(x)− yi]∫

dxp(x)
∏M

i=1 δ[yi(x)− yi]

= ln
〈
e∆u(x)

〉
p|y

= − ln
〈
e−∆u(x)

〉
q|y

(46)

The subscripts p|y and q|y of the angular brackets in-
dicate the sub-ensembles of the p- and q-ensembles with
fixed values of y. Consequently, ∆v(y) corresponds to
the free-energy difference between the constrained p-
ensemble and constrained q-ensemble for a given value
of y.

For the optimal weights obtained by BioEn, the energy
uncertainties calculated in the space of conformations x
and of observables y are equal, ⟨∆u⟩p = ⟨∆v⟩p(y) (see
Appendix C) and varp(∆u) ≈ varp(y)(∆v) in gentle en-
semble refinement. The underlying reason is that in the
BioEn optimal solution, the factor scaling the relative
weight of conformation x depends only on y(x), not on
x directly. Conformations with the same value of y are
thus treated equally.

The uncertainty in the free-energy difference ∆v(y) de-
pends on the type and number of observables. For dif-
ferent types of observables probing different aspects of
molecular conformations, we will have different expecta-
tions about the energy error. For a polymer, the expected
energy uncertainties for sub-ensembles with fixed end-to-
end distance will be different than for sub-ensembles with

fixed carbon-hydrogen bond lengths. The sub-ensembles
for these two observables are quite different and so is our
energy uncertainty.

If we combine independent observables and refine
against all of them at once, then our uncertainty will be
larger than for each individual observable. If observables
are uncorrelated, then the probability distribution of the
observable vector q(y) factorize into probability distri-
butions for individual components, q(y) =

∏M
i=1 q(yi).

The same is true for p(y). The total KL divergence then
becomes a sum over the KL divergences for individual
components of the observable vector,

SKL(p(y)||q(y)) =
M∑
i=1

SKL(p(yi)||q(yi)) (47)

In this case, we add up the energy variances for the indi-
vidual components

SKL(p(y)||q(y)) ≈
1

2

M∑
i=1

varp(yi)(∆v) (48)

to define θ. The energy uncertainty thus depends both
on the type and number of observables, and on the ther-
modynamic state.

The sensitivity of the distribution p (y|c) of the ob-
servables to a particular force-field parameter c deter-
mines its impact on the respective energy uncertainty,
an issue examined in detail in Bayesian inference of
force fields (BioFF).33 p (y|c) is defined analogously to
Eq. (42) with p(x) now paramaterized by c, i.e., p(x|c) ∝
exp[−βU(x|c)] through the potential energy U(x|c). The
reference ensemble is defined by c = c0. To lowest order,
the KL divergence SKL(c) grows quadratically with small
changes δc = c− c0 in the force-field parameter c,

SKL(c) ≈ δc2

2

∫
dy p (y|c0)

(
∂ ln p (y|c)

∂c

)2

c=c0

=
δc2

2

〈(
∂ ln p(y|c)

∂c

)2
〉

c=c0

(49)

with a proportionality coefficient that is given by the ex-
pectation value of the squared mean force with respect
to the parameter c. This relation follows from the defi-
nition of SKL and the normalization condition of p (y|c).
Note that errors in the force field might not only be due
to inaccurate parameters but also due to their simplified
functional forms.

In summary, we have to estimate the energy uncer-
tainty in observable space to determine θ according to
Eq. (1). We can use this θ-value to directly refine in con-
figuration space. If we refine in observable space instead,
then we use the optimal generalized forces as derived in
Ref. 9 to obtain the refined ensemble in configuration
space.
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III. METHODS

We explore the concept of gentle ensemble refinement
and the proposed encoding of prior knowledge using three
example systems of increasing complexity. We refine a
continuous version of the double-well model presented in
Ref. 10 and a simple polymer model based on the von
Mises probability distribution presented in Ref. 33 using
synthetic data. We also refine fully atomistic simulations
of the pentapeptide Ala5 in explicit solvent10 using data
from nuclear magnetic resonance (NMR) experiments.34

As a simple model system, we define the reference en-
semble in terms of a continuous double-well potential
given by

Uq(x) = a(x2 − x0
2)2 (50)

where x is a scalar and also serves as observable, i.e.,
y(x) = x. This energy function is symmetric with re-
spect to x = 0. It has two minima at ±x0 with values
Uq(±x0) = 0. These minima are separated by a barrier
at x = 0 of a height given by ax0

4. The corresponding
Boltzmann distribution is given by

q(x) =
e−Uq(x)

Qq
(51)

with the normalization constant (partition function)
given by

Qq =
π

2
x0 e

−c
[
I− 1

4
(c) + I 1

4
(c)

]
(52)

where c = ax0
4/2 and In (c) is the modified Bessel func-

tion of the first kind of order n. Note that ⟨x⟩q = 0 due
to symmetry.

In the following, we use x0 = 1 and a = 3 for the ref-
erence distribution q(x), such that the barrier height is
ax0

4 = 3 (Figure 2). The experimentally measured ex-
pectation value of the observables x is set to Y = 0.8.
The error is σ = 0.2. We use rejection sampling to gen-
erate an ensemble of N = 10000 independent random
points for ensemble refinement.

For concreteness, we also work out a specific case.
The reference potential Uq(x) deviates from the assumed
true potential by the addition of a linear term, Up(x) =
Uq(x)− b x, with Uq(x) = 3(x2−1)2 as above. A slope of
b = 1.217165 was chosen so that ⟨x⟩p = 0.8 = Y exactly.
The corresponding force-field error is varp(∆u) ≈ 0.51.
For this error, we expect a value of θ = 2/varp(∆u) ≈ 4
to give a balanced fit, as will be tested.

As a more realistic example, we refine a two-
dimensional polymer model33 using synthetic one-
dimensional data (Figure 3). The Boltzmann distribu-
tion is given by a product of von Mises distributions act-
ing on the angle differences between neighboring bonds.
In this phantom-chain model, the beads do not interact.
We set the mean values of the angle differences to zero.
All bonds have length one and we apply the same stiff-
ness parameter κ = 10. We randomly generate conforma-
tions of polymers with 100 beads. We sample N = 10000
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FIG. 2. Ensemble refinement of the double-well system us-
ing synthetic data. The black solid vertical line indicates the
experimentally measured observable of Y = 0.8. The grey
shaded area indicates Y ± σ with σ = 0.2. The reference
probability distribution function of the observable for param-
eters a = 3 and x0 = 1 is shown as black dotted line. The
histogram of N = 10000 samples drawn from the reference
distribution, Eq. (51), is shown as grey solid line. Histograms
of x obtained with BioEn optimal weights for different θ val-
ues are shown in color. For all distribution functions, we show
the average values of the observables as dashed vertical lines
in the corresponding color. The calculated average values ap-
proach the experimental value for decreasing θ.
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FIG. 3. Ensemble refinement of the polymer model10 using
synthetic data. The black solid vertical line indicates the
experimentally measured observable of Y = 75. The grey
shaded area indicates Y ± σ with σ = 5. The histogram of
N = 10000 samples drawn from the Boltzmann distribution
is shown as grey solid line. Histograms of the end-to-end
distance obtained with BioEn optimal weights for different θ
values are shown in color. For all distribution functions, we
show the average values of the observables as dashed vertical
lines in the corresponding color. The calculated average val-
ues approach the experimental value for decreasing θ.
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independent conformations. As observable, we use the
end-to-end distance. We set Y = 75 for the experimental
value and an error of σ = 5.

As an example for an actual application, we refine pre-
viously published simulation data10 of Ala5 with exper-
imental data in the form of NMR J-couplings.34 The
J-coupling calculation of Ref. 10 applied the Karplus
equation35 using the so-called DFT2 parameters from
Ref. 36. We use N = 50000 conformations as in the
original publication.

To find optimal solutions for the weights given
a value of θ, we use the forces method10 as im-
plemented in the open-source BioEn software avail-
able at https://github.com/bio-phys/BioEn. An
open-source Julia37 implementation using the pack-
age Optim.jl38 can be downloaded from https://
github.com/bio-phys/BioEn.jl free of charge. To
generate synthetic data, we use https://github.com/
bio-phys/RefinementModels.jl for the double-well
model and https://github.com/bio-phys/BioFF for
the von Mises polymer model. We use uniform reference
weights for all systems.

We illustrate the effects of refinement on the weights
using cumulative ranked weights.10 For the three sys-
tems, we compare numerical results for the cumulative
ranked weights to analytical results for Gaussian energy
distributions (see Appendix B).

IV. RESULTS

We first establish the range of validity for gentle en-
semble refinement for the three example systems, as es-
tablished in subsection II F. The range of validity of the
approximation of the KL divergence by the energy un-
certainty, Eq. (26), depends on the system under con-
sideration (Figure 4). We find good agreement for de-
creasing θ values down to (θ, SKL) ≈ (10, 0.17) for the
double-well system; to (θ, SKL) ≈ (10, 0.26) for the poly-
mer model; and to (θ, SKL) ≈ (1, 1.43) for Ala5. In
gentle ensemble refinement, the two definitions of the
KL divergence are approximately equivalent, SKL(p||q) ≈
SKL(q||p) [Eq. (34) and Figure 4]. The relative residuals
of SKL(q||p) and of the approximation by half the energy
variance with respect to SKL(p||q) are of similar shape
and magnitude but opposite sign (Figure 4, bottom pan-
els). For all three systems, we have SKL ≲ 1 for θ ≳ 10,
which overall delimits the regime of gentle refinement.

Having established the limits of validity for gentle en-
semble refinement, we now show that already gentle re-
finement substantially improves the agreement between
simulation and experiment. This improvement is illus-
trated by the L-curves defining Pareto fronts for Bayesian
ensemble refinement (Figure 5). The L-curve consists
of the optimal χ2 values divided by the number data-
points M plotted against the optimal KL divergence val-
ues SKL for different θ values. The three chosen θ values
(100,10,1) cover the elbow regions of the respective L-
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FIG. 4. Comparison of the KL divergence SKL(p||q), Eq. (15),
used in BioEn (black) to its approximation (dashed red line)
given by half the variance of the reduced energy change
β∆U , Eq. (26), and to its alternative definition SKL(q||p)
(dashed-dotted cyan line), Eq. (27). We show results for
the double-well system (top), the polymer mode (middle),
and Ala5 (bottom). The bottom panels show the relative
difference of −varp(∆u) (red dashed) and SKL(q||p) (cyan
dot-dashed) with respect to SKL(p||q) = −⟨∆u⟩p. The ap-
proximations roughly start deviating from the values given by
the exact expression at (θ, SKL) ≈ (10, 0.17) for the double-
well system, (θ, SKL) ≈ (10, 0.26) for the polymer model,
and (θ, SKL) ≈ (1, 1.43) for Ala5. For smaller θ values, we
leave the regime of gentle refinement. Vertical lines indicate
θ = 100 (blue), 10 (orange), and 1 (green).

curves. Note that these elbow regions are not sharply
defined. For gentle refinement at θ = 10, χ2 has drasti-
cally decreased while SKL remains relatively small.

Overfitting and underfitting are illustrated by the
double-well system (see Figure 2). We have underfitting
for θ = 100 as the calculated average is multiple standard
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FIG. 5. The L-curve plots of the optimal χ2/M vs. the op-
timal KL divergence SKL for the double-well system (top),
the polymer model (middle), and Ala5 (bottom). M is the
number of data points. Annotated disks indicate the optimal
values for θ = 100 (blue), 10 (orange), and 1 (green).

deviations away from the experimental value. We have
overfitting for θ = 1 as the calculated average agrees
nearly perfectly with the experimental average despite
the error. Both extreme cases are unlikely with respect
to the Gaussian likelihood, Eq. (5). The character of
the distribution of the observable can change quite sub-
stantially even when the optimal entropy values appear
relatively small, as we discuss in more detail below. For
the optimal ensembles, the statistical weights of the left
state [with observable values y(x) = x < 0] are given by
42%, 23%, 12% for (θ, SKL) = (100, 0.01), (10, 0.17), and
(1, 0.36), respectively, compared to 50% for the reference
state.

For the concrete example of a linear perturbation
(Methods), we obtain a balanced solution for θ ≈ 4, es-

timated using Eq. (1), between under- and overfitting.
In particular, the calculated mean after refinement of
⟨x⟩ ≈ 0.66 matches the target Y = 0.8 ± 0.2 within the
error. θSKL ≈ 1.05 is close to one, as expected. In this
sense, the θ estimate from Eq. (1) is indeed consistent.

The approximation of the KL divergence by the vari-
ance, Eq. (26), holds for arbitrarily shaped distribution
functions of the reduced energy differences ∆u (Figure 6,
top). The distribution functions are bimodal for the
double-well system, monomodal for the polymer model,
and well approximated by Gaussian distributions for
Ala5. The approximation of the KL divergence by the
variance works especially well for the latter, as it is exact
for a Gaussian ∆u distribution.

Refined weights with small entropy values can already
be quite different from the reference weights (Figure 7).
To illustrate this point, we focus on results for θ = 10
located in the elbow region of the L-curve (see Figure 5)
and within the regime of gentle refinement. We show the
cumulative ranked weights in Figure 7. For θ = 10, the
SKL values are small and range from 0.17 for the double-
well system, over 0.26 for the polymer model, to 0.37 for
Ala5. In these three cases, the cumulative weights show
that the top half of the conformations already have a cu-
mulative probability of 80%, which is quite a substantial
change. The relative weight of top ranked conformations
further increases with increasing KL divergence.

In Figure 7, we compare numerical results of the
ranked-weight distributions to analytical results obtained
by assuming Gaussian distributions of ∆u, parameter-
ized by ⟨∆u⟩ and var(∆u) calculated from the weights
(see Appendix B). For the largest value of θ and thus
the smallest values of SKL, the agreement is excellent.
However, for smaller values of θ, the agreement deterio-
rates somewhat. For the double-well system (Figure 7,
left column), the analytical approximation captures the
trends qualitatively but fails quantitatively because the
underlying distribution of ∆u is clearly non-Gaussian.
For the polymer model, the distribution of ∆u is skewed,
but unimodal for all θ values considered (see Figure 6),
resulting in near-quantitative agreement of the Gaussian-
based approximations and the actual weight distribu-
tions after refinement. For the most realistic case pre-
sented here, Ala5, the ∆u distribution is well approxi-
mated by a Gaussian. Consequently, the approximations
of the weight distributions are quite accurate, even for
the smallest value of θ = 1 with SKL ≈ 1.43.

V. DISCUSSION

When refining sufficiently gently, the KL divergence is
well approximated by the expected energy uncertainty,
Eq. (26). We can quantify and visualize the extent of
the resulting weight changes by SKL and a plot of the
cumulative ranked weights, respectively. KL divergences
SKL ≪ 1 and a narrow gap between the respective cu-
mulative ranked weights indicate good overlap between
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reference and refined ensembles.
Poor overlap, as indicated by large weight changes,

can be improved by enhanced sampling methods that
enrich the sample before refinement to better match
the experimental observables, e.g., by using replica
simulations.24,25 We then reweight the sampled ensemble
using MBAR or binless WHAM to produce a reference
ensemble for subsequent BioEn ensemble refinement, as
we have proposed in Ref. 9. By doing so, we can remove
any biases, e.g., due to a finite number of replicas. One
can also directly bias the degrees of freedom determin-
ing the values of the observables, e.g., by using empirical
force-field refinement, as described for example in Ref.
33. Also in this case, we can generate a reference ensem-
ble by reweighting the sampled ensembles for subsequent
BioEn ensemble refinement.

Even for gentle refinement, the changes to the refer-
ence weights can be noticeable. For θ = 10, we found
the top 50% of the conformations to carry ∼80% of the
weight in our three examples, consistent with the Gaus-
sian approximation (Figure 7). Despite the small entropy
values of SKL ≈ 0.2 to 0.4, these changes to the weights
are sufficient to substantially reduce the deviations from

experiment (see L-curves in Figure 5).
We suggest to use our prior knowledge about the force-

field accuracy in the space of observables to set the con-
fidence parameter as θ ∼= 2/var(β∆U), Eq. (1). One can
justifiably deviate from this proposal to set θ according to
available prior knowledge. For example, if larger values
of the variance are less likely than implied by the expo-
nential form of the prior with θ ∼= 2/var(β∆U), then one
should increase θ accordingly. In any case, the knowl-
edge of the expected variance var(β∆U) can be applied
to set and interpret the scaling parameter θ. Conversely,
a particular choice of θ by other reasoning is also an ex-
pression of the expected errors in state populations of the
reference ensemble. Whereas functions other than an ex-
ponential function could be used to define the prior, the
simple relation to the force-field error would most likely
be lost.

We build up experience about the force-field uncertain-
ties quite naturally. Experienced researchers performing
simulations will often be able to state expectations about
the energy uncertainties of their favorite force fields for
a class of observables. However, the mean-squared force-
field error can also be learned from repeated ensemble
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refinements against different experimental data across a
variety of systems.

VI. CONCLUDING REMARKS

The results presented here can be generalized to non-
Boltzmann distributions and are thus valid for the gen-
eral class of Bayesian/MaxEnt approaches for ill-defined
inverse problems. In such cases, we take advantage of the
fact that the energy entering Boltzmann’s distribution
corresponds to Shannon’s information content h(x) =
− ln p(x) for arbitrary probability distributions p(x).39
Consequently, the difference in energy corresponds to a
difference in information, ∆h(x) = ln[p(x)/q(x)], Eq. (9).
Like in gentle ensemble refinement, the KL divergence
can be approximated by the variance of this information
difference, i.e., SKL ≈ var(∆h)/2, if these differences are
small. In general, we express our confidence in the ‘nat-
ural unit of information’ or ‘nat’, which is numerically
equal to kBT for Boltzmann distributions.

Gentle ensemble refinement is a powerful tool for
molecular simulations and modeling. Empirical force
fields rely on approximations in their functional form
to trade off efficiency and accuracy. Therefore, not
all errors in the force field can be resolved just by re-
parameterization. Also, ensembles generated from other
methods than molecular simulations suffer from approxi-
mations and benefit from ensemble refinement.20–22 The
inaccuracies introduced by such approximations can be
alleviated using gentle ensemble refinement to integrate
system-specific information, most often in the form of
experimental data.
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Appendix A: Kullback-Leibler divergence for finite ensembles

For the sake of completeness, we show here how we
estimate the KL divergence, defined in Eq. (8) and in
Eq. (15) for Boltzmann distributions, from finite ensem-
bles. Consequently, the results presented in the main
text for continuous probability densities also apply to fi-
nite ensembles. As we show below, the discrete weights
wα and w

(0)
α generally correspond to ratios of probability

densities. Note that in the following we use pα = wα

and qα = w
(0)
α to reduce visual clutter and emphasize the

general validity of our results.
In general, we can calculate the information difference

expectation in Eq. (8) from an arbitrary normalized prob-

ability distribution q̃(x) by reweighting,

SKL(p||q) =
〈
ln

p(x)

q(x)

〉
p

=

〈
p(x)

q̃(x)
ln

p(x)

q(x)

〉
q̃

(A1)

On the right-hand side, we form the expectation with
respect to q̃(x). Equivalently, we obtain

SKL(p||q) =
〈
p(x)

q̃(x)
ln

(
p(x)q̃(x)

q̃(x)q(x)

)〉
q̃

(A2)

by inserting 1 = q̃(x)/q̃(x) into the logarithm of
Eq. (A1). We use this expression to estimate the KL
divergence from finite samples and properly interpret dis-
crete weights.

Using Eq. (A2), we can numerically estimate SKL(p||q)
from a sample of conformations xα sampled from q̃(x),
i.e., xα ∼ q̃(x), as

SKL(p||q) ≈ 1

N

N∑
α=1

p(xα)

q̃(xα)
ln

p(x)q̃(x)

q̃(x)q(x)
(A3)

Exploiting that the probability distributions p(x) and
q(x) only show up as ratios with q̃(x), we can introduce
normalized weights or probabilities Wα for the finite sam-
ple as

Wα =
W (xα)

q̃(xα)

[
N∑

γ=1

W (xγ)

q̃(xγ)

]−1

(A4)

such that
∑N

α=1 Wα = 1 for the finite ensemble. For the
reference ensemble, W (xα) = q(xα) with discrete weights
Wα = qα. For the refined ensemble, W (xα) = p(xα)
with discrete weights Wα = pα. Importantly, W (xα)
and q̃(xα) do not have to be normalized to calculate these
weights.

For normalized probability distributions p(x) and q(x),
the normalization term in the square bracket above is
equal to N ,

Wα =
1

N

W (xα)

q̃(xα)
(A5)

because xα ∼ q̃(x) and

1

N

[
N∑

γ=1

W (xγ)

q̃(xγ)

]
≈

〈
W (x)

q̃(x)

〉
q̃

=

∫
dxW (x) = 1 (A6)

Using Eq. (A5) for the corresponding probability ratios
in Eq. (A3), we obtain for the numerical estimate of the
KL divergence

SKL(p||q) ≈
N∑

α=1

pα ln
pα
qα

= −
N∑

α=1

pα∆uα (A7)
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Importantly, we can calculate the discrete weights pα
and qα using Eq. (A4) without the need for calculat-
ing partition functions. If we sample form the refer-
ence distribution, q̃(x) = q(x), then qα = 1/N and
pα = exp(−∆uα)/

∑N
γ=1 exp(−∆uγ). If we sample

from the refined distribution, q̃(x) = p(x), then qα =

exp(∆uα)/
∑N

γ=1 exp(∆uγ) and pα = 1/N .
In BioEn ensemble refinement, we calculate the proba-

bilities qα for the reference ensembles as 1/N for unbiased
simulations in agreement with Eq. (A4). We obtain ref-
erence weights from biased simulations by reweighting,
e.g., using MBAR40,41 or (binless) WHAM.42–45 We ob-
tain the optimal probabilities pα by maximizing the pos-
terior, Eq. (2), or equivalently by minimizing the negative
log-likelihood, Eq. (7).

Appendix B: Cumulative ranked weights

We derive derive an analytical expression for the cumu-
lative ranked weights for a Gaussian distribution of the
energy change ∆u. With mean µ = ⟨∆u⟩ and variance
σ2 = var(∆u), the weights w are distributed according to
a log-normal distribution for uniform reference weights,

f(w|µ̃, σ2) =
1√

2πσ2w
exp

[
− (lnw − µ̃)2

2σ2

]
(B1)

where µ̃ = −µ− lnN . The cumulative distribution of the
weights then is

F (w|µ̃, σ2) =
1

2

[
1 + erf

(
lnw − µ̃√

2σ

)]
(B2)

where erf(·) is the error function. We define the cumula-
tive average of weights w as

c(w) =

∫ w

0

w′f(w′|µ̃, σ2)dw′ (B3)

We normalize this function by the average weight c(∞)
such that

c(w)

c(∞)
=

1

2

[
1− erf

(
µ̃+ σ2 − ln 2√

2σ

)]
(B4)

The cumulative value of the weights, sorted in descending
order, as a function of the rank now corresponds to 1 −
F (w|µ̃, σ2) as a function of 1 − c(w)/c(∞). Introducing
r = 1 − c(w)/c(∞), with 0 ≤ r ≤ 1, we can rewrite 1 −
F (w|µ̃, σ2) as a function of r. We obtain the cumulative
ranked weights function

crw(r) =
1

2

[
1− erf

(
erf−1 (1− 2r)− σ√

2

)]
(B5)

where erf−1(·) is the inverse error function. To compare
this expression with the cumulative weights of a finite
ensemble of size N with discrete rank, we plot crw(n/N)

as a function of the continuous variable n with 0 ≤ n ≤
N − 1.

Note that if the approximation of the KL divergence
in terms of the variance alone holds, then Eq. (B5) is
parameterized by the KL divergence, σ/

√
2 ≈

√
SKL. For

example, the weight fraction of the top-half of the weights
is crw(1/2) ≈ 1

2

[
1 + erf

(√
SKL

)]
. These approximations

are exact in the Gaussian case.

Appendix C: Equivalence of Kullback-Leibler divergence in the
space of conformations and observables

As we have shown in Ref. 9, the BioEn refinement can
be performed equivalently in the space of conformations
x and in the space of observables y. Here, we show that
the KL divergences calculated in the respective spaces
have identical numerical values.

Following the Appendix in Ref. 9, let q(y) and p(y) be
the distributions in the space of observables according to
Eq. (42). As shown in the lead-up to Eq. (A5) of Ref. 9,
these distributions can be written in terms of a vector z
of constants zi as

p(x) =
q(x) exp

(∑M
i=1 yi(x) zi

)
∫
dx′ q(x′) exp

(∑M
i=1 yi(x

′) zi

) , (C1)

p(y) =
q(y) exp

(∑M
i=1 yi zi

)
∫
dy′ q(y′) exp

(∑M
i=1 y

′
i zi

) . (C2)

where we use dy′ =
∏M

i=1 dy
′
i. Importantly, the coeffi-

cients zi are the same in both configuration and observ-
able space.9

The KL divergence in observable space y is by defini-
tion,

S
(y)
KL =

∫
dy p(y) ln

p(y)

q(y)

=

∫
dy p(y)

M∑
i=1

yizi − ln

∫
dyq(y)e

∑M
i=1 yizi

We now rewrite the KL divergence in the space of con-
formations x in terms of observables y by inserting Dirac
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delta functions,

S
(x)
KL =

∫
dx p(x) ln

p(x)

q(x)

=

∫
dx p(x)

M∑
i=1

yi(x)zi − ln

∫
dx p(x)e

∑M
i=1 yi(x)zi

=

∫
dy

∫
dx p(x)

M∏
i=1

δ[yi(x)− yi]

M∑
i=1

yi(x)zi

− ln

∫
dy

∫
dx p(x)

M∏
i=1

δ[yi(x)− yi]e
∑M

i=1 yi(x)zi

=

∫
dy p(y)

M∑
i=1

yizi − ln

∫
dyq(y)e

∑M
i=1 yizi (C3)

We find that the KL divergences in the x and y spaces
are identical,

S
(x)
KL = S

(y)
KL ≡ SKL (C4)

We can thus estimate SKL in either space.

1S. Gull and G. Daniell, Nature 272, 686 (1978).
2M. Nilges, M. Habeck, and W. Rieping, Comptes Rendus Chimie
11, 356 (2008).

3A. B. Ward, A. Sali, and I. A. Wilson, Science 339, 913 (2013).
4S. Bottaro and K. Lindorff-Larsen, Science 361, 355 (2018).
5E. T. Jaynes, in Maximum Entropy and Bayesian Methods in
Applied Statistics, edited by J. H. Justice (Cambridge University
Press, 1986) pp. 27–58.

6S. Kullback and R. A. Leibler, Ann. Math. Statist. 22, 79 (1951).
7P. C. Hansen and D. P. O’Leary, SIAM J. Sci. Comput. 14, 1487
(1993).

8B. Różycki, Y. C. Kim, and G. Hummer, Structure 19, 109
(2011).

9G. Hummer and J. Köfinger, J. Chem. Phys. 143, 243150 (2015).
10J. Köfinger, L. Stelzl, K. Reuter, C. Allande, K. Reichel, and

G. Hummer, J. Chem. Theory Comput. 15, 3390 (2019).
11V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, in 2011

31st International Conference on Distributed Computing Sys-
tems Workshops (2011) pp. 166–171, iSSN: 2332-5666.

12A. Cultrera and L. Callegaro, IOPSciNotes 1, 025004 (2020),
publisher: IOP Publishing.

13S. F. Gull, in Maximum Entropy and Bayesian Methods, edited
by J. Skilling (Springer Netherlands, Dordrecht, 1989) pp. 53–71.

14J. Skilling, in Maximum Entropy and Bayesian Methods: Cam-
bridge, England, 1988 , edited by J. Skilling (Springer Nether-
lands, Dordrecht, 1989) pp. 45–52.

15E. T. Jaynes, Phys. Rev. 106, 620 (1957).

16J. W. Pitera and J. D. Chodera, J. Chem. Theory Comput. 8,
3445 (2012).

17A. Cesari, A. Gil-Ley, and G. Bussi, J. Chem. Theory Comput.
12, 6192 (2016).

18S. Bottaro, G. Bussi, S. D. Kennedy, D. H. Turner, and
K. Lindorff-Larsen, Sci. Adv. 4, eaar8521 (2018).

19J. Skilling, in Maximum Entropy and Bayesian Methods, edited
by P. F. Fougère (Springer Netherlands, Dordrecht, 1990) pp.
341–350.

20K. Reichel, L. Stelzl, J. Köfinger, and G. Hummer, J. Phys.
Chem. Lett. 9, 5748 (2018).

21L. S. Stelzl, L. M. Pietrek, A. Holla, J. Oroz, M. Sikora, J. Köfin-
ger, B. Schuler, M. Zweckstetter, and G. Hummer, JACS Au 2,
673 (2022).

22L. M. Pietrek, L. S. Stelzl, and G. Hummer, J. Chem. The-
ory Comput. (2024), https://doi.org/10.1021/acs.jctc.3c01049,
(accepted).

23S. Bottaro, T. Bengtsen, and K. Lindorff-Larsen, in Methods
in Molecular Biology, Vol. 2112, edited by Z. Gáspári (Humana,
New York, NY, 2020) pp. 219–240.

24R. B. Best and M. Vendruscolo, J. Am. Chem. Soc. 126, 8090
(2004).

25M. Bonomi, C. Camilloni, A. Cavalli, and M. Vendruscolo, Sci.
Adv. 2, 1 (2016).

26E. T. Jaynes, in Statistical Physics (K. Ford (ed.), Benjamin,
New York, 1963) p. p. 181, section: Information Theory and
Statistical Mechanics.

27T. Dannenhoffer-Lafage, A. D. White, and G. A. Voth, J. Chem.
Theory Comput. 12, 2144 (2016).

28G. Hummer, J. Chem. Phys. 114, 7330 (2001).
29J. Gore, F. Ritort, and C. Bustamante, Proc. Natl. Acad. Sci.

U.S.A. 100, 12564 (2003).
30G. Hummer, L. R. Pratt, and A. E. Garcia, J. Phys. Chem. 99,

14188 (1995).
31R. W. Zwanzig, J. Chem. Phys. 22, 1420 (1954).
32W. G. Noid, J. Phys. Chem. B 127, 4174 (2023).
33J. Köfinger and G. Hummer, Eur. Phys. J. B 94, 245 (2021).
34J. Graf, P. H. Nguyen, G. Stock, and H. Schwalbe, J. Am. Chem.

Soc. 129, 1179 (2007).
35M. Karplus, J. Chem. Phys. 30, 11 (1959).
36D. A. Case, C. Scheurer, and R. Brüschweiler, J. Am. Chem.

Soc. 122, 10390 (2000).
37J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, SIAM

Rev. 59, 65 (2017).
38P. K. Mogensen and A. N. Riseth, J. Open Source Softw. 3, 615

(2018).
39C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
40C. H. Bennett, J. Comput. Phys. 22, 245 (1976).
41M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105

(2008).
42A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195

(1989).
43S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and

P. A. Kollman, J. Comput. Chem. 13, 1011 (1992).
44M. Souaille and B. Roux, Comput. Phys. Commun. 135, 40

(2001).
45E. Rosta, M. Nowotny, W. Yang, and G. Hummer, J. Am. Chem.

Soc. 133, 8934 (2011).

https://doi.org/10.26434/chemrxiv-2023-71rr6-v3 ORCID: https://orcid.org/0000-0001-8367-1077 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-71rr6-v3
https://orcid.org/0000-0001-8367-1077
https://creativecommons.org/licenses/by/4.0/

