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Abstract

The complexity and diversity of polymer topologies, or chain architectures, present substan-

tial challenges in predicting and engineering polymer properties. Although machine learning is

increasingly used in polymer science, applications to address architecturally complex polymers

are nascent. Here, we use a generative machine learning model based on variational autoen-

coders and data generated from molecular dynamics simulations to design polymer topologies

that exhibit target properties. Following the construction of a dataset featuring 1,342 polymers

with linear, cyclic, branch, comb, star, or dendritic structures, we employ a multi-task learning

framework that effectively reconstructs and classifies polymer topologies while predicting their

dilute-solution radii of gyration. This framework enables the generation of novel polymer topolo-

gies with target size, which is subsequently validated through molecular simulation. These ca-

pabilities are then exploited to contrast rheological properties of topologically distinct polymers

with otherwise similar dilute-solution behavior. This research opens new avenues for engineering

polymers with more intricate and tailored properties with machine learning.

1 Introduction

The topology of a polymer chain, or equivalently the chain architecture, can substantially influence

their properties and those of derivative materials. For example, in natural polymers, while linear
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amylose forms dense aggregates with low aqueous solubility, the analogous but highly branched

structure of amylopectin impedes association of chains, thereby enhancing its solubility [1]. In the

realm of synthetic polymers, the branching in low-density polyethylene improves its processability

for applications like blow and extrusion molding, whereas linear high-density polyethylene pos-

sesses superior mechanical strength and chemical resistance. There is also growing interest in un-

derstanding implications of polymer topology due to advancements in various controllable synthetic

methodologies [2–5]. These methods enable the creation of polymers with a wide range of com-

plex topologies, such as stars [6, 7], combs [8, 9], branches [10, 11], hyperbranches [12, 13], den-

drimers [14, 15], rings [16, 17], and brushes [18, 19].

Establishing quantitative relationships between polymer topology and material properties re-

mains challenging. Both experimental and computational investigations have enhanced understand-

ing of how polymer topology influences properties of interest to many areas, such as enhanced oil

recovery [20, 21], coatings and adhesives [22, 23], rheology and fluid dynamics [24–26], energy stor-

age [27–33], and biomedical applications [34–38]. Nevertheless, the efforts of labor-intensive and

potentially costly synthesis and characterization typically limits experimental studies to a small set

of systems, which may still not yield well-defined topological ensembles [3, 39]. Computationally,

although there is no ambiguity associated with the underlying topologies of the polymers or their

construction, simulations are often restricted to a particular class of topologies owing to computa-

tional costs and perhaps uncertainty with how to tangibly compare diverse topologies [40, 41]. Over-

all, these factors obfuscate the construction of general topology-property correlations, which also

precludes facile design of topologically complex polymers.

Recent advancements in and applications of machine learning have spurred significant develop-

ments in polymer design. These efforts span many applications, such as tailoring the structures of

single-chain nanoparticles [42, 43], enhancing enzyme stability [44, 45], delivering drugs and ther-

apeutics [46–48], and identifying new gas-separation membranes [49]. Generative machine learn-

ing models [50] are a particularly intriguing class of algorithms for chemical design. For example,

variational autoencoders (VAEs) are adept at encoding complex data into lower-dimensional latent

spaces [51, 52] and have previously facilitated the generation of novel small molecules [53, 54]. Ap-

plications of VAEs in polymer science are also emerging [55, 56]. Shmilovich et al. combined VAEs

with molecular dynamics (MD) simulations and Bayesian optimization to guide the discovery of π-

conjugated oligopeptides [57] with desirable aggregation behavior to influence optoelectronic prop-

erties. In devising the Open Macromolecular Genome (OMG), Kim et al. utilized a generative frame-

work with VAEs that can not only provide polymer structures but also retrosynthesis [58], thereby
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facilitating optimization of synthetically accessible materials. Nevertheless, these and other studies

primarily focus on specific chemical spaces or linear polymers, highlighting the need for methods to

generate polymers with complex topologies and tailored properties.

In this study, we create a multi-task VAE to generate polymers with specified topology and de-

sired characteristics. This model is developed using an original dataset comprising coarse-grained

MD data for over 1,300 polymers of various topologies, including star, comb, branch, linear, cyclic,

and dendrimer structures, spanning a range of molecular weights. Input and encoding strategies are

critically assessed by training several models that aim to reconstruct the polymer topology and also

perform auxiliary tasks of estimating the characteristic size of the polymer and classifying its topol-

ogy. We find that auxiliary tasks enhance the physical interpretability of the learned latent space of

the VAE, and our most effective generative modeling framework, TopoGNN, incorporates both graph

and topological descriptor features. For demonstrative purposes, TopoGNN is leveraged to produce

sets of topologically diverse polymers that exhibit the same characteristic size in dilute solution (Fig-

ure 1, top) but contrasting rheological behavior at finite concentrations (Figure 1, bottom). This work

expands the utility of generative modeling for polymer design and demonstrates how such algo-

rithms can also facilitate controlled studies across complex, topologically diverse polymers.

2 Results

2.1 Polymer Dataset

We first generate and characterize a topologically diverse set of polymers for training and evaluat-

ing the VAE. In particular, we initially prepare and simulate 1,342 polymers across six architectural

classes (11 each for linear and cyclic and 330 each for branch, comb, star and dendrimer); the degree of

polymerization ranges from 90 to 100 for each architectural class. Figure 2a showcases the diversity

of structures across a representative set of these polymers. This diversity is also manifest through

the variation of topological descriptors shown in Figure 2b. These descriptors, which are derived

purely from knowledge of the molecular graph/polymer connectivity, provide a first means to quan-

titatively characterize and distinguish polymer topologies. Despite the uniformity in the number of

nodes and edges, which are commonly used to characterize polymers, significant variations are ob-

served in other topological descriptors. For instance, comb, branch, star, and dendrimer topologies,

exhibit notable differences in descriptors like graph diameter, radius, betweenness centrality, and de-

gree assortativity, even when node and edge counts are identical. Coarse-grained simulations of the
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Figure 1: Strategy underlying a variational autoencoder of polymer topology. In the Training Phase
(top), molecular dynamics (MD) simulations are employed to compute computationally tractable de-
scriptors, such as the average squared radius of gyration, ⟨R2

g⟩, for a set of polymers. Information
regarding topological descriptors and the polymer graph are then encoded into a lower-dimensional
latent space using an artificial neural network (ANN) and a graph neural network (GNN). The latent
space is decoded to accomplish reconstruction, regression, and classification tasks. These encoded
features are concatenated to form a reduced-dimensional latent space, from which a decoder recon-
structs the polymer structure. In the Search Phase (bottom), points are sampled from the latent space
to proffer polymers that are predicted to exhibit a target ⟨R2

g⟩ and specified topology. These predic-
tions are evaluated against MD simulations, and post-validation, enable systematic analysis of how
topology impacts additional properties, such as viscosity.
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generated polymers further distinguish topologies on the basis of their physical characteristics; the

use of a Kremer-Grest model permits us to attribute all property variations to the molecular weight

(i.e., the number of composite coarse-grained polymer beads) and the topology (i.e., the connectivity

of such beads). Figures 2c and S1 illustrate the range of characteristic polymer sizes, as expressed

through the mean squared radius of gyration ⟨R2
g⟩, observed in each class. Because the present study

imposes a maximum number of monomers, polymers from the linear, cyclic, and dendrimer classes

exhibit relatively narrow distributions in ⟨R2
g⟩ by contrast to comb, branch, and star classes. Den-

drimers notably form compact, globular structures over the range of simulated molecular weights

relative to all other classes. Overall, the dataset is partitioned into a 64/16/20 train/validation/test

split for future model construction and evaluation; stratified sampling is used to ensure proportional

representation of architectural classes across all splits.

Figure 2: Characteristics of generated polymers. (a) Representative graphs of polymers from each
architectural class. The number of polymers is proportional to occurrence in the dataset. (b) Com-
parison of topological descriptors across architectural classes. Values are standard-normalized for
the dataset for each topological descriptor. Within a class, data for polymers are organized from
left-to-right in ascending order of descriptor values, starting with the top (i.e., “Number of nodes”)
and proceeding downward to successively break ties. (c) The distribution of simulated ⟨R2

g⟩ for each
architectural class. The white dot represents the median, the black bar spans the inter-quartile range
(i.e., 25% to 75% percentiles), and the width indicates the distribution density. The color of the graphs
in (b) align with those of the violins positioned over the respective classes in (c).

5

https://doi.org/10.26434/chemrxiv-2024-h2xgs ORCID: https://orcid.org/0000-0002-7420-4474 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-h2xgs
https://orcid.org/0000-0002-7420-4474
https://creativecommons.org/licenses/by-nc/4.0/


2.2 Polymer Reconstruction and Property Prediction

Based on prior work on linear polymer featurization [59, 60], we hypothesized that polymer recon-

struction with a VAE could be enhanced if derived topological descriptors were supplied as inputs.

To examine this, we evaluate three distinct encoding strategies: TopoGNN, which integrates topo-

logical descriptors with graph features; GNN, which exclusively relies on graph features; and Topo,

which solely employs topological descriptors. For each strategy, we consider a multitude of models

with distinct hyperparameters and their performance across a broad range of evaluation metrics. For

example, reconstruction performance is quantitatively evaluated with balanced accuracy (BACC),

which measures the accuracy of individual entries in the reconstructed adjacency matrix. For topol-

ogy classification, F1 score is chosen to address the class imbalance in our dataset. Other metrics

include the coefficient of determination R2 for regression on ⟨R2
g⟩ and the Kullback-Leibler (KL) di-

vergence. Representative models for each encoding strategy are selected using a comprehensive

evaluation score (CES) that simultaneously considers all criteria:

CES ≡
√
(1− BACC)2 + (KL)2 + (1−R2)2 + (1− F1)2 (1)

where a denotes the min-max normalized value of a; CES can be interpreted as the distance from the

origin (a perfect model) in a vector space spanned by error metrics.

Table 1 summarizes the performance of these representative models. Across encoding strate-

gies, TopoGNN emerges as the most overall effective, registering the smallest CES. By comparison,

the Topo model yields slightly superior performance on regression and comparable F1 score. Con-

versely, the GNNmodel demonstrates a slightly higher balanced accuracy in reconstruction tasks and a

lower KL divergence; however, it significantly underperforms in regression and classification. These

results support the inclusion of topological descriptors during construction of the VAE.

Table 1: Performance of representative models for each encoding strategy on validation set.

Models
Balanced
Accuracy

Regression
R2

Classification
F1

KL
Divergence

Distance
to Origin

TopoGNN 0.9439 0.9915 0.9953 18.7244 0.3829
GNN 0.9448 0.9634 0.9768 15.6018 0.8348
Topo 0.9281 0.9949 0.9953 16.0418 0.3992

To assess model generalizability, we examine the performance of the representative models on

the held-out test set. Figure 3 again indicates that TopoGNN delivers consistently strong performance

across several evaluation criteria, while GNN and Topo can be deficient in particular metrics. Balanced
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Figure 3: Performance of variational autoencoder models. Comparison of TopoGNN, GNN, and Topo
in terms of polymer graph reconstruction, ⟨R2

g⟩ regression, and topology classification. BACC repre-
sents balanced accuracy, R2 is the coefficient of determination, and F1 measures accuracy based on
the harmonic mean of precision and recall. The error bars represent the standard deviation arising
from 10 random samplings of the latent space.

accuracy is highest for GNN (0.9397), closely followed by TopoGNN (0.9369) and then Topo (0.9164).

This suggests that topological descriptors do not necessarily enhance reconstruction performance, al-

though the ability of Topo to effectively reconstruct certain topologies (e.g., branch polymers) high-

lights the extensive information content encompassed by the 11 topological descriptors. By contrast,

directly supplying topological information is clearly advantageous for predicting the characteristic

polymer size. Here, TopoGNN stands out as the most effective, achieving the highest mean value

(0.9920), surpassing Topo (0.9854) and GNN (0.9639). Meanwhile, GNN achieves the highest mean F1

score (0.9783), followed by TopoGNN (0.9689) and Topo (0.9678); however all models display statisti-

cally comparable results regarding this classification metric. Taken together, this suggest workflows

with VAEs can effectively address complexities induced by these polymer architectures.

For a more nuanced assessment of model quality, Figure 4 breaks down TopoGNN performance

across architectures; comparable information for other models is in Figures S2 and S3. In polymer re-

construction, TopoGNN excels but faces challenges with specific cyclic and comb polymers (Figure 4a,

gray dashed boxes). Notably, GNN generates errors, especially for star polymers, while Topo exhibits

minor errors across most architectures. Regarding the prediction of ⟨R2
g⟩ (Figure 4b), TopoGNN per-

forms well regardless of polymer class. Both GNN and Topo display high correlation, but errors are

generally larger for GNN (Figure S2), indicating the difficulty in establishing a direct relationship be-
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Figure 4: Performance decomposition of TopoGNN. (a) Polymer graph reconstructions by TopoGNN,
contrasting true (blue) and predicted (red) polymer topologies. (b) Regression parity plot. The di-
agonal line signifies ideal regression accuracy, and error bars show standard deviation from random
latent space sampling. (c) Confusion matrix representing the classification performance across var-
ious topologies: linear (lin), cyclic (cyc), branch (brn), comb, star, and dendrimer (den). Diagonal
entries correspond to accurate classifications, while off-diagonal entries indicate misclassifications.

tween graph features and ⟨R2
g⟩. A saliency analysis (Figure S4) reveals that graph diameter, between-

ness centrality, and algebraic connectivity most strongly influence ⟨R2
g⟩, aligning with their direct

correlation with ⟨R2
g⟩ (Figure S1). For topology classification, TopoGNN (Figure 4c) is broadly effec-

tive, with most misclassifications occurring in linear, branched, and comb architectures. These issues

are more pronounced in Topo and GNN (Figure S3) and can be augmented with other misclassifcia-

tions. Overall, TopoGNN, which utilizes both graph and topological features, not only consistently

outperforms other models but also delivers high-quality results. The remainder of the article there-

fore focuses on analysis and applications of TopoGNN to illustrate its practical deployment.

2.3 Latent Space Exploration and Polymer Generation

Figure 5 presents the UMAP projection of the 8-dimensional latent space of topoGNN into a 2-

dimensional space for visualization. Distinct topological clusters emerge in Figure 5a and b, which

reveals organization of the latent space that depends relationships amongst architectures and their

physical properties. Dendrimers, characterized by their high orders of branches, form three, mostly

isolated and distinct clusters that reflect how the dendrimer architectures were algorithmically gen-

erated; they are most closely related to star polymers and branched polymers (particularly those with

pom-pom architectures). Branch, comb, and star polymers all notably overlap within the latent space,

which is attributed to topological similarities (Figure 2b). Cyclic and linear polymers are interspersed

within comb and branch clusters, with linear polymers sharing a long backbone and cyclic polymers

possessing a long ring-closed backbone. This organization is clearly informed training with auxiliary
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Figure 5: Visualization and exploration of the latent space. (a) Two-dimensional visualization of
the TopoGNN latent space using the Uniform Manifold Approximation and Projection (UMAP) tech-
nique. A subset of the data is displayed for clarity, with each marker representing a polymer graph
based on its latent vector. Different colors denote distinct topologies. (b) Organization of (left) ⟨R2

g⟩
and (right) topology in the UMAP-coordinate space. The dots signify the latent vectors of polymer
graphs. The two arrows mark regions in the latent space targeted for exploration (i.e., new polymer
topology generation). (c) As exploration progresses with an increase in Z2 in the latent space (repre-
sented by a solid line), there is a near-monotonic rise in ⟨R2

g⟩ for the generated polymers. Progression
with an increase in Z1 (indicated by a dashed line) showcases shifts in polymer topology, moving
through clusters characteristic of star, comb, and branch topologies.
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tasks for predicting ⟨R2
g⟩ and classifying topologies, as illustrated in Figure 5b. A vertical trajectory in

the UMAP space (marked by an increase in Z2) results in an almost monotonic increase in ⟨R2
g⟩ for the

generated polymer topologies (Figure 5c). Conversely, a horizontal trajectory (associated with an in-

crease in Z1) moreso transitions topology classes with slight variations in ⟨R2
g⟩ ((Figure 5d). Omitting

the auxiliary tasks leads to less distinct separation of topological classes and disrupts the monotonic-

ity of the ⟨R2
g⟩ (Figure S6) The latent spaces of GNN and Topo (Figure S5) are prone to similar issues.

Overall, this highlights the effectiveness of the workflow for TopoGNN to produce an intuitive and

physically meaningful latent space.

The latent space of TopoGNN can be used to generate a diverse set of polymer topologies. This

is exemplified by computing the Vendi Score (VS) for each architecture (see Section 4.4.8 for details)

and comparing it to that of the originally constructed dataset. Whereas the VS for the original dataset

(1,342 points) is 2.0968, that for 1,342 topologies generated using TopoGNN is 5.0684, which exceeds

those for GNN (4.9580) and Topo (4.3305). This indicates that all models can generate a more diverse

range of polymer topologies compared to the original handcrafted dataset, which could have impli-

cations for downstream tasks, as explored in the next section.

2.4 Property-Guided Polymer Topology Generation

To illustrate one application for TopoGNN, we generate a series of distinct polymer topologies that ex-

hibit specific ⟨R2
g⟩. While ⟨R2

g⟩ itself is a fundamental characteristic of the polymers, the rationale here

is moreso to demonstrate the production of new, alternative materials with similar characteristics and

further to assess how topology affects other polymer properties, such as rheology, without conflation

of other factors. We therefore select target ⟨R2
g⟩ ranges of 7.5± 2, 30± 2, and 50± 2 which represent

the low, intermediate, and high regions of ⟨R2
g⟩ in the dataset, respectively (Figure 2) and condition-

ally sample polymers from the latent space across the different topological classes. The ⟨R2
g⟩ are then

validated for the generated polymer topologies using MD simulation. These results are shown in Fig-

ure 6, which illustrates that TopoGNN can indeed produce a range of distinct structures that exhibit

effectively similar ⟨R2
g⟩. Targeting ⟩ = 7.5 ± 2 predominantly yields dendrimer and star topologies,

targeting ⟨R2
g⟩ = 30± 2 yields branch, comb, cyclic, and star topologies, and targeting ⟨R2

g⟩ = 50± 2

mostly yields in branch and comb architectures. With the current approach, however, architectures

that satisfy specific targets cannot be arbitrarily produced based on the molecular-weight restrictions.

For example, dendrimers are more or less restricted to low ⟨R2
g⟩, while linear polymers are mostly

restricted to larger ⟨R2
g⟩. Moreover, relatively few polymers meet the ambitious target of 50±2, which
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is consistent with the paucity of data points around ⟨R2
g⟩ = 50 ± 2 within the original dataset; how-

ever, the group of polymers here uniformly exceed those of the smaller 30 ± 2 target. Interestingly,

TopoGNN also proffers architectures, such as irregular dendrimers and nuanced branching patters in

stars and combs, that go beyond those of the original dataset. Overall, these results reflect the in-

tended capability of TopoGNN to generate a broad spectrum of original polymer topologies that align

with a target property.

Figure 6: Generation of polymer topologies with target ⟨R2
g⟩.Topologies are generated aiming for

target ⟨R2
g⟩ values of 7.5 ± 2, 30 ± 2, and 50 ± 2. Each generated topology is accompanied by its

type and the predicted ⟨R2
g⟩ from TopoGNN, presented in parentheses on the x-axis. A violin plot

showcases the revalidation of ⟨R2
g⟩ via MD simulation for every topology. The gold dot marks the

⟨R2
g⟩, while the white dot stands for the median. The black bar represents the interquartile range, and

the plot width reflects the distribution density of R2
g. Two dashed lines highlight the ⟨R2

g⟩ range used
in the guided search.

2.5 Rheological Analysis

Using TopoGNN, we explore the influence of polymer topology on rheological characteristics. While

solution viscosity at dilute concentrations is primarily determined by polymer size, which sets the

overlap concentration,[61] we control for this factor by designing topologies with specified ⟨R2
g⟩

and examine topological implications across a range of concentrations. Figure 7a examines the

concentration-dependent shear viscosity as determined from MD simulations of four selected topolo-

gies. Figure 7a presents concentration-dependent shear viscosity from MD simulations of four se-

lected topologies. Differences emerge beyond 0.4 σ−3, with cyclic polymers showing lower viscosi-

ties due to reduced entanglements, and branched polymers exhibiting elevated viscosities due to
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extended side chains. Star and comb polymers demonstrate similar, somewhat lower shear viscosi-

ties compared to branched polymers, highlighting the impact of side-chain position and density on

entanglement effectiveness. Additionally, we observe nuanced differences in frequency-dependent

storage and loss moduli, G′ and G′′, across topologies and concentrations (Figures 7b and 7c). While

all solutions exhibit liquid-like viscous behavior at low frequencies and solid-like behavior at high

frequencies below 0.6 σ−3, star, branch, and comb polymers display three crossover frequencies as

concentration increases. In contrast, cyclic polymers maintain a single crossover frequency, indicat-

ing less nuanced viscoelastic behavior. This highlights potential for how rheological properties might

be modulated through strategic architecture design.

Figure 7: Effect of polymer topology on shear viscosity and complex moduli at comparable ⟨R2
g⟩.

(a) Influence of polymer topology and concentration on viscosity, featuring topologies such as star,
branch, comb, and cyclic, each with a ⟨R2

g⟩ of approximately 30 ± 2. (b) Relationship between poly-
mer topology, concentration, and complex moduli crossover frequencies. (c) Complex moduli for
various topologies at concentrations of 0.1 and 0.8, with the star symbol marking the crossover point.
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3 Discussion

This study employed variational autoencoders to address energent combinatorial complexity of di-

verse polymer topologies, which has been scarcely addressed in machine learning of macromolecules.

We constructed an extensive dataset featuring the average squared radius of gyration (⟨R2
g⟩) for 1,342

polymers with various architectures, including linear, cyclic, branch, comb, star, and dendrimer struc-

tures. By analyzing different encoding strategies and input representations, we found that meaning-

ful latent spaces of polymers with complex topologies can be established by (i) incorporating both

graph-explicit and graph-derived features and (ii) coupling graph reconstruction tasks with auxiliary

prediction tasks, such as those related to physical properties. Probabilistic sampling over the latent

space was shown to result in rich topological diversity. These generative capabilities were then used

to produce unique polymer topologies with target characteristic sizes in dilute solution. This enabled

subsequent investigation by coarse-grained molecular dynamics into how topology influences rhe-

ological properties, such as shear viscosity and viscoelastic moduli, while controlling for polymer

size. While all architectures exhibited similar rheological behavior at relatively low concentrations,

distinct responses emerged at higher concentrations. For instance, localized branches at chain ends

resulted in more viscous solutions compared to other architectures, including cyclic structures that

exhibited minimal entanglements. Apart from illustrating how rheological behavior might be tuned

or altered via polymer architecture, this also showcases a new paradigm for studying the physical

properties of topologically distinct systems.

The methodologies introduced in this study pave the way for several future research directions.

Particularly, TopoGNN exhibits promising potential as a generative model, offering a cost-effective

alternative to experiments or simulations in predicting properties like ⟨R2
g⟩. While ⟨R2

g⟩ serves as a

straightforward and computationally accessible quantity, there is interest in extending the strategy

to incorporate or utilize other properties. Although this work leveraged TopoGNN to simply com-

pare rheological properties in systematic fashion, in the future, it may be deployed to guide design

efforts aimed at optimizing polymer properties. We also note that the dataset and machine learning

framework are currently limited to polymers with a narrow range of bead numbers (equivalently,

molecular weights). Future research will explore the extensibility and transferability of machine

learning architectures across various molecular weights, potentially through the use of string-based

representations.[62–64] Furthermore, while this study specifically investigates the impact of topol-

ogy, it does not address specific chemistry. However, to understand and control the properties of

polymers with chemical, compositional, and topological complexity is an outstanding challenge in
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polymer science. This work lays the foundation for innovative approaches towards those ends.

4 Methods

4.1 Description of Dataset

The dataset comprises 1,342 polymer architectures, each containing between 90 and 100 constitu-

tional units, or beads. Polymer architectures encompass a wide range of topologies, including linear,

cyclic, branch, comb, star, and dendrimer structures. Due to limitations bead count, linear and cyclic

topologies are restricted to 11 distinct polymers each, whereas other topologies are represented by

330 unique polymers each. The polymers are chemically homogeneous with all beads treated equiv-

alently. The procedure for generating polymer graphs is described in the SI Section S2. For each

polymer graph, we calculate an 11-dimensional topological descriptor vector[43, 65] using the num-

ber of nodes, number of edges, average degree, average neighbor degree, density, diameter, radius,

algebraic connectivity, degree centrality, betweenness centrality, and degree assortativity as elements.

For further details on these descriptors, readers are referred to SI Section S1.

4.2 Calculation of Polymer Properties

4.2.1 Radius of Gyration

We investigate the structural properties of individual polymer chains using coarse-grained molecular

dynamics. To do so, we compute the gyration tensor S:

S =
1

N

N∑
i=1

(ri − rcm) (ri − rcm)
T (2)

where ri denotes the position vector of the i-th bead, rcm represents the center-of-mass position of the

polymer, and T indicates the transpose operation. Diagonalizing yields S = diag(λ2
1, λ

2
2, λ

2
3) where

the diagonal elements are the principal moments of the gyration tensor ordered as λ1 ≤ λ2 ≤ λ3. The

squared radius of gyration can be subsequently computed as

R2
g = λ2

1 + λ2
2 + λ2

3 (3)

and quantifies the size of a given polymer conformation. The ensemble average ⟨R2
g⟩ is the con-

structed using a series all sampled configurations. This ensemble-averaged quantity serves as the
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target for the regression auxiliary task.

4.2.2 Rheological Properties

We also characterize several rheology-related properties for select polymer systems. The shear vis-

cosity η of the polymer solution is formally calculated via

η =

∫ ∞

0
G(t)dt (4)

where G(t) denotes the stress relaxation modulus. We determine G(t) using the Green-Kubo relation

G(t) =
1

3

∑
αβ=xy,xz,yz

V

kBT
⟨σαβ(t)σαβ(0)⟩, (5)

with V representing the simulation box volume, σαβ(t) signifying the off-diagonal stress tensor com-

ponents averaged at intervals of 1000 steps, and ⟨· · · ⟩ denoting an ensemble-average. Often, G(t)

exhibits significant noise at long times, which renders direct numerical integration of Eqn. 4 unreli-

able. Therefore, following prior work,[66] we fit the simulated G(t) data to a generalized Maxwell

model, given by G(t) =
∑

pGp exp(−t/τp), where Gp and τp represent the modulus and relaxation

time of the p-th element, respectively. This approach yields the viscosity η =
∑

pGpτp. We also

compute the storage modulus (G′) and the loss modulus (G′′) to better characterize the viscoelas-

tic properties of the polymers. These moduli are obtained from the Fourier transform of the stress

relaxation modulus, yielding

G∗(ω) = iω

∫ ∞

0
G(t)e−iωtdt (6)

= G′(ω) + iG′′(ω). (7)

Here, G′(ω), the storage modulus, reflects the elastic, or energy-storing, aspect of the material, while

G′′(ω), the loss modulus, represents the viscous, or energy-dissipating, component. This analysis is

thus restricted to linear viscoelasticity.

4.3 MD Simulation Details

MD simulations are used to generate polymer configurations for the characterization of polymer

properties. All simulations are conducted using the LAMMPS simulation package [67] in reduced

units; the units of mass, distance, and energy are denoted by m, σ, and ε, respectively. The reduced
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time unit follows as (mσ2/ε)1/2. All simulations are considered to take place in an implicit-solvent en-

vironment, with dynamics of the polymer(s) governed by the Langevin equation. The equations-of-

motion are numerically integrated using the velocity-Verlet integration scheme with a 0.001 timestep.

The solvent friction coefficient is set to ς = 0.1.

Polymer interactions are modeled via a combination of bonded and nonbonded potential energy

contributions. The total potential energy U of a system with configuration rN is expressed as:

U(rN ) =
∑
bonds

Uvib(rij) +
∑
i<j

Unb(rij), (8)

where rij represents the internal distance calculated from the coordinates rN . The nonbonded energy

contributions for all pairs of beads are computed using the following equation:

Unb(rij) =


4εij

[(
σij

rij

)12
−
(
σij

rij

)6]
+ ϵij , if i, j are bonded and rij < 21/6

0, otherwise,

(9)

where εij and σij are set to 1. For directly bonded beads, the stretching energy is calculated as:

Uvib(rij) = −1

2
Kij(R

(0)
ij )2 ln

1−( rij

R
(0)
ij

)2
 , (10)

where Kij is assigned a value of 30, and R
(0)
ij is fixed at 1.5.

4.3.1 Single-chain Simulations

Simulations of single coarse-grained polymer chains (no boundary conditions) are used to character-

ize ⟨R2
g⟩. Each simulation is conducted for 2 × 107 steps, allocating the first half for system equili-

bration. Configurations for analysis are sampled every 2× 103 timesteps during the latter half of the

simulation.

4.3.2 Many-chain Simulations

Simulations of many chains within a simulation cell with cubic periodic boundary conditions are

used for rheological analysis of a subset of polymers with comparable ensemble-averaged square

radii of gyration, ⟨R2
g⟩. Simulations are performed across various concentrations (0.1 to 0.8) to cover

both semi-dilute and semi-concentrated regimes. Each simulation uses 100 chains with the simula-
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tion cell dimensions adjusted to match the desired concentration. Equilibration periods of 107 steps

are utilized for all simulation concentrations. Upon achieving equilibrium, data are collected for 107

steps at a timestep of 0.001.

4.4 Machine Learning Details

4.4.1 Data Preprocessing

Polymers are represented using graph notation G = (V,E), where V is the set of nodes, and E is

the set of edges. To address the variability in node counts across different polymers, ranging from

90 to 100, we introduce “ghost” nodes with zero-edge connections to standardize graph sizes to

100 nodes using node padding [68, 69]. Because all polymer beads are equivalent, the adjacency

vector ai ∈ R100 serves as the sole node feature for each polymer bead. Elements of this vector are

defined such that ai = 1 if node i is connected to the current node, and ai = 0 otherwise. All bonds

are also equivalent, and so edge features are not included in the representation. Polymers are also

characterized by an 11-dimensional topological descriptor vector t ∈ R11 as previously described.

For the task of polymer reconstruction, an adjacency matrix A ∈ R100×100 is associated with each

polymer, where Aij = 1 indicates an edge between nodes i and j, and Aij = 0 indicates no edge. For

the auxiliary regression task, each polymer is associated with a label for ⟨R2
g⟩, denoted yr ∈ R. For

the auxiliary classification task, each polymer is associated with a one-hot encoded topology label,

denoted yt ∈ R6. The dataset of 1,342 polymers is divided into three subsets: 858 for training (64%),

215 for validation (16%), and 269 for testing (20%). Stratified splitting is used to ensure each subset

represents all polymer topologies. The training set is utilized to train the VAE, the validation set for

hyperparameter optimization, and the test set to evaluate the model generalizability.

4.4.2 Model Architectures

Overall, we explore three unique encoder architectures while maintaining a uniform decoder archi-

tecture. The first model, designated as TopoGNN, combines a graph encoder with a topological de-

scriptor encoder, thus operating as a multi-input model. The second model, GNN, exclusively employs

the graph encoder. The third model, Topo, relies solely on the topological descriptor encoder. The

architecture of the VAE for TopGNN is depicted in Figure 8. The encoder transforms input data into

a latent space representation. Graph inputs are represented using an adjacency matrix A ∈ R100×100

and a node feature matrix X ∈ R100×100, with the adjacency vector serving as the node feature due

to identical nodes. The Graph Isomorphism Network encoder [70], equipped with two graph convo-
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lutional layers, maps these inputs into a 32-dimensional feature vector hg. The topological descrip-

tor vector is similarly converted into a 32-dimensional feature vector ht by a dense neural network

(DNN) encoder. Subsequently, the feature vectors hg and ht are concatenated to yield a combined

feature vector h ∈ R64. Additional dense layers generate the parameters of the latent Gaussian

distribution: the mean µ and the logarithm of variance logσ2. These parameters define the latent

space embedding z ∼ N (µ,σ), which has a dimensionality of 8. The decoder then samples from z

to reconstruct data. A convolutional neural network is used to reconstruct the adjacency matrix Â.

Additionally, two additional and distinct neural networks are tasked with predicting ŷr and ŷt.

Figure 8: Architecture of the variational autoencoder (VAE) for TopGNN. The model compresses
information from the graph and topological descriptors. These two sets of compressed features are
then concatenated and passed to the latent space, where the model learns a normal distribution char-
acterized by parameters µ and σ. Subsequently, samples drawn from this distribution are used by
the decoder to reconstruct the adjacency matrix of the input graph. Additionally, the same samples
are used in two auxiliary tasks: predicting the radius of gyration and classifying the topology. The
numbers in the parentheses indicates the size of the layer.
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4.4.3 Loss Functions

Training of the VAE uses a composite loss function LVAE

LVAE = LRec + LKL + λRegLReg + λClsLCls, (11)

which features terms associated with reconstruction, LRec via binary cross-entropy (BCE); Kullback-

Leibler (KL) divergence, LKL; regression for yr LReg; and classification for yt via cross-entropy (CE),

LCls. In Eq. (11), λReg and λCls are hyperparameter weights that are adjustable for optimizing perfor-

mance. The individual loss terms are defined as follows:

LRec = BCE(A, Â) (12)

= −
100∑
i=1

100∑
j=1

Aij log(Âij) + (1−Aij) log(1− Âij), (13)

LKL = DKL(z || N (0, I)) (14)

= −1

2

8∑
i=1

(1 + log(σ2
i )− σ2

i − µ2
i ), (15)

LReg = MAE(yr, ŷr) (16)

= |yr − ŷr|, (17)

LCls = CE(yt, ŷt) (18)

= −
6∑

i=1

yt,i log(ŷt,i). (19)

4.4.4 Model Training and Hyperparameter Tuning

All models are implmented using TensorFlow [71]. Models undergo training for 1000 epochs with

the Adam optimizer [72]. A broad range of hyperparameters is explored, encompassing batch sizes

{32, 64, 128}, learning rates {0.0001, 0.001, 0.01}, and regularization terms λReg ∈ {0.01, 0.1, 1, 10, 100}

and λCls ∈ {0.01, 0.1, 1, 10, 100}. Criteria for model weight saving include overall validation loss, Ev-

idence Lower Bound (ELBO), and reconstruction balanced accuracy. Across three encoder types, this

approach results in 2,025 unique hyperparameter combinations. For each encoder type, the opti-

mal hyperparameter configuration is selected based on a composite validation metric that combines

several key performance indicators: reconstruction balanced accuracy (BACC), KL divergence, ⟨R2
g⟩

regression R2 value, and the topology classification F1 score.
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These metrics are min-max normalized

ā =
a−min(a)

max(a)−min(a)
(20)

and consolidated into a four-dimensional vector as

v =
[
1− BACC,KL, 1−R2, 1− F1

]
. (21)

Subsequently, the optimal hyperparameter configuration is determined as that nearest to the origin

(0, 0, 0, 0). Since hyperparameter optimization does not involve updating model weights, compared

to abstract loss functions, these metrics are more interpretable and directly related to our objectives,

such as improving reconstruction, prediction accuracy, and model generalization.

4.4.5 Random Polymer Generation

To generate random polymer topologies, points are sampled from a predefined latent distribution,

and the resultant latent vector, zgen, is transformed into an adjacency matrix, Agen. Each element in

Agen indicates the connectivity between nodes. To avoid spurious and unphysical edge-formation or

other errors during reconstruction, generated polymers then undergo a graph-cleansing step. This

step principally removes isolated nodes and breaks small rings. Because this modifies the original

adjacency matrix, we implement a validation protocol, which is fully described in SI Section S3.

Briefly, the cleansed graph and its recalculated topological descriptors are re-encoded to derive new

values for ⟨R2
g⟩ and topology class. Cleansed graphs are considered valid if they satisfy three criteria.

First, the difference in ⟨R2
g⟩ values before and after cleansing is less than 2 σ2. Second, the topology

classification is unchanged. Third, the mean squared difference between the pre- and post-cleansing

latent vectors is less than 1. These criteria preserve the inherent properties of the generated polymers.

4.4.6 Polymer Generation with Target Properties

To generate polymers with specific target properties, namely ⟨R2
g⟩ and topology, “parent” polymers

that exhibit these desired characteristics are first identified from the original dataset. The criterion

for ⟨R2
g⟩ is relaxed to allow a tolerance range of ±2 around the target value. Points are then sampled

near the latent-space vectors of the parent polymers by introducing Gaussian noise with a mean of 0

and a variance of 0.1. The ⟨R2
g⟩ and topology of each generated candidate polymer is then predicted

using the trained ML model. Candidates that do not exhibit target topology or deviate in ⟨R2
g⟩ by
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more than 2 σ2 are discarded. Following this initial screening, polymer graphs undergo cleansing

as previously described, except that ⟨R2
g⟩ of candidates must more stringently remain within 2 σ2 of

both the initial target and pre-cleansing values. Subsequently, non-unique graphs, either duplicated

from the original dataset or already present within the generated pool, are identified and removed

through graph isomorphism checks. Additional details are in the SI Section S4.

4.4.7 Latent-space Visualization

The latent space is visualized using the Uniform Manifold Approximation and Projection (UMAP)

algorithm [73]. The parameters follow that of prior work [43], wherein the UMAP local neighbor-

hood size is fixed at 200, the minimum embedding distance between points is set to 1, and the Eu-

clidean distance metric is utilized in feature space analysis. This results in a mapping from R8 to R2:

UMAP(z) = u, where z denotes a latent vector and u its corresponding low-dimensional representa-

tion.

4.4.8 Diversity Evaluation

To calculate the diversity of a set of polymer topologies, each graph representation undergoes trans-

formation into a Laplacian spectrum, encapsulating all eigenvalues of the graph Laplacian matrix.

The Laplacian matrix is defined as the difference between the adjacency matrix and the degree ma-

trix of the graph. Diversity quantification employs the Vendi Score (VS) [74], defined as:

VS(K) = exp

(
−

n∑
i=1

λi log λi

)
, (22)

where λi represents the eigenvalues of the matrix K/n, with the convention 0 log 0 = 0. The similarity

function in use is the dot product between normalized Laplacian spectra, denoted as X ∈ Rn×100,

with 100 indicating the maximum eigenvalue count. For spectral vectors shorter than 100, zero-

padding ensures length standardization. For reference, the minimum VS value is unity.

Data Availability

The data associated with this study are publicly accessible at DOI:10.5281/zenodo.10672434.
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Code Availability

The code associated with this study is publicly accessible at https://github.com/webbtheosim/poly-

topoGNN-vae.
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