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Coarse-grained (CG) molecular dynamics (MD) simulations have grown in applicability over the years. The recently
released version of the Martini CG force field (Martini 3) has been successfully applied to simulate many processes,
including protein-ligand binding. However, the current ligand parameterization scheme is manual and requires an a
priori reference all-atom (AA) simulation for benchmarking. For systems with suboptimal AA parameters, which are
often unknown, this translates into a CG model which does not reproduce the true dynamical behavior of the underlying
molecule. Here we present Bartender, a quantum mechanics (QM)/MD-based parameterization tool written in Go.
Bartender harnesses the power of QM simulations and produces reasonable bonded terms for Martini 3 CG models of
small molecules in an efficient and user-friendly manner. For small, ring-like molecules, Bartender generates models
whose properties are indistinguishable from the human-made models. For more complex, drug-like ligands, it is able to
fit functional forms beyond simple harmonic dihedrals, and thus better captures their dynamical behavior. Bartender has
the power to both increase the efficiency and the accuracy of Martini 3-based high-throughput applications by producing
stable and physically realistic CG models.

1. Introduction
Molecular dynamics (MD) simulations are useful tools for
probing the dynamical behavior of biomolecular systems.
For example, they can be integrated into larger
workflows, such as drug discovery pipelines1,2. Within
drug discovery campaigns, these methods can be used
to identify druggable pockets in proteins3,4, to calculate
the binding affinity of several ligands to a given protein5,6

or to guide lead-optimization7,8 efforts. Among the
available simulation methods, coarse-grained (CG)
approaches represent a trade-off between molecular
detail and computational efficiency. One of the most

popular CG methods is the Martini force field9–11, the
most recent version being Martini 3.10 Simulations of
molecular systems with Martini 3 have found wide
application, such as in the study of protein-lipid
interactions12–15, green solvents16,17, polymer systems18–20

and protein-ligand binding21–24 . The Martini force field
philosophy rests on a building-block approach, where
groups of atoms (representing chemical moieties) are
grouped into simulations beads of various sizes and
chemical types. The bonded parameters for these
building blocks (bonds, angles, dihedrals) are
parameterized with respect to reference all-atom (AA)
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simulations. The bead types are assigned based on the
hydrophobicity and underlying chemical groups they
represent and calibrated using experimental data such
as oil-to-water transfer free energies10,25.
Currently, small molecule parameterization in Martini 3 is
a manual, time-intensive, and iterative process. While
inspiration may be drawn from the molecules deposited
on the MAD database26 and the Martini 3 small molecule
models25, these repositories do not cover the whole of
the chemical space. Thus, a tool that could help
automate the process, starting from AA to CG mapping
followed by bonded parameter determination and bead
assignment, would be highly desirable. Steps have been
taken towards this direction in the past: in 2015, Bereau
and Kremer unveiled AutoMartini27, an automatic
parameterization workflow for Martini 2, with the aim of
streamlining Martini small-molecule parameterization
schemes by integrating the mapping and
parameterization steps into a easy-to-use pipeline. Later,
Graham et al. developed PyCGTool28, a Python pipeline
to generate bonded parameters for small molecules.
This pipeline was validated against two small-molecule
drugs (atenolol and capsaicin), one lipid
(dipalmitoylphosphatidylcholine, DPPC) and a
polyalanine strand. While PyCGTool28 achieved good
accuracy in generating the bonded parameters, it has
some limitations in terms of the types of potentials
included within the code. For example, the authors state
that in keeping with the Martini philosophy, PyCGTool
uses a cos-harmonic angle potential and dihedrals are
not usually defined. Recently, other approaches for
bonded-parameter generation and optimization were
explored. Examples are cg_params29, a tool for
generating mapping and bonded parameters covering a
wide range of chemical space, and CGcompiler30 or
Swarm-CG31, tools dedicated to the optimization of
Martini models.
These tools utilize reference AA MD, generated by the
user, to obtain bonded-parameter distributions, from
which the Martini bonded parameters are obtained. This
approach requires significant manual work from the user,
as, at minimum, the AA simulation must be prepared, run
and compared to CG parameters for further optimization.
Moreover, manual parametrization of the AA system
might be required. Furthermore, the procedure assumes
that the force field used to generate the AA MD data
describes appropriately the conformational flexibility of
the small molecule to be parameterized. It is known that
in some cases, AA parameters may be suboptimal,
including but not restricted to imprecisions in the
samplable free energy surface of dihedrals32. An
alternative approach is to generate the parameters from
quantum mechanical (QM) simulations. While
post-Hartree-Fock and even Density Functional Theory
(DFT) methods are too computationally expensive, fast

and reasonably accurate semiempirical methods have
been available for some years, which can make the
problem treatable33.
In this work we present Bartender, a tool for assisting in
the determination of Martini 3 bonded parameters for
small molecules. Bartender was tested on two separate
datasets, the first one containing 85 ring-like small
molecules from 25 and a second one composed of 10
conjugated, drug-like ligands. The first dataset was used
as a benchmark, to validate Bartenders’ workflow on
molecular fragments. The second dataset was
constructed such that it contained flexible molecules
which are difficult to parameterize. It was used to
compare Bartenders’ parameterization capabilities
against PyCGTool28, which was shown to produce
parameters of reasonable accuracy for different
molecular classes. The impact of Bartender in
small-molecule parameterization is showcased using
thyroxine, comparing dihedral distributions arising from
QM-MD and standard atomistic simulations.
By relying on modern semiempirical QM methods34,
Bartender bypasses the need for a classical atomistic
MD simulation, replacing it by easy-to-use QM-MD
calculations with xtb33. Additionally, Bartender
implements a variety of functional forms for both angles
and dihedrals, enabling a better fit to the reference
distributions. Thus, most of the procedure can be
automated, and the quality of both the reference MD
trajectories and the resulting Martini 3 parameter set is
improved. Importantly, Bartender allows non-experts to
obtain Martini parameters for their systems of interest
and thus constitutes an important step towards the
routine employment of Martini's computational efficiency
for the high-throughput study of large sets of molecules.

2. Computational methods
2.1 Implementation
Bartender is a Go program, employing the goChem35

and Gonum36 libraries for chemical and mathematical
facilities, respectively. Although fully open-source, it is
most easily installed from the binary distribution
provided. Bartender has no runtime dependency other
than the xtb program33 (which is free and open source).
The open-source xdrfile library, distributed by the
GROMACS37 developers is required only if XTC
trajectory support is wanted.
Bartender was programmed in a modular fashion to
simplify maintenance and the addition of new features. It
is a command-line program. Its user interface comprises
several optional arguments that modify the program’s
behavior. For all of them, sensible defaults are provided,
so, in most cases, they can be omitted.
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Figure 1: Flow chart of the Bartender procedure, including input files required, and output files produced by the program. Boxes
represent data, while arrows represent procedures.

In addition to the optional arguments, Bartender takes
two required input files. One with the atomistic structure
of the system to be parametrized (in XYZ, PDB or GRO
formats) and a second one, containing the mapping from
the atoms to Martini beads, as well as the bonded terms
to be parametrized.
From the given input, Bartender can perform an MD
simulation of the system with one of the GFN-xTB
semiempirical quantum-chemical methods34,38 or with the
related GFNFF force-field39, and using a continuum
model for solvent effects40 (Figure 1). All these methods
are of high computational efficiency, and have been
shown to yield reliable geometries33. The xtb program is
employed for all the simulations. The length of the
simulation can be controlled by the user. A user flag is
also available for the user to provide their own trajectory
file, in DCD or XTC format, bypassing the need for
Bartender to perform a simulation at all.
From the MD trajectory, and for every bonded parameter
in the input file, Bartender obtains a probability
distribution by (1) mapping the atoms involved into
Martini beads according to a center-of-geometry (COG)
approach and (2) extracting the underlying dynamics of
that parameter (Figure 1). The distribution is then
employed to calculate energies for each numerical value
of each term, by means of the Boltzmann distribution.
The values for the parameters are then obtained by
fitting the energy plots for each bonded term to different
potential functions available in the GROMACS

package37. Thus, a harmonic potential is fitted for bond
lengths, angles and improper dihedrals. However, bonds
with a force constant greater than 2*104 kJ.mol-1.nm-2,
are modeled with constraints. For proper dihedral terms,
both a simple-periodic and a Ryckaert-Belleman (RB)
function are fitted. A restricted-bending potential41 is
provided for the latter terms, so as to prevent spurious
coplanarity of the atoms involved, a problem that can
arise during CG simulations. A combined
torsion-bending potential is also provided42. The
native-go Gonum library36 is employed for the fitting
procedures.
The Martini 3 bonded terms often model complex
underlying motions in the atomistic molecule. Thus, the
potential energy surface for the terms, even bond
stretchings, can be highly anharmonic or multimodal in
the mapped atomistic simulations. Bartender contains
several heuristics to deal with complex potential energy
surfaces, which reproduce the methods employed by
experts when parametrizing molecules manually. The
heuristics include: (i) the elimination of high-energy
points, which reflect points with very low sampling (i.e.
only 1 frame in the whole trajectory); (ii) the average
fitting for multimodal distributions, which can be used to
fit potentials in bond and angle energy plot with two or
more minima (see example in Figure S1); (iii) the
removal of anharmonicities by a slope criterion. The
behavior of the heuristics can be tuned by command line
flags.
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In addition to writing the obtained parameters to a
GROMACS-formatted topology file, which contains the
RMSD for each fit as a comment, Bartender writes, for
each term, a PNG image file with a plot of both the
MD-derived values and the potential function fitted to
them. Grace-formatted43 text files with the same values
are also written, so users can make their own plots.
During its run, Bartender will print messages and
warnings to the standard output, designed to guide
corrections to the initial parameterization and alert of
possible problems. Bartender’s verbosity level can also
be adjusted. The code of Bartender can be found at
https://github.com/Martini-Force-Field-Initiative/Bartender

2.2 General Simulation Parameters

2.2.1 - Generic Martini 3
Bartenders’ capabilities were evaluated on two datasets,
one with 85 ring-like molecules and another containing
10 flexible drug-like ligands, totaling 95 molecules. The
datasets are detailed in Tables S1 and S2 of the
Supporting Information.
An AA structure of each molecule was first uploaded to
the CGBuilder web interface[
https://jbarnoud.github.io/cgbuilder/]. Within CGBuilder,
the molecule was mapped to the CG resolution and the
corresponding mapping and structure files were
retrieved. The settings for the CG simulations adhere to
the “new” set of Martini run parameters44, which is
default for Martini 3. Specifically, a time step of 20 fs is
used, and the Verlet neighbor search algorithm was
applied to update the neighbor list, employing a straight
cutoff of 1.1 nm. Pressure and temperature were
maintained using the Parrinello–Rahman barostat45

(coupling parameter of 12.0 ps) and the
velocity-rescaling thermostat46 (coupling parameter of
1.0 ps), respectively. 44

2.2.2 - AA Simulations
For each molecule, a SMILES string generated using
openbabel47 was supplied to the LigParGen server48.
From the server, a OPLS-AA/1.14*CM1A-LBCC model
was obtained which also included a GROMACS itp file
and a coordinate file. The molecule was then inserted
into a 4x4x4 nm TIP3P water box. The solvated system
was then simulated for 2 microseconds at 298.15K,
controlled using the Nose-Hoover thermostat49, and 1
bar pressure, controlled using the Parrinello-Rahman
barostat45, using a 2fs integration time-step. The
thermostats’ coupling parameter was set at 1 ps and the
barostats’ coupling parameter was set at 5 ps. The Verlet
algorithm was used to build the neighbor list. All
simulations were run with GROMACS37 version 2019.x
or later.

2.2.3 - QM Simulations
Simulations of each molecule at the GFN234 level of
theory were carried out using xtb34 inside Bartender. The
simulations were carried out in an implicit solvent
mimicking water with a dielectric constant of 80 at
298.15K. For the Martini 3 small molecule dataset,
consisting of rigid rings, simulations were limited to 1 ns.
Meanwhile, for the dataset comprising flexible systems,
including conjugated and drug-like small molecules,
extensive 100 ns trajectories were conducted.

2.2.4 - Martini 3 small molecule dataset
Densities and enthalpies of vaporization have been
computed for the models in the small molecule Martini 3
dataset as described in the work of Alessandri and
co-workers.25 Briefly, a liquid phase was modeled as an
equilibrated box with dimensions of around 5×5×5 nm³,
while a gas phase was represented by a single molecule
occupying a simulation box of 7×7×7 nm³. Simulations
for the liquid phase were conducted in the NPT
ensemble at 298 K and 1 bar, while gas phase
simulations were carried out in the NVT ensemble at 298
K. The enthalpy of vaporization (ΔHvap) was calculated as
ΔHvap ≈ Ugas − Uliq + RT, in which Ugas and Uliq represent
the total energies per mole for the gas and liquid phases,
respectively, obtained from NVT simulations. Densities
were acquired using the GROMACS tool gmx density.
Note that in this analysis we used the actual molar mass
of the molecule rather than the standard Martini 3
masses (72 Da, 54 Da, and 36 Da for regular, small, and
tiny beads, respectively).

2.2.5 - Martini 3 Conjugated systems and/or drug-like
small-molecules
The CG models of the molecules were embedded into a
5x5x5 nm³ water box, and simulated for 2 microseconds
at 298.15K and 1 bar pressure using a 20 fs integration
time-step, with the same setup as for the ring systems
described above. Simulations were carried out for three
sets of models: a manually optimized model (described
as “Human”), a model produced by PyCGTool
(PyCGTool) and a model produced by Bartender
(Bartender). All simulations were run with GROMACS
version 2019.x37 or later. Stability testing was also
performed by inserting 10 copies of each molecule in a
15x15x15 nm³ water box and simulating this box for 2
microseconds using the same setup as above. This
dataset was selected specifically because it includes (1)
realistic cases where parameterization is not
straightforward, (2) atoms whose atomistic parameters
may be suboptimal (Thyroxine case) and (3) molecules
that are flexible and have several dihedrals, both
hindered and freely rotatable.
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2.3 Bonded-parameter extraction strategies

2.3.1 Bartender: Martini 3 small molecule dataset
Bartender was used to generate bonded parameters for
each molecule of the Martini 3 small molecule dataset by
providing the following two files: (1) an all-atom structure
file (in pdb format) of the molecule and (2) a Bartender
input file. The Bartender input file contains two sections:
a top section where the mapping is defined and a bottom
section where the bonded-parameters to be fit are
specified. We provide a utility script,
write_bartender_inp.py, to generate Bartender
input files given a GROMACS topology file (itp format)
and a GROMACS index file that defines the mapping
from AA to CG. Such files are available for all the models
in the Martini 3 small molecule dataset at the repo
https://github.com/ricalessandri/Martini3-small-molecules
. After the run, the bonded parameters generated were
complemented by the bead (and virtual site) definitions
taken from the original dataset topologies in order to
generate the complete Bartender topologies that can be
used for simulations. We also provide a utility script,
produce_bartender_sm3_itps.py, to facilitate this
last step.
2.3.2 - Bartender: Conjugated systems and/or
drug-like molecules
The Bartender software suite was used to generate initial
parameter sets for each of the ten molecules in the
flexible molecules dataset either using a QM simulation
generated by xtb or using all-atom MD simulations
produced using OPLS in GROMACS. In both cases, a
structure file (pdb or xyz format) and a Bartender input
file (described in 2.3.1) were fed to the pipeline. In some
cases, where the fitting procedure may fail or struggle to
fit the underlying distribution, some flags can be
employed as described in Section 2.1. For the
parameter sets coming from fitting all-atom MD
simulations, the “-removeAnharmonic” flag was used to
adjust 5 bonds and 1 improper dihedral and the
“-histCutoff” flag was used to adjust 2 angles and 1
improper dihedral. Additionally, some of the angles had
to be removed from analysis because they were
manually changed to yield more stable models. The flags
were also used to adjust some parameters arising from
the QM simulation fitting procedure. In particular, the
“-histCutoff” flag was used to adjust one angle and the
“-improperIncrement” flag was used to adjust one
improper dihedral. A Table (Table S3) highlighting which
bonded-parameters were modified or removed from the
analysis is given in the Supporting Information.

2.3.3 - PyCGTool: Conjugated systems and/or
drug-like molecules
In order to compare Bartender to PyCGTool, four input
files were generated per molecule: (1) A file in PyCGTool

style describing the mapping of the molecule, (2) a file
containing the internal coordinates of the molecule as
defined by the user, (3) a coordinate file generated by
LigParGen48 by supplying the corresponding SMILES
code50, (4) and a 2 microsecond long all-atom simulation
of the molecule in question (see paragraph 2.2). These
input files were supplied to PyCGTool to generate the
parameters for the model. Measured distributions for the
given bonds, angles, and dihedral angles were set to be
printed out as well.

3. Results and Discussions
Most Martini 3 small-molecule parameterization
strategies employ a comparison to AA reference
simulations for bonded-parameter optimization.
However, there are cases where the underlying AA
parameters for small molecules are inaccurate, either
due to lack of appropriate benchmark data during the
parameterization process or other problems. Typically,
this is observed in flexible molecules, especially those
with hindered torsions, although theoretically, it could
impact any molecule. One way to circumvent this issue
at the level of CG small-molecule model building, and
bypass the “man-in-the-middle” scenario, is to use QM
simulations as a reference. While this strategy is
attractive, the setup of a QM simulation is not trivial and
may be quite computationally expensive to carry out. By
integrating the xtb software suite developed by the
Grimme lab34 in its simulation-and-fitting pipeline,
Bartender enables users to access fast and easy-to-use
QM simulations via the GFN2 method. Given the
inherent differences between classical force fields and
QM simulations, we investigated how different would the
resulting bonded-parameter distributions be. Two sets of
small molecules were investigated: the Martini 3 small
molecule dataset, composed of rigid rings and a
complete new set of more flexible systems composed of
conjugated and drug-like small molecules.

3.1 Benchmark on the Martini 3 small molecule
dataset: rigid ring molecules
We start by testing the ability of Bartender to assign and
derive bonded parameters for a published dataset of
Martini 3 small molecule models.25 This dataset contains
90 models, and it is rich in models representing rigid,
ring-like structures, both aliphatic and aromatic. To
ensure a fair comparison with Bartender, we exclude
models that were optimized beyond the standard
COG-mapping scheme, leading to a subset of 85 models
that we use for the comparison. Bartender properly
assigned the bonds of the models as constraints or
harmonic potentials in 90% of the cases, with the
misassignments still resulting in reasonable and
computationally stable models. The choice between
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constraints and harmonic potentials has no defined rule
in Martini 3, being usually a choice made by the
developer based on a balance between fitting of bond
distance distributions, numerical stability of simulations,
and model consistency with similar molecules. Instead,
Bartender has a defined upper limit value of force
constant to select harmonic potentials or constraints.
Given the fact that all the models produced were stable
at 20 fs, the different assignments here are acceptable
choices. The correlation between QM-based
Bartender-obtained and the reference, atomistic-based
human-obtained bond lengths is shown in Figure 2A,
highlighting a very high correlation (R2 = 0.96) and low
RMSE (0.02 nm). Similarly, Figure 2B shows the
correlation for the improper dihedral angles (note that
only 41 out of the 85 models contain at least one
improper dihedral), depicting a practically perfect
correlation (R2 = 1.00) and very low RMSE (3.08 deg). In
summary, Bartender can be used to derive bonded
parameters for the rigid, ring-like structures of the Martini
3 small molecule dataset.
The comparison of bonded parameters serves as a
useful proxy for predicting the final performance of the

model when all other factors are held constant. However,
the ultimate objective of these models is to exhibit
properties that align with experimental observations.
Hence, for all the Bartender models we computed the
mass density and compared the obtained values to
experiments (Figure 2C). This allows for a direct
comparison with the COG-mapped models of the Martini
3 small molecule dataset (Figure 2D; data from Ref25).
Comparing the performance of the two sets, we see how
the achieved mean absolute percentage errors (MAPEs)
are very similar, with Bartender leading to an overall
MAPE only marginally worse than the human-fitted set
(7.5% vs 7.2%). A similar comparison is shown in the
Supporting Information for heat of vaporization (Figure
S2), showing how the Bartender-fitted models are
virtually indistinguishable from the COG-mapped models
of Ref. 25. In summary, Bartender generates Martini 3
models for ring-like structures whose properties are
indistinguishable from the human-made models and with
a very small computational cost (see Section 3.4),
demonstrating high promise for high-throughput
applications.

Figure 2. Bartender benchmark on the Martini 3 small molecule dataset bonded parameters. Correlation between
Bartender-obtained and the reference, human-obtained (A) bond lengths and (B) improper dihedral angles for the 85 COG-mapped
models of the Martini 3 small molecule dataset.25 The dashed and dotted lines represent error percentages and absolute errors for the
bond lengths and improper dihedral angles, respectively. Correlation of the experimental mass density and the computed mass
density obtained with the models parameterized using (C) Bartender and (D) human experts.25 In (C) and (D), green triangles denote
data points associated with aromatic compounds, while blue squares represent those related to aliphatic compounds, while dashed
and dotted lines denote threshold error lines of ±5% and 10%, respectively.
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3.2 Conjugated systems and drug-like: flexible small
molecules dataset

3.2.1 - Bartender enables CG parameterization via
“easy-to-use” QM simulations
Here we selected a new dataset of ten flexible
molecules, exclusively parametrized for this work, which
contained: (1) periodic and improper dihedrals, (2)
hindered dihedrals, or (3) multimodal angles. The
dataset (Supplementary Information) comprised five
small organic compounds, three approved drugs
(Pomalidomide, Pitolisant and Thyroxine) and two plastic
dimers (PET and PEF). Given that Bartender may use
different potential forms to fit the bonded parameters, the
results were analyzed in this set of molecules directly
comparing the distributions of bonded terms (distances,
angles, etc) of the QM/Bartender based models and
atomistic/manually built ones. As observable in Figure
3A, there are significant differences across all of the

bonded parameters, in particular for both angles and
dihedrals. These differences were expected, as angle
distributions will necessarily impact the dihedrals.
Interestingly, it appears that Bartender-estimated
equilibrium values for bonds (or constraints) and angles
are systematically shorter than what is predicted from
fitting the AA simulations (Figure 3B, left plot). In an
opposite trend,the QM-derived bonded-parameters have
stronger force constants than their atomistic
counterparts, which may indicate that the potentials
underlying AA distributions may be too soft. It is
important to note that the periodic dihedrals are absent
from Figure 3B because it was impossible for Bartender
to fit a harmonic dihedral for all of them. Comparison
between RB and simple, harmonic, dihedrals is not
straightforward as the functional forms are different and it
is difficult to estimate equilibrium values and force
constants from the RB parameters.

Figure 3. Comparison between parameters extracted from Bartender-fitting QM and AA MD simulations of flexible
molecules. A) Comparison of Martini 3 bonded-parameter distributions between mapped QM and atomistic simulations. Models 6 to
10 corresponds to the drug-like compounds PET, PEF, Pitolisant, Pomalidomide and Thyroxine. B) Comparison of equilibrium and
force constant values obtained from fitting the QM and AA trajectories.
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Additionally, since the QM simulations are only 100 ns
long, there is always the possibility that the QM
simulations suffer from undersampling of the potential
energy landscape, although the use of implicit solvent
may speed-up the conformational dynamics of the
molecule. It is interesting to note that the large majority, if
not all, of the outliers here noted correspond to either the
drug molecules (models 8,9,10) or the plastic dimers
(models 6,7), which are clearly the harder molecules in
our dataset. As an example, we detail the results
obtained for Thyroxine.

3.2.2 - Challenge case: thyroxine
The importance of nuclear receptors is well-known, as
they regulate important cellular processes impacting cell
homeostasis and development, metabolism and
reproduction.51 Binding of small-molecule ligands leads
to their modulation, affecting downstream signaling
cascades52. Among them, isoforms of the thyroid
receptor regulate growth and cell metabolism by binding
thyroid hormones53. Thyroxine (also known as T4) is a
non-steroidal and hydrophobic hormone produced in the
thyroid gland. It is shielded and protected in the
bloodstream by binding to several proteins, mainly to the
thyroxine-binding globulin (TBG) but also to transthyretin
and albumin54. In solution, thyroxine can explore two
distinct conformations, which are interconvertible by
rotating the outer ring from one side of the middle ring to
the other: cisoid, where the ring on the end points
upwards, and transoid, when it points downward55. The
free energy barrier governing the cisoid-to-transoid
dihedral rotation was estimated, at 185K, to be around
37 kJ/mol55.
Experimental data shows that thyroxine binds to TBG in
the cisoid conformation56,57 but to the canonical pocket of
thyroid receptors in the transoid configuration,58,59 hinting
that proper parameterization of the dihedrals within the
molecule is fundamental to developing a realistic
thyroxine model. In particular, the parameterization
strategy must take into account that the free energy
barrier associated with ring-to-ring rotation is high even
at room temperature and that both transoid and cisoid
configurations are accessible but not easily

interconvertible. Thus, thyroxine constitutes an
interesting showcase to compare atomistic to
QM-derived parameters for CG simulations. The
molecule also has four iodine atoms, which can be
challenging to properly parametrize in classical atomistic
force fields.
The results from this showcase are summarized in
Figure 4, where we compare the performance of
Bartender to either human-generated or pyCGtool-based
models. The overall molecular volume is consistent
across the various models, as assessed via the average
Solvent Accessible Surface Area (SASA) calculations
(Figure 4B). It is interesting to note that for most angles,
the equilibrium values extracted from AA MD are
significantly larger than those for QM. Additionally, for
angles 3-6-9 and 6-7-9, AA MD samples two states
whereas the QM simulations were locked in the energy
basin furthest away from 180 degrees. These angles are
important because they impact the inter-ring dihedral
5-6-7-8 (Figure 4C). In particular, since only one of the
states is accessible in the QM simulation, the ring-to-ring
orientation is locked into the conformation shown at the
left of Figure 4D. In the atomistic simulation, both basins
are accessible in either of the angles mentioned, which
enables the rotation around the 5-6-7-8 dihedral and
leads to the molecule sampling both configurations
(transoid and cisoid) albeit with a small free energy
barrier (7 kJ/mol as estimated from the atomistic
simulation). Since Martini 3 models are typically
parameterized from AA MD, it follows that the CG
simulations will naturally capture both these states,
separated by a low-energy barrier. However, given the
evidence in the literature and our QM results, it may be
the case that the AA parameters for this dihedral rotation
comprise a too low force constant, with potential
downstream impact in binding-free energy estimates
when studying the thyroxine-thyroid receptor system. For
example, it may mean that the entropy of binding for this
“too flexible” model becomes too large and hampers
binding into its pocket in the receptor during MD
simulation. However, given that the QM simulation was
not able to sample the transition, undersampling of the
potential energy landscape may bias the analysis.
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Figure 4. Thyroxine challenge case. A) AA structure with Martini 3 beads overlaid on top. The numbers identify the bead number
and the letters the bead type. B) Average Solvent-Accessible Surface Area (SASA) estimated for each simulation (Atomistic-mapped,
Human-generated CG model, Bartender model, PyCGTool model and QM-mapped, respectively). C) Distribution plots for angles and
dihedrals of thyroxine, computed from a mapped QM simulation at 298.15K (blue), and a mapped AA simulation (red). D)
Configurational ensembles sampled during the QM-MD simulation, the AA simulation, and the Martini 3 simulations parametrized
based on either QM or AA MD.

3.3 Assessing the performance of Bartender

3.3.1. Accuracy of the fitting
To verify if the difference obtained between
QM/Bartender based models and atomistic/manually
build models described in the previous sections were
related to the reference model (QM vs atomistic) or
with fitting (semi-automatic in Bartender versus
manual), we performed comparisons focusing solely on
the fitting. Bartender parameters were compared to
those obtained from a trial-and-error parametrization
strategy (Human) and from PyCGTool. The comparison
was carried out by evaluating the overlap between the
bonded-parameter distribution from the same reference
AA simulations for a particular parameter (bond, angle
or dihedral) and the distribution obtained from the
simulations using either of the strategies above for the
same parameter (Figure 5). PyCGtool also gives an
estimate of the quality of the automatic protocols,
using a parametrization tool already well established in
the field. In general, it appears that Bartender and
PyCGTool are comparable in terms of fitting ability
(overlaps of 0.74 and 0.73, respectively) and that the
human-optimized parameterization strategy is slightly

superior to both (overlap of 0.79). It appears Bartender
is slightly better than PyCGTool in reproducing AA
distributions for constraints (0.85 and 0.75 overlap,
respectively), whereas PyCGTool (0.74 and 0.65
overlap) is better than Bartender (0.61 and 0.63
overlap) in terms of bonds and angles, respectively.
Nonetheless, Bartender is clearly superior when it
comes to fitting periodic dihedrals (0.817 overlap, with
respect to 0.65 for PyCGTool), save for one dihedral
which Bartender failed to fit. This improvement in terms
of fitting quality is in part due to the
Ryckaert-Bellemans (RB) potentials available in
Bartender, and missing in PyCGTool. As mentioned in
the Methods section, PyCGTool is only able to fit
harmonic periodic dihedrals (dihedral function type 1 in
Gromacs), which in many cases may fail to reproduce
the atomistic-mapped reference distributions. The RB
dihedrals are particularly useful to fit freely rotating
dihedrals which may sample several minima with
different energy barrier heights (see section 2 of
Supplementary Information, molecule 7 - PEF, dihedral
9-10-11-12). It is noteworthy that the fitting of some
angles, harmonic bonds and improper dihedrals
distributions, seems to be suboptimal. This is because
these particular parameters correspond to multi-modal
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bonds, angles and impropers where the best case
scenario in many cases is to fit a harmonic potential in
the middle of both minima with a soft force constant,
such that it is possible to sample configurations on both

basins. Nonetheless, this means that the maximal
achievable value of overlap to the AA simulations in
these cases is around 0.5 (for an example on how to
compute the distribution overlap, see Figure S1).

Figure 5. Bartender benchmark on conjugated systems and/or drug-like small-molecules. Comparison across Martini 3 bonded
parameter distributions obtained through different parameterization strategies with respect to distributions obtained from a mapped
AA reference. The explored strategies were trial-and-error (Human, yellow), Bartender fitting (green) and PyCGTool fitting (blue),
each having a small number of outlier points (red).

3.3.2. Computational performance
In exploring the computational performance of Bartender
with the flexible molecule dataset (Table 1), we find that,
on average, Bartender is able to produce an average 9
ns of QM simulations per day using only 1 CPU, which is
a reasonable performance given the systems tested. By
moving from QM to a molecular mechanics (MM) force
field in AA MD with explicit solvent in GROMACS, the
performance increases 4-fold, with an average
performance of 44 ns/day in one CPU and without using
the GPU. The inclusion of the GPU would increase
simulation efficiency significantly. In the case that a more
efficient simulation approach is required, xtb provides an
alternative to the QM simulation by means of a MM
forcefield in implicit solvent (GFNFF), which we
benchmarked here as well. It appears that GFNFF
simulations are much more efficient than QM (134
ns/day and 9 ns/day, respectively), and may be an
alternative for simple molecules. Further speed up may
be obtained with CPU parallel computing, which is
available in xtb/Bartender. Thus, Bartender is not only
accurate in generating appropriate initial configuration for
Martini 3 simulations, it also does so efficiently, even in
the case of flexible molecules. In the case of the rigid
molecule set, it appears that 1 ns is enough to sample
appropriately the phase-space. However, this simulation
length may not be sufficient for converging on the

dynamical motions of more flexible molecules, and we
believe that at 100 ns simulations, as detailed in the
methodology section, represents a reasonable
compromise between phase-space exploration and time.

Table 1. Comparison of computational performance
across the flexible small-molecule dataset. Timings were
estimated in calculations using only 1 CPU in ns/day

Molecule Bartender
GFN2

Bartender
GFNFF

All-atom
MD

Pomalidomide 12.6 180.0 46.5

PEF 6.1 130.9 27.7
Pitolisant 7.9 120.0 48.0

PET 6.4 120.0 27.7
Thyroxine 6.3 144.0 48.0
M21 11.2 144.0 46.5
M22 12.5 160.0 51.4

M23 7.9 110.8 48.0

M24 7.3 102.9 48.0
M25 10.3 130.9 49.7

Average
(ns/day) 8.85 134.3 44.1

*All data is provided using a single cpu with two threads in
an Intel Xeon Silver 4210R with 64 Gb RAM memory.
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3.4 Limitations and future developments
A limitation of the current implementation of Bartender is
the computational resources required to adequately
sample the conformational state of flexible molecules.
Though fast, GFN2-xTB is still a QM-based method, and,
as such, it is expensive when compared to classical MD.
Currently, the main option for large systems, if computer
power is limited, is to employ the classical variant
GFNFF, and accept the loss of accuracy. GFNFF is still
expected to be at least competitive with other force
fields39. Alternative solutions, such as enhanced
sampling schemes based on replica-exchange molecular
dynamics60,61 are currently under development.
Nevertheless, the emergence of quantum computers62

may make direct parametrization of CG models of large
and flexible molecules using QM MD feasible in the
coming years.
Since Bartenders’ bonded-parameter determination
relies on a fitting procedure, in some cases the fitting
may fail. It is thus recommended that users check not
only the produced parameters but also the
corresponding plots before proceeding with the CG
models. For example, in Section 3.2, some parameters
were refined using some of the options available in
Bartender. Additionally, there are cases where the angles
that are required to build a dihedral within a CG model
are too close to 180º or have a too-low predicted force
constant. In such cases, Bartender will purposely shift
the equilibrium value of that angle, assign it as a
restricted-bending angle potential41 and increase its force
constant. This is done to guarantee numerical stability of
the model but comes at the cost of not reproducing the
underlying distribution. As such, it is important to note
that Bartender works as a parameterization-aide and the
quality of the fits (and of the model itself) is also
dependent on the mapping and the bonded parameters
deemed necessary by the user. Pipelines aiming at
defining optimal mapping and bead-type assignment for
Martini 3 small molecules are currently under
development. Alternatively, Bartender could be
integrated into tools such as AutoMartini27 and
cg_params29, as a way to refine the bonded parameters
with QM accuracy.
The accuracy of angle and bond fittings, as observed
previously, is comparatively suboptimal in comparison to
alternative programs. Methods for automatically scaling
the force constants to achieve better fits are currently
being developed. For example, the case of
bi-or-multimodal angles in Martini models poses a
challenge to the parameterization process with the
currently implemented harmonic potentials. This
challenge is seen across the tests presented in section
3.3.1, where in many of the cases the overlap
percentage is below 60% due to either fitting the

harmonic potential on one of the wells or fitting it in the
middle of the two minima. A clear path towards
improvement would be to implement more complex
functional forms directly in codes as OpenMM63, or via
tabulated potentials in GROMACS.

4. Conclusions and perspectives
In conclusion, this paper introduces Bartender, a
powerful tool for assisting in the generation of bonded
parameters for Martini 3 CG models of small molecules.
Through the use of modern semiempirical QM methods,
Bartender offers a unique approach that bypasses both
the limitations and the inherent setup challenges of
classical AA MD simulations. The implementation of a
variety of functional forms for both angles and dihedrals
enhances the fitting accuracy to reference distributions.
Bartender's command-line interface makes it suitable for
high-throughput applications.
The presented results showcase Bartender's
effectiveness in generating Martini 3 models for both
rigid, ring-like structures and flexible, drug-like small
molecules. The tool demonstrates high correlation and
low root mean square error when compared to
human-obtained bonded parameters in the Martini 3
small molecule dataset. In the case of conjugated
systems and drug-like molecules, Bartender's fitting
approach competes well with PyCGTool, yielding
superior results for proper dihedral parameters which are
typically difficult to obtain. As a tool, Bartender has an
in-place system of warnings and alerts which notifies the
user for potentially problematic parameters. It is also
able to identify and add angles which are involved in
some of the user-defined dihedrals which were not set in
the input file. As such, it facilitates model optimization by
both providing plots showing the bonded-parameter
distributions and highlighting those that potentially need
refinement. Moreover, by enabling CG parameterization
through easy-to-use QM simulations, Bartender offers an
alternative strategy that is particularly valuable when AA
parameters may be suboptimal. Particularly,
Bartender-generated parameters arising from QM
simulations can be useful within future drug-discovery
pipelines which harness the computational efficiency of
Martini 3, due to a more faithful reproduction of the
molecular motions of ligands. Additionally, QM-derived
bonded parameters are also expected to be useful to
make electronic predictions at CG resolutions18,64 with
Martini 3.

Supporting Information
Tables containing the degree of overlap to the reference
distributions for all parameters of all molecules;
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Individual figures for each of the ten drug-like
compounds containing mapping, bonded-parameter
distributions for simulations arising from the different
parameterization strategies and corresponding average
SASA values;
The rigid/yclic molecule dataset and their alternative
models obtained with Bartender are made available in
https://github.com/ricalessandri/Martini3-small-molecules
A folder containing itp and other files for the flexible
molecule dataset will be made available upon request
from Batender’s GitHub page, which is also the
repository for the official release of the code:
https://github.com/Martini-Force-Field-Initiative/Bartender
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