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Abstract

Method development in comprehensive two-dimensional liquid chromatography (LC×LC)
is a challenging process. The interdependencies between the two dimensions and the pos-
sibility of incorporating complex gradient profiles, such as multi-segmented gradients or
shifting gradients, make trial-and-error method development time-consuming and highly
dependent on user experience. Retention modeling and Bayesian optimization (BO) have
been proposed as solutions to mitigate these issues. However, both approaches have their
strengths and weaknesses. On one hand, retention modeling depends on effective peak track-
ing and accurate retention time and width predictions, becoming increasingly challenging
for complex samples and advanced gradient assemblies. On the other hand, Bayesian opti-
mization may require many experiments when dealing with many adjustable parameters, as
in LC×LC. Therefore, in this work, we investigate the use of multi-task Bayesian optimiza-
tion (MTBO), a method that can combine information from both retention modeling and
experimental measurements. The algorithm was first tested and compared with BO using
a synthetic retention modeling test case, where it was shown that MTBO finds better op-
tima with fewer method-development iterations than conventional BO. Next, the algorithm
was tested on the optimization of a method for a pesticide sample and we found that the
algorithm was able to improve upon the initial scanning experiments. Multi-task Bayesian
optimization is a promising technique in situations where modeling retention is challenging,
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and the high number of adjustable parameters and/or limited optimization budget makes
traditional Bayesian optimization impractical.

Keywords: Bayesian optimization, 2D-LC, Closed-loop method development, Machine
learning, shifting gradients

1. Introduction

Comprehensive two-dimensional liquid chromatography (LC×LC) is a powerful technique
for separating complex mixtures. When applied effectively, introducing a second dimen-
sion can substantially enhance peak capacity and resolution. Therefore, LC×LC methods
are developed for analyzing diverse samples, such as polymers, proteins, oils, and bioactive
compounds, among others [1, 2, 3, 4, 5, 6, 7]. The continual advancements in the LC×LC
domain, providing enhanced capabilities for analyzing increasingly complex samples, con-
tribute to the growing challenge of method development. To begin, analysts must select an
appropriate retention mechanism for the first dimension (1D) separation and then identify a
complementary second dimension (2D) retention mechanism. After these system parameters
are set, the method can be refined using different gradient programs. However, optimizing
gradient settings through a ”trial & error” method can be time-consuming.

Therefore, research has focused on computational methods to accelerate these design steps.
Here, a distinction can be made between two kinds of optimization that we will refer to as
direct and simulation-aided optimization. In direct optimization, an objective function is di-
rectly applied to an experimental measurement, and then black-box optimization techniques
such as simplex methods [8, 9], evolutionary algorithms [10, 11], and Bayesian optimization
[12, 13] can be used to guide optimization. However, these methods generally require an
increasing number of iterations as the number of adjustable parameters increases, and ex-
perimental measurements are both time-consuming and costly. Therefore, these approaches
have generally been restricted to one-dimensional LC and/or GC with a handful of adjustable
parameters.

In simulation-aided approaches, first, a set of experiments is performed based on scanning
gradients [14] or on the Design of Experiment strategies (DoE) [15]. Next, the chromato-
graphic peaks are detected and each unique compound is tracked over these measurements
[16]. Then using this tracking information, regression models can be built. These models
can be as flexible as neural networks [15], or can have a lower-dimensional fixed functional
form where for instance only 2-3 parameters describe the retention behavior as a function of
the mobile phase composition [17, 18, 19, 20]. Here the latter approaches generally require
significantly fewer initial experiments to build a reliable retention model.
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Once this retention model is built, it can be used to simulate the separation under a broad
range of conditions to optimize a predefined separation objective in silico using, for instance,
a grid search [21], evolutionary algorithms [22, 23], Bayesian optimization [12], or gradient
descent-based methods [24]. If fully automated, this can then result in a bilevel optimization
loop, where the optimal separation conditions found in the retention model can be performed
as a real experiment, then with data from this new experiment, the retention model can be
updated and optimized again, etc. By utilizing the retention model, satisfactory optima can
generally be found with fewer experiments than in direct optimization settings. Therefore,
these approaches are generally more suitable in situations where there are many adjustable
parameters.

Although retention modeling has been successfully applied in both LC [22, 24, 25] and
LC×LC [26], several challenges persist. The first challenge is peak-tracking; any inaccuracies
in this step could lead to incorrectly predicted retention times. Also, compounds that have
not been successfully resolved in the initial experiments might not be tracked and hence
might be missing from the retention model.

Another challenge is to accurately predict the retention times and peak widths using the
retention model itself. This is especially true in LC×LC when advanced gradient assemblies
(e.g., shifting gradients) are used in the second dimension, as the typically slow speed of 2D
separation compared to 1D peak widths results in a much lower number of data points in the
first dimension compared to the second dimension. A prediction error in the 1D retention
time could lead to predicting the 2D retention time in a wrongly assigned modulation,
thereby propagating the error even further. In addition, as 2D gradients are generally fast,
gradient deformation may occur which can lead to less accurate retention models [27, 28].
This has been observed in LC×LC [26], where for a complex antibody sample (tryptic digest
of a monoclonal antibody) absolute retention time prediction errors were in the range of 5-
15% in the first dimension and 12-35% in the second dimension, where the error decreased
with more iterations. Absolute prediction errors of the peak widths were around 40% in the
first dimension and 40-60% in the second dimension. The combination of incorrectly tracked
peaks and prediction errors in the retention times and peak widths introduces a bias in the
retention model, where an optimum in the retention model may not necessarily lead to an
optimum in the experimental separation. Despite the simulator bias, the proposed optimum
of the retention model represents a significant improvement over initial experiments, as
highlighted in [24, 26]; however, there could be potential for further improvements.

Biased or lower fidelity simulators find widespread use throughout science and industry.
In materials science for instance, proposed materials can be simulated with relatively in-
expensive computer simulations (e.g., molecular dynamics) compared to significantly more
expensive synthesis and characterization in a laboratory. Although these simulations are
generally approximate, they still manage to significantly narrow down the search space of
potential materials[29]. Likewise, when tuning internet services (e.g., adding a new feature,
or testing a new ranking model), offline simulators can provide estimates of human interac-
tions and offer higher throughput than deploying and testing all designs online [30]. Another
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example is automated machine learning, where the goal is to tune the hyperparameters of
a model by minimizing the validation error after training on a large training set. While
training on the full dataset can be costly, model performance could be estimated with lower
fidelity on a subset of the training set, or by terminating training earlier, thereby finding
optimal hyperparameters faster and/or at a reduced cost [31].

A technique that can combine information between these lower-fidelity simulators and the
real problem at hand is multi-task Bayesian optimization (MTBO). Here the underlying idea
is that if performance on various tasks (for instance the objective in the retention model
and the real system) is correlated as a function of the optimizable parameters, we may
accelerate optimization by transferring information between tasks [29, 30, 32]. At the heart
of this method is a multi-task Gaussian process (MTGP) which can model the response
surface jointly across tasks, and can be fitted to a variable number of data points on each
task. This allows the MTGP to be fit on larger amounts of lower fidelity data than data
on the expensive task at hand, or on historical data that enables a ”warm start” to the
optimization problem rather than starting from scratch. Because of this, MTBO generally
is more scalable to a higher number of optimizable parameters and is more sample-efficient
than conventional BO when tasks are correlated, making it a potentially suitable approach
for method optimization in LC×LC. Especially given the fact that retention models generally
are less accurate, and the number of adjustable parameters and timescale of measurements
might make conventional BO unpractical.

Therefore, in this work, we explore the applicability of multi-task Bayesian optimization
(MTBO) for tuning 1D and 2D gradient parameters in LC×LC with 2D shifting gradients.
We describe the experimental details and theory regarding the methods in Sections 2, and
3. In Section 4.1 we first set up a simulation framework using retention modeling to test
our MTBO framework and benchmark it with single-task BO by optimizing a simulated 12-
parameter problem containing retention parameters for 187 compounds determined from an
IgG1 monoclonal antibody [33]. Code related to this section is shared open-source. Finaly,
in Section 4.2, we apply our BO and MTBO framework in the real world to the optimiza-
tion of a LC×LC method for analysis of a complex pesticide sample by optimizing seven
gradient parameters in a closed-loop, automated, and unsupervised fashion and show signif-
icant improvements over the initial experiments in under 20 method development iterations
(MDIs).

2. Experimental

2.1. Chemicals

Acetonitrile was obtained from Sigma Aldrich (St. Louis, MO). Formic acid was supplied
by Honeywell Research chemical (Muskegon, MI). HPLC-grade water was obtained from
an in-house Milli-Q system (Burlington, MA). The studied sample was prepared from LC
Multiresidue Pesticide Standard #4 (63 components) obtained from Restek. The standard
was diluted from 100 µg ·mL−1 to 10 µg ·mL−1 with ACN and held at -20 °C until the time
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of analysis. The analytical sample was prepared by diluting a portion of the frozen standard
to 1 µg ·mL−1 with 50:50 water:ethanol.

2.2. Chromatographic system

2.2.1. LC×LC-MS

The LC instrument used in the study was the Agilent Infinity II two-dimensional (2D)-LC
system, consisting of two binary pumps (G7120A) with Jet Weaver V35 mixers (G7120-
68135), an autosampler (G4226A), and two column ovens (G7116B, and G1316A). To con-
nect the two dimensions, the active solvent modulation (ASM) valve interface (p/n: 5067-
4266) was configured with two 40 µL sample loops and a restriction capillary (170 × 0.12
mm, 1.9 µL), achieving an ASM factor of 3. Dwell volumes were estimated to be 0.225
mL in the first dimension and 0.070 mL plus the loop volume of 0.040 mL in the second
dimension. Control of the 2D-LC instrument was performed using Agilent OpenLab CDS
ChemStation Edition (C.01.10 [287]) with a 2D-LC add-on (rev. A.01.04 [033]). The mass
spectrometer utilized was the Agilent Technologies quadrupole time-of-flight (Q-TOF) in-
strument (G6545XT) equipped with a Dual Agilent Jet Stream Electrospray Ionization (AJS
ESI) source. Mass analyzer calibration was achieved using a standard tuning compound
mixture (Agilent, p/n: G1969-85000). A reference mass compound, hexakis (1H,1H,3H-
perfluoropropoxy) phosphazene (mass-to-charge-ratio (m/z ) 922.0098), was continuously
sprayed into the electrospray source through a secondary reference nebulizer. Control of
the Q-TOF was conducted using Agilent MassHunter Workstation Data Acquisition version
11.

2.2.2. LC columns

In the first dimension, an Agilent Zorbax Bonus-RP (2.1 × 100 mm, 3.5 µm) was used,
whereas in the second dimension, we used an Agilent Zorbax SB-C18 (2.1 × 30 mm, 3.5
µm). The column dead volumes were estimated to be 0.243 mL in the first dimension and
0.069 mL in the second dimension, based on a total porosity of 0.7 and respective column
dimensions.

2.3. Chromatographic conditions

2.3.1. First dimension

Gradient elution was performed using 0.1% formic acid in water (Solvent A) and acetonitrile
(ACN) (Solvent B). Four scanning gradients were employed, with a constant gradient profile
of 2-100% B. However, the gradient time (tG) varied across three different durations: 30
min, 40 min, 50 min, and 60 min. The temperature of the 1D column was set to 40°C, and
the flow rate in the first dimension was 0.08mL ·min−1. Each analysis involved injecting 4
µL of pesticide mix at a concentration of 1 µg ·mL−1.

2.3.2. Second dimension

Gradient elution was performed using 0.1% formic acid in water (Solvent A) and ACN
(Solvent B). Four scanning gradients were utilized, maintaining a constant gradient profile
of 2-100% B. However, the gradient time (tG) was varied across three durations: 9 s, 12 s,
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15 s, and 19.2 s. At the start of each 2D cycle, the mobile phase was held at 2% B for 5.4 s
to serve as the diluent during ASM [34]. After 25.2 s the mobile phase was held at 100 %B
until 27 s, after which the column reequilibrated to 2% B until the end of the modulation
time at 30 s. All other gradient profiles were computed using the algorithm described in
earlier work [26] and uploaded to the LC×LC system using an in-house C++ script. The
temperature of the 2D column was maintained at 60°C, and the flow rate for the 2D column
was set to 2mL · min−1. To achieve the desired split ratio, the 2D flow entering the MS
nebulizer was reduced to approximately 0.3mL · min−1 using a simple tee split and short,
narrow restriction capillaries (75 µm i.d.).

2.4. MS instrument and conditions
The Q-TOFmass spectrometer was operated in positive ion mode. The following MS settings
were used: gas temperature, 225 ◦C; drying gas, 12 L ·min−1; nebulizer, 35 psi; sheath gas
temperature, 350 ◦C; sheath gas flow, 11 L ·min−1; VCap, 3500 V; nozzle voltage, 500 V;
mass range, 50− 1200 m/z; acquisition rate, 10 spectra · s−1.

2.5. Software
2.5.1. In silico case study

In the in silico case study in Section 4.1, we used an in-house Python (version 3.8.13)
implementation of multi-linear gradient retention modeling using the LSS model that is
described in [13]. For this work, it was extended to support shifting gradients. It utilizes the
peak-compression model of Hao et al. [35] to predict peak widths. Retention parameters
are based on the tryptic digest of a monoclonal antibody sample used in Molenaar et al.[26],
and can be found in the Supplementary Information, including other specified modeling
parameters. All Bayesian optimization code was implemented in Ax (version 0.2.5.1) and
BoTorch (version 0.6.4)[36].

2.5.2. Closed-loop platform

For most components we reused earlier developed software described in [26] and its details are
reiterated where deemed necessary. Peak tracking was performed with previously developed
algorithms [16, 37]. Multi-linear gradient retention modeling was performed with the LSS
model and was written in-house in Matlab (R2021b). Retention parameters were estimated
using the multistart function in conjunction with fmincon with an optimality tolerance of
10−6 and a maximum of 3000 function evaluation. Retention model optima were calculated
using the ga function. We used an in-house version of the peak compression model of
Hao et al. [35] to predict peak widths. Individual plate numbers per compound were
estimated using the fminsearch function. We established overall system interactions between
the MS, LC×LC, and Matlab algorithms via Python (version 3.8.12). The methods applied
to the LC×LC were initiated using C++ in Visual Studio 2022, similar to earlier research
[13, 24, 26]. The Bayesian optimization framework was implemented in the Python package
of Ax[36] (version 0.6.4). Raw MS data were converted to .mz5 format using ProteoWizard
3.0.22144 64-bit [38], using a threshold count of 2000. This counts only the 2000 most intense
peaks. In addition, as some consistent background was present, some background masses
were excluded, as described in the Supplementary materials.
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3. Theory & Methods

3.1. Shifting gradients in two-dimensional chromatography

In conventional LC×LC, the second dimension elution conditions remain constant through-
out the analysis. This is reasonable if the two separation mechanisms are orthogonal; how-
ever, this is generally not the case, especially when reversed-phase separations are used in
both dimensions. In this situation, the 2D separation might benefit from an advanced as-
sembly of gradients that shift as a function of the 1D mobile-phase composition program to
increase the utilization of the separation space [33, 39]. Although powerful, this will result in
more complex method optimization compared to conventional LC×LC and thus is avoided
in some cases [40], leading to an under-optimized method.

Figure 1 outlines the parameters of the LC×LC gradient program. In the first dimension
(See Figure 1A), the gradient nodes (φi, ti), describe the transition points between consec-
utive linear segments. Gradient nodes can be added or removed depending on the desired
flexibility/complexity of the 1D program. Throughout this work, we ensure through inequal-
ity constraints that φi ≤ φi+1 and ti ≤ ti+1 for all i in I gradient nodes. In addition, we
kept the start point fixed at φ0 = 0.02 at t0 = tinit, and the end point fixed at φI = 1 at
tI = tmax, where tmax is some pre-specified maximum measurement time. This is done to
ensure that all analytes elute.
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Figure 1: Outline of the adjustable parameters of our 2D-LC setup (A-C).A) Example of a gradient program
in the first dimension consisting of two gradient steps. B) Example of a 2D shifting gradient. C) Example
of the gradient program of a single modulation in the second dimension. In every modulation, there is a
fixed isocratic hold at the start and end of the program.

The shifting gradient program in the second dimension, shown in Figure 1B, is specified
by a lower shift bound denoted with φinit,i and an upper shift bound denoted by φfinal,i at
time points tshift,i. Each modulation (shown in Figure 1C) follows these lower and upper
bounds depending on the 1D time which is programmed in φstart and φend. Although the
shifting times of the lower and upper bound do not necessarily have to be at the same
point in time, we do fix this to reduce the number of adjustable parameters. Therefore,
each additional shifting step introduces at most three additional parameters. Unless stated
otherwise, we keep the time of the start of the lower bound and the end of the upper
bound of the shifting gradient fixed, so that: tshift,0 = tinit, and tshift,2 = tmax. In the real-
world experiments described in Section 4.2, we set tinit = 1.44 min, and tmax = 62 min
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and set φinit,1 = φinit,2, and φfinal,1 = φfinal,2. In addition, we set inequality constraints so
that consecutive lower and upper bound points and timepoints are always increasing, i.e,
φinit,i ≤ φinit,i+1, φfinal,i ≤ φfinal,i+1 and tshift,i ≤ tshift,i+1 for all i in I shifting steps. Lastly,
the lower and upper bounds are not allowed to cross by ensuring that φinit,i < φfinal,i for all
I shifting steps.

In the experiments in Section 4.2, ASM was used. Therefore, we kept an initial hold of 0.09
min at φ = 0.02 at each 2D modulation before starting the programmed shifting gradient
from 0.1 to 0.45 min followed by a fixed endpoint at φ = 1.0, as shown in Figure 1C. Not
maintaining the isocratic hold during the ASM time caused considerable peak broadening
and less stable retention times.

To do retention modeling with shifting gradients, we follow the same approach as in our
previous work [26] and refer the reader to the detailed description there. In short, retention
modeling in the second dimension requires the determination of the 1D retention time so that
the 2D modulation number can be determined and accompanying lower and upper bounds
of the gradient program of that modulation. If the 1D retention time was predicted to be
after tshift,I , the final 2D conditions were used.

3.2. Objective function

Many objective functions, or chromatographic response functions (CRFs) have been devel-
oped to assess the quality of separation of a chromatogram in both LC and 2D-LC [41].
However, most CRFs are designed to either assess the quality of a separation predicted
based on a retention model or that of an experimental measurement, but not both. For
example, some CRFs include terms such as the number of observed peaks, which is useful
for experimental measurements, but not for retention modeling. As with retention modeling,
once the retention model is built, the number of compounds in the retention model is effec-
tively constant. In some cases, a resolution score is normalized by the number of observed
peaks, which is sensible in the retention modeling case, but not in the case of experimental
measurements, as the number of observed peaks might fluctuate over measurements, and
hence scores are not comparable over measurements. In our setting, we need an objective
function, or CRF that should be applicable to both experimental separations, and separa-
tions predicted from retention models, and should be as correlated as possible. Therefore,
as a separation criterion, we use the two-dimensional resolution between two peaks i and
j:

R∗
Si,j

=

√√√√ (t1R,i − t1R,j)
2[

2
(
σ1
i + σ1

j

)]2 +
(t2R,i − t2R,j)

2[
2
(
σ2
i + σ2

j

)]2 , (1)

where t1R,i and t2R,i are the retention times in the first- and second-dimension. σ1
i , and σ2

i

are the corresponding standard deviations of the peaks. These resolutions are normalized
as follows:

Rsi,j =

{
R∗

Si,j

2.0
if R∗

Si,j
< 2.0

1 if R∗
Si,j

≥ 2.0.
(2)
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We then take the sum of the resolution of all nearest neighbor pairs in the chromatogram
as the final objective:

N∑
i

min
j ̸=i

Rsi,j. (3)

This CRF is designed to be applicable to both simulated and experimental chromatograms.
Its emphasis lies in maximizing the number of resolved peak pairs within the specified
separation time.

3.3. Gaussian Processes

For single-task Bayesian optimization, we use a Gaussian process (GP) as the probabilistic
regression model due to its proven performance in the small data regime [42, 31]. A GP
is a distribution over functions, which is parameterized by a mean function µ(x) and a
covariance function k(x,x′) which generally is called the kernel function. Now given a
regression problem withN pairs of observations {(xi, yi)}Ni=1, where for simplicity we consider

these to be noiseless so that we have outputs y = [y(x1), y(x2), . . . , y(xn)]
T, and inputs

X = [x1,x2, . . . ,xn]
T. Then the Gaussian process for y can be described as:

y =

 y (x1)
...

y (xN)

 ∼ N


 µ (x1)

...
µ (xN)

 ,

 κ (x1,x1) . . . κ (x1,xN)
...

. . .
...

κ (xN ,x1) . . . κ (xN ,xN)


 (4)

Or in more compact notation:

y ∼ N (µ(X), K(X,X)) (5)

Here N is the normal distribution, and K(X,X) is the Gram matrix (i.e., the right-hand
side of the normal distribution in Equation 4). As we normalize the inputs (between 0 and
1), and standardize the outputs to zero mean and unit variance, we can set µ(X) = 0 so
that the GP is entirely described by the kernel function.

As a kernel function, we use the Matérn-5/2 kernel with automatic relevance determination
(ARD), which is defined as:

k(x,x′) = θ0

(
1 +

√
5r +

5r2

3

)
exp

(
−
√
5r
)
, (6)

where r is a weighted distance:

r =

√√√√ D∑
d=1

(
xd − x′

d

θd

)2

. (7)

Here θ0 is a scaling factor controlling the horizontal scale, and θ1,...,D are length scale pa-
rameters that govern the smoothness of the functions.
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The parameters θ can be inferred by maximizing the log marginal likelihood, which is the
probability that the model predicts the training outputs given the inputs and kernel param-
eters and is defined as:

ln p(y | X,θ) = −1

2
yT [K(X,X)]−1 y − 1

2
ln |K(X,X)| − N

2
ln 2π. (8)

Where the first term is a data-fit term, the second term is a complexity penalty, which favors
longer length scales over shorter ones (i.e., smooth over oscillating functions) and hence
regularizes overfitting. The third parameter is a constant originating from the normalizing
constant of the normal distribution.

To make predictions for unseen test inputs X∗ we can define the joint distribution of both
the previous observations and the test inputs, so that:[

y
y∗

]
∼ N

([
µ(X)
µ (X∗)

]
,

[
K(X,X) K (X,X∗)
K (X∗,X) K (X∗,X∗)

])
(9)

Then the conditioning properties for Gaussians allow for the computation of the posterior
predictive distribution in closed form:

p (y∗ | X∗,X,y) = N (y∗ | µ∗,Σ∗) (10)

with
µ∗ = µ (X∗) +K(X∗,X)T [K(X,X)]−1 (y − µ (X)). (11)

and
Σ∗ = K(X∗,X∗)−K(X∗,X) [K(X,X)]−1K(X,X∗) (12)

For a more detailed description of GPs we refer the reader to Rasmussen and Williams
[43].

3.4. Multi-Task Gaussian Processes

In MTGP regression, besides input pairs, we have an output for each task, so that for N in-
putsX = [x1,x2, . . . ,xn]

T we have a set of responses for T tasks as y = (y11, . . . , yN1, . . . , y12, . . . , yN2, . . . , y1T , . . . , yNT )
T,

where yi,t is the response for task t on input xi. In the simplest case, we can treat each task
as a separate regression task and can use an independent GP for each task following the de-
scription above. However, we want to exploit the correlation between each task. This can be
done by introducing a kernel that incorporates both tasks and inputs, i.e., k((x, t), (x′, t′)).
One such approach is the intrinsic model of coregionalization (ICM), which decouples the
task intercorrelation and the data domain and is defined as follows:

kICM = kT(t, t
′)⊗ k(x,x′) (13)

where ⊗ is the Kronecker product. Here kT(t, t
′) can be interpreted as a T × T matrix

of trainable intertask correlation parameters. Given N inputs for both tasks, the resulting
Gram matrix will have dimensions TN×TN , and will thus induce some additional compute
over a conventional GP. Then using kICM we again have a similar structure as conventional
GP and may use the equations above to fit kernel parameters and do predictions.

10

https://doi.org/10.26434/chemrxiv-2024-5mmvj ORCID: https://orcid.org/0000-0003-3922-6616 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-5mmvj
https://orcid.org/0000-0003-3922-6616
https://creativecommons.org/licenses/by-nc/4.0/


3.5. Bayesian Optimization
In Bayesian Optimization we aim to solve the optimization problem:

x∗ ∈ argmax
x∈X

y(x), (14)

where y(x) is the objective function score we observe via experiments x. BO utilizes the
GP model (or the MTGP model in case of MTGP) and an acquisition function to guide
optimization. The acquisition function uses the mean prediction and their variance from
the GP model to find points that are likely to improve upon the previously performed
experiments by trading off exploration (high variance predictions) and exploitation (high
mean predictions).

In the context of multi-fidelity BO, the acquisition function can also incorporate terms
regarding the cost of the queried task, where simulator queries are significantly less expensive
than performing an experiment in the laboratory. In this way, an optimum can be found at
the lowest possible cost by alternating between the simulations and experiments.

Throughout this work we use the Noisy Expected Improvement acquisition function (NEI)
[44, 30] as it handles measurement noise robustly, and supports batch optimization. Fol-
lowing the approach of Letham et al.[30], we exclusively apply NEI to the real task of the
MTGP (i.e., the part of the MTGP predicting the objective function for the real measure-
ment). This enables us to generate a batch of promising method parameters. Subsequently,
we assess these parameters on the simulator, recording their corresponding CRF scores and
refitting the MTGP with these new observations. Next, we reevaluate the generated batch
on the real task using the updated model, selecting the method parameters with the highest
CRF score to use in a real experiment. Thus, the real task remains the primary driver of
the optimization process. At the same time, the simulator serves to reduce predictive un-
certainty and aids in filtering out predictions with high variance and low mean. The entire
MTBO loop can be outlined as follows:

1. Fit MTGP to scanning experiments and randomly drawn method parameters evaluated
using the simulator.

2. Generate candidate method parameters using NEI on the real task.
3. Evaluate method parameters using the simulator and observe their objective function

score.
4. Refit the model with the new simulator observations.
5. Evaluate the generated candidate parameters on the real task and select the best-

performing candidate to use in an experiment.
6. Update the model with the experimental results and repeat from step 3.

4. Results & Discussion

4.1. In Silico case study
4.1.1. Setting up a simulator pair

To test and evaluate the MTBO framework and compare it with single-task BO, we set up
a simulator pair that allows us to run many in silico BO experiments. The simulator pair
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consists of a ”ground-truth” simulator and a ”biased” simulator. Here in a real-world set-
ting, the ground truth simulator would describe the laboratory experiments, and the biased
simulator would use the accompanying retention model. The ground-truth simulator con-
tains retention parameters for 187 peptides found in a tryptic digest of an IgG1 monoclonal
antibody characterized using LC×LC [26]. The biased simulator is created by introducing
normally distributed random noise to the predicted retention times and peak widths and by
randomly removing 30 compounds. This approach attempts to mimic the error that would
be encountered in a realistic setting, where not all compounds can be sufficiently tracked
and there are prediction errors in the retention model. Details regarding this added noise
and other retention parameters can be found in Section S1 of the Supplementary Informa-
tion.

To assess the introduced simulator bias, we evaluate both simulators on 400 randomly drawn
sets of method parameters of a shifting gradient program with 12 adjustable parameters: x =
[φ1, φ2, t1, t2, φinit,1, φinit,2, φinit,3, φfinal,0, φfinal,1, φfinal,2, tshift,2, tshift,3] describing a two-step 1D
gradient (as in Figure 1A) and a two-step 2D shifting gradient (as in Figure 1B, but with
one additional shifting step). A further description of the parameters is given in Section 3.1.
The resulting data are shown in Figure 2, with the ground truth results shown on the x-axis
and the biased results on the y-axis. It can be seen the introduction of noise and removal
of compounds led to consistent overconfidence around low ground truth scores, potentially
because the biased simulator observes more separated peaks that are not separated in the
real system due to the incorporation of more compounds. At high ground truth scores,
the biased simulator is generally underconfident because it is missing compounds, leading
to a lower number of separated compounds and a lower score. While there still is a clear
correlation between the two simulators, it is clear that an optimum in the biased simulator
does not necessarily coincide with an optimum in the ground truth simulator. Therefore it
provides an interesting test case for our multi-task Bayesian optimization framework, but
also from a chromatographic method development standpoint.

4.1.2. Bayesian optimization & Multi-task Bayesian optimization

BO (described in detail in Section 3.5) relies on two main components: a probabilistic model,
and an acquisition function. The probabilistic model is trained on the input parameters and
the observed metric of previously performed experiments and then acts as a surrogate model
of the real system. We use a GP (described in detail in Section 3.3) as the probabilistic
model due to its proven performance in the small data regime [42]. In MTBO, the GP model
is replaced by a multi-task GP (described in detail in Section 3.4). A multi-task GP can
predict outcomes for several tasks and can learn the correlations between different tasks to
boost predictive capabilities. In our setting, the tasks are predicting the performance metric
(CRF) of the real experiment and that of the retention model described in Section 3.2.

To compare the performance of a single-task GP with a multi-task GP, we perform leave-
one-out cross-validation on predicting the outcome of 24 observations of the ground-truth
simulator described in Section 4.1.1 using the same 12 adjustable parameters. This involves
fitting the model to 23 observations and evaluating the prediction accuracy for the left-out
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Figure 2: Biased simulator observations compared to the ground truth simulator consisting of 400 mea-
surements. Each dot represents a set of parameters that was evaluated in both simulators. For the biased
simulator, the outcome of each parameter set is stochastic due to the randomly drawn noise and was there-
fore computed three times, and the respective standard deviations are shown by the error bars. Although
the biased simulator scores are correlated with the ground truth simulator, using the biased simulator to
optimize the problem directly is challenging.

observation for all possible permutations. The results for the single-task GP are shown in
Figure 3A, where it is shown that given the relatively low number of observations and the
relatively high number of adjustable parameters, the GP cannot capture the response surface
accurately. The multi-task GP was also fitted to 120 observations of the biased simulator
and then used to do leave-one-out cross-validation on the 24 observations from the ground-
truth simulator. By incorporating the biased observations, the predictive accuracy of the
multi-task GP (see Figure 3B) improves dramatically upon the single-task GP. The accuracy
of the probabilistic model is imperative in Bayesian optimization, and the single-task GP
will likely need more than 24 observations to become accurate, which is a prohibitive number
of experiments in the setting of LC×LC.

The second core component of BO, the acquisition function, queries the GP (or the MTGP
in case of MTBO) at new test locations and makes a trade-off between exploration (high
variance predictions of the GP) or exploitation (high mean predictions of the GP) and finds
the experiment that is most likely to improve upon the previously performed experiments.
We describe details regarding the acquisition function in Section 3.5.

Given the two core components the conventional BO loop proceeds by an initial fitting of the
GP model to initial experiments, followed by optimizing the acquisition function to propose
new method parameters, then performing the measurement and retraining the model on the
updated dataset, and is repeated until some convergence criterion or optimization budget is
met.

In our MTBO framework, we draw inspiration from Letham et al. [30] In this framework,
after the initial fitting of the MTGP model, we optimized the acquisition function on the task
describing the ground truth simulated response surface to find ten promising experiments.
Next, we evaluated these method parameters on the biased simulator and updated the
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Figure 3: Leave-one-out cross-validation predicting the outcome (i.e., the CRF value) of 24 observations
in a 12-parameter shifting gradient program. A) A single-task GP fitted only to 24 observations of the
true simulator. B) A multi-task GP fit to both the 24 observations of the true simulator and 120 biased
simulator observations. Due to the high dimensionality of the optimization problem and a low number of
observations, the single-task model does not describe the observations well enough to make useful predictions.
Incorporating biased simulator observations increases the accuracy of the multi-task model significantly.

MTGP with these new observations. We then reevaluated the proposed experiment on the
ground truth task of the updated model, selecting the best-performing candidate to use in
a real experiment, and iteratively repeat. Thus, the ground-truth task remains the primary
driver of the optimization process, while the biased simulator serves to reduce predictive
uncertainty and aids in filtering out predictions with high variance and low mean that
would not be a good use of resources.

Figure 4 describes a single- and multi-task BO loop for the setup discussed in Section 4.1.1
on a 12-parameter optimization problem, using the CRF described in Section 3.2. Both algo-
rithms were allowed to do 25 experiments on the ground truth simulator. The MTGP could
perform four biased simulator experiments per iteration and was initialized with 30 random
biased simulator experiments. Both algorithms were initialized with five random ground
truth experiments. All experiments were repeated for eight trials. It can be seen that the
MTBO found reasonable optima with far fewer iterations, ascribing its applicability to the
problem setting of LC×LC. We provide another retention modeling example of a synthetic
sample comprised of two distributions in Section S2 of the Supplementary Information and
draw similar conclusions.

4.2. Case study: Separation of a pesticide mix

To test our framework in a real-world setting, we employed our single-task and multi-task
BO schemes to develop a method for the separation of a pesticide mix implemented within
the automated closed-loop workflow we developed in earlier work [26]. We considered the
development of a two-step 1D gradient program (as in Figure 1A) with a fixed starting
point at (t0 = 2, φ0 = 0.02) and a fixed end point at (t2 = 62, φ2 = 1), effectively leading
to one adjustable gradient node (t1, φ1) in the first dimension. In the second dimension,
we considered a shifting gradient program (as in Figure 1B). This led to the following

14

https://doi.org/10.26434/chemrxiv-2024-5mmvj ORCID: https://orcid.org/0000-0003-3922-6616 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-5mmvj
https://orcid.org/0000-0003-3922-6616
https://creativecommons.org/licenses/by-nc/4.0/


0 5 10 15 20 25
Iteration

40

50

60

70

80

90

100

110

B
es

t-f
ea

si
bl

e 
C

R
F 

va
lu

e
Single-Task GP 
Multi-task GP

Figure 4: Comparison of the performance of single-task and multi-task Bayesian optimization on the simu-
lated optimization problem of a 12-parameter shifting gradient program. The mean and standard deviation
are reported over eight trials. It is observed that MTBO results find better optima at earlier iterations than
single-task BO.

seven adjustable parameters: x = [φ1, t1, φinit,0, φinit,1, φfinal,0, φfinal,1, tshift,1]. Other details
regarding bounds and inequality constraints are discussed in Section 3.1. We used the CRF
described in Section 3.2 to guide optimization, focusing on having as many separated peak
pairs as possible within the given separation time. For both optimization cases, we allowed
for a budget of 20 laboratory experiments including the four initial scanning gradients, which
we refer to as method development iterations (MDIs).

4.2.1. Multi-Task Bayesian Optimization

Besides the four initial scanning experiments, the MTBO algorithm was initialized with 20
random sets of method parameters evaluated using the retention model (RM). At each iter-
ation, the MTBO algorithm proposed 10 candidates which were first tested using the RM,
after which the MTGP was updated and then the best-performing candidate in the updated
model was carried out in a real laboratory experiment (see Section 3.4 for details regarding
the MTBO loop). Figure 5A shows the observed CRF values for each performed measure-
ment (in blue) and the CRF values observed in the retention model (RM) (in orange). Here
it is observed that method parameters are proposed that improve upon the initial scanning
experiments both in terms of the CRF evaluated using the RM prediction, but also for the
laboratory experiment, indicating successful optimization. Figure 5B, shows all CRF values
of the method parameters tested with the retention model in blue, with the orange dots
indicating what measurements were then picked to be tested in a laboratory experiment.
Here it is seen that method parameters were explored that would give low CRF values with
the RM model, which were in turn not picked for use in laboratory experiments, because
the additional data allowed for a reduction of uncertainty in the MTGP, thereby focusing on
interesting areas and preventing poor uses of precious resources. The dashed line in Figure
5A shows the optimum in the retention model which was computed post-hoc using BO and
the retention model with a more exhaustive budget and which was cross-referenced with the
genetic algorithm optimization approach proposed earlier [26]. Although the RM optimum
is not met, within only 214 evaluations of the RM, the highest queried value is close to
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the RM optimum and was also selected at MDI 17, and in the process, other promising
method parameters were evaluated, which would not have been attempted using RM to
drive optimization.

Figure 5: Panel showing the results of the MTBO run. A) Overview of observed CRF values for each
MDI. The CRF computed on the real measurement is shown in blue, whereas the CRF computed using
the retention model (RM) prediction is shown in orange. The black dashed line corresponds to the best
optimum found using the RM model. B) CRF scores for all sets of method parameters evaluated using
the RM during the MTBO run, the orange points indicate which iterations were carried out using the
real system. C) Gradient programs used in MDI 4, 7, and 17, which are the encircled points in A, and
correspond to the longest scanning experiment, the optimum according to the CRF computed using the real
measurement, and the optimum according to the CRF computed on the retention model (RM) prediction,
respectively.

Interestingly, although MDI 17 has the highest RM score, it is not the highest observed
score from the real measurements. This is shown in Figure 5A where it can be seen that the
observed scores based on the RM and on the real measurement are generally in the same
range but do differ, indicating some bias. Likewise, MDI 7 has the highest score on the real
measurement, but not on the RM score. In terms of method parameters (shown in Figure
5C), MDI 7 and MDI 17, both are improvements upon the longest scanning experiment
(MDI 4). Judging from the chromatogram of MDI 4, shown in Figure 6A, the method
would benefit from a slightly shallower 1D gradient and a narrower shift, starting at higher
modifier concentrations, as most compounds eluted at relatively high modifier concentrations
in the second dimension. This is indeed what is proposed in MDI 7 and MDI 17, where in
both cases the 1D program is more shallow than in the scan, with MDI 7 being the most
shallow. In the case of MDI 7, shown in Figure 6B, this led to more separation in the first
dimension between 20 and 50 min than in MDI 17 (Figure 6C), but arguably led to more
compression around 60-70 min. In the second dimension, MDI 7 set a slightly reduced lower
bound than MDI 17 and started the upper bound at a lower modifier fraction (See Fig.
5C), arguably leading to more separation in the second dimension. Note that there is the
fixed isocratic hold of 5.4 s at 2% modifier in addition to the dwell time (2.1 s) associated
with the pump, column dead time (2.07 s), and gradient delay time associated with the
loop (1.2 s), which is why compounds can only elute under isocratic conditions before ∼
10.7 s. Compounds in a modulation can elute during the combined dwell and dead time
(5.28 s) of the next modulation. It is difficult to make a quantitative determination as to
why the CRF scores determined using the real measurement differ, although it could be
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caused by improved separation (for instance around 20 min in the first dimension and 20 s
in the second dimension). It could also be due to detected noise (around 40 min in the first
dimension and 5 s in the second dimension) in MDI 7. In Section S3, we compare the RM
prediction of MDI 17 with the true measurement of MDI 17 and describe the differences and
similarities there.

A B C

Figure 6: LC×LC-MS total ion chromatograms (TICs) of MDIs during the MTBO run. Red dots indicate
the peaks detected by the peak detection algorithm. A) Chromatogram of MDI 4, which is the longest initial
scanning experiment. B) Chromatogram of MDI 7, which was the best measurement according to the CRF
computed using the real measurement. C) Chromatogram of MDI 17, which was the best measurement
according to the CRF computed using the RM prediction.

4.2.2. Single-Task Bayesian Optimization

Figure 7A describes the optimization campaign of the single-task BO loop. Unfortunately,
these measurements were performed at a different point in time and MS detector sensitivity
was lower, indicated by the CRF scores of MTBO (dashed green line), and the CRF scores
of BO (blue line) of MDI 1-4, which are the same initial scanning measurements and have
consistently lower scores. This is also supported by the RM scores (orange lines), which
were computed post hoc at the measured method parameters, using the retention model
developed in Section 4.2.1, which are consistently higher than the CRF scores of the real
measurements. This unfortunately does not allow for a quantitative comparison of the
MTBO and BO runs. However, despite the lowered sensitivity, the BO algorithm is seen
to provide method parameters that improve upon the scanning experiments. Here MDI
11 is the best measurement according to the CRF evaluated using the real measurement,
and MDI 6 is best according to the RM, which are both shown in Figure 8. Note that
the BO algorithm did not use the RM to guide optimization, and this is solely used for
discussion.

The method parameters for MDI 6 and MDI 11 are shown in Figure 7B, where it is seen that
both MDIs, similar to those from the MTBO, have a shallower 1D gradient that increases
the separation in the first dimension. However, the 2D parameters are not varied as much as
in the MTBO run. This is especially true for MDI 6, where the 2D parameters are the same
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Figure 7: Panel showing the results of the BO run. A) Overview of observed CRF values as a function
of MDIs. The CRF computed using the real measurement is shown in blue, whereas the CRF computed
using the RM prediction is shown in orange; note that this is not used during the optimization. The black
dashed line corresponds to the best optimum found using the RM model. The dashed green line shows the
MTBO values shown in Figure 5 for comparison. B) Gradient programs used in MDI 6 and 11, which are
the encircled measurements in A, and correspond to the optimum according to the CRF computed on the
RM prediction, and the optimum according to the CRF computed on the real measurement, respectively.

as in the scanning experiments. Note, however, that this leads to a score that is close to the
optimum in the RM, indicating that much improvement can be gained from tuning the 1D
parameters, according to the retention model. This is also supported by Section S3, where
it is seen that 2D peak widths are generally overpredicted, and therefore these peaks are
hard to effectively separate in the second dimensions according to the RM. MDI 11, slightly
lowers the upper bound of the shifting gradient but leaves the lower bound of the shifting
gradient untouched compared to the scanning gradients. While this leads to less separation
than was proposed in the MTBO run, it does lead to a better separation of the cluster of
peaks eluting around 60 min, which was not observed in the MTBO run. However, from a
qualitative perspective, the MTBO obtained more reasonable method parameters than what
was found in the BO run, and BO will likely need more MDIs to find better optima, as was
also observed in the in silico experiments in Section 4.1.2.

5. Conclusion

We developed and investigated the use of multi-task Bayesian optimization (MTBO) applied
to the development of methods for comprehensive two-dimensional liquid chromatography
(LC×LC) separations. We first compared the performance of MTBO with conventional
Bayesian optimization (BO) in an in silico test case and showed that MTBO, with its abil-
ity to incorporate information from both retention modeling and real experimental data,
finds better optima in fewer iterations than conventional BO. This was also demonstrated
in a real test case where we compared the performance of MTBO and BO for optimiz-
ing a method developed for separation of a complex pesticide sample. Here it was shown
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A B

Figure 8: LC×LC-MS TICs of MDIs during the BO run. Red dots indicate the peaks detected by the peak
detection algorithm. A) Chromatogram of MDI 6, which was the best measurement according to the CRF
computed using the RM model. B) Chromatogram of MDI 11, which was the best measurement according
to the CRF computed using the real measurement.

that although both methods improved upon the performance of initial scanning experi-
ments, from a chromatographers perspective, MTBO made better use of both the first- and
second-dimension parameters than BO. This makes MTBO a promising method for method
development over conventional BO when retention modeling is challenging, and the num-
ber of adjustable parameters and/or limited optimization budget makes conventional BO
impractical.

It remains an open question as to when and where MTBO should be used over retention
modeling. When retention modeling can accurately predict retention times and peak widths
for most compounds in the sample under study, it is arguably more sensible to directly use
the retention model to guide optimization. However, one only finds out if this is the case
during the optimization process itself. If the retention model is too biased to effectively
guide optimization, from that point on the MTBO could be initialized with the previously
acquired data and could take over optimization from there. In addition, there may be use
cases where only some of the adjustable parameters are described by a retention model
or other source of information, and others are not; in these cases, MTBO could still use
this information and provide a ”warm start” to the optimization, rather than starting from
scratch with conventional BO. This could be a promising area for MTBO.

Since the MTBO framework required an objective that was both computable and applicable
to both real measurements and predictions made using a retention model, we utilized a
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resolution-based CRF that focused on maximizing the sum of the resolution between closest
neighbor pairs. This is a relatively uncommon scenario, and we did not investigate whether
other CRFs could potentially work better; this could be investigated in future work. Another
vital component for successfully building an accurate retention model, but also for robustly
assessing the CRF for a real measurement is the signal processing pipeline, from background
correction to peak detection and peak tracking. The performance of the algorithm is likely
to improve with improvements in this pipeline. For instance, background correction artifacts
could introduce anomalies in the retention model, but could also lead to over/underconfident
CRF scores for the real measurement, impacting the algorithm’s performance. This is equally
true for the peak detection and tracking. Future work could focus on improving and/or
benchmarking these methods, but could also focus on CRFs that are more robust to these
anomalies.

Finally, in the MTBO framework, some design decisions had to be made. For instance, the
number of times the retention model can be queried before a real measurement is made was
set to 4-10 times in this study. Since a retention model prediction (order of seconds) and
real measurements (order of hours) occur on very different time scales, this number could
potentially be much higher, which could provide benefits but could also introduce higher
MTGP fitting costs or instabilities; this could also be further optimized in future work.
Another interesting future research direction could focus on using data from other (similar)
separations to initialize the MTGP which might further boost its performance and reduce
the overall number of experimental iterations required, thereby enhancing the efficiency of
the optimization process.
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7. Highlights

• A multi-task Bayesian optimization algorithm was developed to optimize LC×LC
methods

• It utilizes both retention modeling and experimental data to guide optimization.

• The performance of multi-task and single-task Bayesian optimization was compared.

• Within a few iterations, the separation of a complex pesticide sample was improved.

• The algorithm can run unsupervised in a closed-loop fully automated setting.
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