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Abstract

This article presents a novel algorithm for the cal-
culation of analytic energy gradients from second-
order Møller-Plesset perturbation theory within the
Resolution-of-the-Identity approximation (RI-MP2)
which is designed to achieve high performance on multi-
GPU clusters. The algorithm uses GPUs for all major
steps of the calculation, including integral generation,
formation of all required intermediate tensors, solution
of the Z-vector equation and gradient accumulation.
The implementation in the EXtreme Scale Electronic
Structure System (EXESS) software package includes a
tailored, highly efficient, multi-stream scheduling sys-
tem to hide CPU-GPU data transfer latencies and al-
lows nodes with 8 A100 GPUs to operate at over 80% of
theoretical peak floating-point performance. Compara-
tive performance analysis shows a significant reduction
in computational time relative to traditional multi-core
CPU-based methods, with our approach achieving up
to a 95-fold speedup over the single-node performance
of established software such as Q-Chem and ORCA.
Additionally, we demonstrate that pairing our imple-
mentation with the molecular fragmentation framework
in EXESS can dratsically lower the computational scal-
ing of RI-MP2 gradient calculations from quintic to
sub-quadratic, enabling further substantial savings in
runtime while retaining high numerical accuracy in the
resulting gradients.

1 Introduction

The calculation of accurate quantum molecular gradi-
ents with respect to nuclear displacements stands as one
of the most computationally intensive yet fundamental
tasks in the gamut of quantum chemistry applications.
These gradients are critical for the efficient identifica-
tion of equilibrium molecular geometries and transition
states.1–3 Furthermore, they serve as a key component
in ab initio molecular dynamics simulations, where they
directly determine the forces acting on atoms.3

Second-order Møller-Plesset perturbation theory4

(MP2) has historically been a prevalent method for
obtaining reliable energy derivatives,5–9 offering a sys-

tematic, ab initio pathway to molecular gradients that
incorporate dynamic correlation effects that extend be-
yond the Hartree-Fock (HF) mean-field approximation,
and including dispersion interactions.9–11

The capabilities and limitations of MP2, along with
its associated gradients, have been extensively explored
and are well-understood. MP2 generally provides ac-
curate equilibrium geometries for large-gap, closed-shell
systems,9,12 though it tends to overestimate the binding
in systems where dispersion forces are dominant.12–19

In contrast, MP2 often falls short in accurately pre-
dicting the energetics and geometry of transition metal
and open-shell systems when compared to more ad-
vanced theoretical methods.20–23 Additionally, due to
its O(N5) computational scaling, MP2 becomes less fea-
sible for molecular systems containing more than about
100 atoms, where its computational demand can become
impractical.
Thus, with the advent of typically computationally

less demanding and sometimes more reliable density
functionals23–29 within the Kohn-Sham density func-
tional theory (KS-DFT) framework,30 traditional MP2
has partly lost its appeal as an economic post-HF ap-
proach to describe electronic correlation effects.
Yet, the significance of MP2 theory as a foundational

component of more accurate quantum chemical meth-
ods remains undiminished.
A first approach to improve the performance of MP2

is to self-consistently optimize its reference molecular
orbitals (MOs) with respect to an MP2 correlation func-
tional,31–34 or even by simply using DFT orbitals.34

Orbital Optimized MP2 (OOMP2) yields improved en-
ergetics for spin-unrestricted reference wave functions,
albeit not without pitfalls.23,33

Another common amelioration is to suitably scale
the same-spin (SS) and opposite-spin (OS) compo-
nents of the MP2 energy.21,31,35–39 Spin-Component-
Scaled MP2 (SCS-MP2) provides major improvements
in accuracy and robustness over traditional MP2 for
closed-shell systems. Furthermore, its orbital optimized
cousin, SCS-OOMP2,31,39,40 dramatically reduces the
MP2 errors for spin-contaminated reference wave func-
tions, which are typically associated with radicals and
transitions states.
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A third approach is to incorporate in the MP2 en-
ergy expression a semi-empirical regularization term
that prevents divergence of correlation energy at zero
gap.41–45 Regularized MP2 methods, especially κ-MP2
and κ-OOMP2,33,46 have been reported to significantly
improve upon standard MP2 for noncovalent interac-
tions and radical systems.46,47

An additional, very successful extension to MP2 the-
ory is to combine hybrid meta-GGA (generalized gra-
dient approximation) exchange and correlation with
correlation from second-order Görling–Levy perturba-
tion theory48 (GLPT2)1 to obtain the so-called double-
hybrid (DH) density functionals.28,49–52 The spec-
trum of double-hybrid functionals has been extensively
benchmarked over the past decade,53–60 and DH-DFT
is arguably the most accurate tool in the KS-DFT ar-
senal.
While these methods hold considerable promise, their

practical application to large molecules is hindered by
the steep O(N5) computational scaling of the under-
lying MP2 calculations. Consequently, there has been
tremendous research effort over recent decades on de-
vising faster and more efficient algorithms and software
for the evaluation of the MP2 energy40,61–81 and gradi-
ents.5,8,21,36,82–105

In particular, the adoption of the Resolution-of-
the-Identity (RI) approximation to yield the RI-MP2
method,61,63,106 has gained prominence as a an effective
technique to accelerate these calculations by reducing
the computational pre-factor of the quintic MP2 algo-
rithm while introducing negligible error.
Additional efforts were systematically undertaken to

reduce the steep computational scaling of MP2 ener-
gies and gradients, thereby enabling their application to
larger molecular systems. Therefore, numerous lower-
order scaling algorithms were developed, offering ac-
curate approximations for both the SS- and OS-MP2
energy components at a substantially reduced compu-
tational expense.62,64,66–73,107 These methods primarily
reduce the scaling order with system size by leverag-
ing the local nature of electronic correlation employing
strategies such as orbital localization,62,64,67,70 atomic-
level truncation and exploitation of sparsity in ma-
trix elements,66,69,70,72,73,75,107 or molecular fragmenta-
tion.68,71,76,77,80,81

Another, less explored pathway to significantly ac-
celerate these calculations is by redesigning the un-
derpinning algorithms to harness the massively paral-
lel nature of modern computing hardware. A major
paradigm shift in this hardware has occurred over the
last decade with the widespread adoption of heteroge-
neous architectures. Accelerators such as graphical pro-
cessing units (GPUs) now often provide the vast major-
ity (> 95%) of the computational power in the fastest
machines.108,109 Due to their fundamental architectural
differences with CPUs, exploiting the computational ca-
pabilities of GPUs is challenging and requires a funda-

1Effectively MP2 using KS orbitals.

mental redesign of the complex algorithms underpinning
quantum chemical methods.108

While significant research effort has been devoted
to designing quantum chemistry software targeting the
GPU architecture,110–131 there is a dearth of efficient
GPU algorithms for analytic gradients at the MP2 level
of theory.
The RI-MP2 energy calculation was one of the first

post-HF quantum chemistry algorithms to be acceler-
ated using GPUs.132 RI-MP2 was particularly identified
for early adoption as the primary bottleneck can mostly
be reduced to a series of matrix multiplications, for
which the GPU hardware offers significant performance
superiority compared to CPUs. There have since been
several high-performance GPU accelerated RI-MP2 im-
plementations in various software packages,77,133 in-
cluding by some of the present authors.80,81 Our im-
plementation, which achieves linear scaling with system
size through usage of molecular fragmentation, enabled
us to perform RI-MP2 energy calculations using the
cc-pVDZ/cc-pVDZ-RIFIT basis sets on over 145,000
atoms in about 40 minutes, using approximately 27,000
GPUs on the Summit supercomputer at the Oak Ridge
National Laboratory.81

While numerous efficient CPU based MP2 gradient
algorithms and implementations have been developed,
in the literature to date, there have only been two at-
tempts to use GPUs to accelerate the MP2 or RI-MP2
gradients.
The first implementation was incorporated into Q-

Chem 4.0.134 The Q-Chem GPU code used a single
GPU and only to speed up the matrix multiplications
within the RI-MP2 gradient algorithm. In our tests
this GPU implementation performed significantly worse
than the present CPU implementation in Q-Chem 6.0.
Hence, the Q-Chem single-node CPU performance will
be used as the reference benchmark in performance test-
ing.
The second implementation used Tensor Hyper-

Contraction (THC) and was integrated within the Ter-
achem GPU software package.101 However, the THC-
MP2 gradient implementation is not available in the
production version of Terachem and hence for detailed
comparisons.
In this article, we present a novel high-performance

algorithm and software implementation for the calcu-
lation of RI-MP2 energy gradients on multiple GPUs,
which was integrated in the EXtreme-scale Electronic
Structure System (EXESS).109

Specifically, key algorithmic contributions of this
work include:

• The development of efficient algorithms to per-
form the four major stages of the RI-MP2 gradi-
ent calculation process — the contraction of BP

ia,
the formation of the MP2 Lagrangians, solving
the Z-vector equation, and accumulating the in-
tegral derivatives — all on GPUs.

• A multi-stream scheduling system to hide mem-
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ory transfer latencies whilst utilising symmetry
in the BP

ia contraction with dynamic load bal-
ancing across multiple GPUs.

Furthermore, by leveraging the massively parallel
molecular fragmentation framework in EXESS, we
demonstrate that when using a Many Body Expansion
truncated at the three-body level (MBE3) the resulting
MBE3/RI-MP2 calculations can achieve sub-quadratic
scaling with negligible loss of accuracy compared to the
quintic, fragmentation-less approach.
The remainder of this article is organized as fol-

lows. Section 2 introduces the notation conventions
used throughout the rest of this article. Sections 3 and 4
detail the analytic RI-MP2 gradient formulation and the
challenges associated with an efficient multi-GPU im-
plementation respectively. Section 5 discusses the novel
algorithms and implementation while Section 6 presents
the performance and timing results including compari-
son with the existing CPU based codes in Q-Chem 6.0
and ORCA.

2 Notation

Henceforth we adopt the following notation conventions.
Basis functions and orbitals are identified by the index
symbol as follows

• i, j, k — doubly occupied molecular orbitals
(MOs).

• a, b, c — virtual orbitals.

• p, q, r, s — all molecular orbitals.

• µ, ν, λ, σ — primary atomic orbital basis func-
tions ϕν(r).

• P,Q,R — auxiliary atomic orbital (AO) basis
functions.

Sums involving these indices are over the full range
of the index unless otherwise specified. We follow a
restricted closed-shell formalism, and denote the total
number of atomic orbital basis functions N , the number
of doubly occupied molecular orbitals Nocc, the number
of virtual molecular orbitals Nvirt, the number of aux-
iliary basis functions Naux, and the number of atoms
NA. Note that the frozen-core approximation is not
used. Thus, for conciseness we neglect basis set linear
dependence effects and assume N = Nocc +Nvirt.
Chemist’s notation is adopted for the electron repul-

sion integrals (ERIs)

(µν|λσ) =∫
ϕ∗
µ(r1)ϕν(r1)

1

|r1 − r2|
ϕ∗
λ(r2)ϕσ(r2) dr1dr2,

(1)

and likewise (P |Q) and (µν|P ) for the two-center (2C)
and three-center (3C) ERIs, respectively.

3 RI-MP2 gradient formulation

The restricted closed-shell MP2 energy correction135 is
defined as follows

EMP2 =

Nocc∑
ij

Nvirt∑
ab

(ia|jb)[2(ia|jb)− (ib|ja)]
ϵi + ϵj − ϵa − ϵb

. (2)

Using the Resolution of the Identity (RI) approxima-
tion,136 each of the four-center ERIs in Eq. 2 is approxi-
mated as a contraction of two and three-center integrals

(ia|jb) ≈ (ia|jb)RI =
∑
P,Q

(ia|P )J−1
PQ(jb|Q), (3)

where JPQ = (P |Q) is the auxiliary basis Coulomb
inner-product tensor and J−1

PQ is its inverse.
Since JPQ is positive-definite, it is possible to calcu-

late the inverse square root J
− 1

2

PQ such that

(ia|jb)RI =
∑
P

BP
iaB

P
jb, (4)

where
BP

ia =
∑
Q

(ia|P )J
− 1

2

PQ . (5)

An analytic gradient for the MP2 correction energy
was first presented in 1979 by Pople et al.5 One of
the significant challenges posed by the evaluation of
the MP2 gradient is the evaluation of the derivatives
of the repulsion integrals in the MO basis. This re-
quires computing not only the derivatives of the four-
center ERIs in the atomic orbital basis, but also the
derivatives of the HF molecular orbital coefficients Cpµ.
In turn, the latter task involves solving the Coupled
Perturbed Hartree-Fock (CPHF)137 equations for every
gradient dimension (3NA in the case of a geometry op-
timization) which becomes a significant bottleneck. To
eliminate these repeated calculations, in 1984 Handy
and Schaefer proposed the Z-vector method.82 This al-
lows the CPHF equations to be solved once to form
the so-called Z-vector, which can then be re-used for
each of the gradient dimensions. In the case of MP2
first-order gradients, the Z-vector method calculates the
occupied-virtual block of the relaxed MP2 density ma-
trix Dai.

138–140

The first derivative of the restricted closed-shell RI-
MP2 electronic energy with respect to a perturbation
ξ obtained by direct differentiation of Eq. 2 under the
Z-vector formalism is83,92,97,106

Eξ
RI−MP2 =4

∑
µνP

ΓP
µν(P |µν)ξ − 2

∑
PQ

γPQ(P |Q)
ξ

(6)

+ 2
∑
µν

{
DµνF

ξ
µν −WµνS

ξ
µν

}
, (7)

where the superscript ξ denotes the first derivative of
the quantity with respect to a perturbation ξ. The in-
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termediate values required for the computation are

ΓP
ia =

∑
bjQ

(2Xab
ij −Xba

ij )B
Q
jbJ

− 1
2

PQ , (8)

which is back transformed to the AO basis to form ΓP
µν ,

Xab
ij =

(ia|jb)RI

ϵi + ϵj − ϵa − ϵb
, (9)

and
γPQ =

∑
iaR

ΓP
iaB

R
iaJ

− 1
2

QR . (10)

The remaining intermediates are the first derivative
of the Fock matrix integrals

F ξ
uv = hξ

µν +
∑
λσ

[
2(µν|λσ)ξ − (µσ|λν)ξ

]
DSCF

λσ , (11)

the first derivative of the overlap matrix in the atomic
orbital basis Sξ

µν , and the energy weighted density ma-
trix

Wpq =
1

2

{
(ϵp + ϵq)Dpq ⊕

∑
qr

AipqrDqr ⊕ L′
iq ⊕ L′′

aq

}
,

(12)
where

L′
iq = 2

∑
aP

ΓP
ia(P |qa), (13)

L′′
aq = 2

∑
iP

ΓP
ia(P |iq), (14)

and
Apqrs = 4(pq|rs)− (ps|rq)− (pr|sq), (15)

which is transformed to the atomic orbital basis in the
usual manner.
The symbol ⊕ is used to denote the sum of inter-

mediate tensors that may not fill the full domain of the
resulting tensor. Note that indexing for the second term
in Eq. 12 contributes only to the occupied rows of Wpq.
There is some disagreement in literature regarding this
indexing,84,88,92,97 although it is required to match gra-
dients calculated by finite-differences.106

Finally, the MP2 relaxed density matrix D is defined
in blocks such that

Dpq = Dij ⊕Dab ⊕Dai, (16)

where the occupied-occupied and virtual-virtual blocks
are

Dij =
∑
abk

(2Xab
ik −Xab

ki )X
ab
jk , (17)

Dab =
∑
ijc

(2Xac
ij −Xca

ij )X
bc
ij , (18)

and the occupied-virtual component is obtained by solv-

ing the Z-vector equation

L′′
ai −L′

ia −
∑
pq

AaipqDpq = (ϵa − ϵi)Dai +
∑
bj

AaibjDbj ,

(19)
where D = Dij ⊕Dab.
For a more detailed account on this formalism, the

reader can refer to Weigend and Häser106 along with
the full derivation of the MP2 gradient in Aikens et
al.89

The implementation presented in this article primar-
ily considers perturbations with respect to atomic po-
sitions which are important for geometry optimization
and molecular dynamics. However, the code and formu-
lation above can be trivially adapted to electronic field
perturbations as the basis function integral derivatives
(e.g., (P |µν)ξ and Sξ

pq) will be zero due to the basis
set not being perturbed and only the core-Hamiltonian
derivative hξ

µν would be significant.
The RI approximation is not applied to the Apqrs ten-

sor or Fock derivative to remain analytic as this approx-
imation was not used for the HF steps of the energy
calculation.

4 Multi-GPU algorithmic chal-
lenges

The theory of MP2 gradients is well known and for-
mulated as described in Section 3. The computation
of RI-MP2 gradients is thus primarily an algorithmic
and implementation challenge. There are several factors
that make formulating an efficient, high-performance
RI-MP2 gradient challenging, particularly when adapt-
ing to a GPU architecture. A summary of some of the
most significant challenges follows:

• Limited storage space. There are several large
intermediates required when calculating the RI-
MP2 gradients, with both BP

ia and ΓP
ia having a

space complexity ofO(NoccNvirtNaux) which can
be in the hundreds of GB for the larger molecules
tested in Section 6. However, each GPU has lim-
ited storage (16–80 GB on modern machines).
Therefore, these tensors cannot be stored entirely
on each GPU for large systems and must be dis-
tributed between multiple GPUs or stored on the
host.

• Managing high latencies. There are signifi-
cant overheads and latencies involved when mov-
ing data and invoking kernels between the host
CPU and the GPU. This challenge is exacer-
bated by the limited integrated memory available
on GPUs relative to host RAM, forcing contin-
uous data transfer. The host to device transfer
bandwidth is significantly lower than the com-
putational throughput. Therefore, time spent
transferring data between the CPU and GPU can
be a significant bottleneck. Ideally, this transfer
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can be overlapped with additional GPU compu-
tation, though this presents its own implementa-
tion and algorithmic challenges to minimize data
dependencies.

• Efficient parallelization. All modern high-
performance systems rely heavily on parallel
computation to speed up expensive operations.
This requires efficient methods for distributing
and balancing work amongst many parallel pro-
cesses. For example, when calculating the four-
center integrals (µν|λσ), basis functions with dif-
ferent angular momenta have enormously varied
workloads. There are also many data depen-
dencies that arise when multiple processes are
working on a single component of the computa-
tion which need to be resolved with minimal syn-
chronization overhead or data duplication. This
is particularly relevant to GPU implementations
where sufficient parallelism is needed to keep sev-
eral thousand GPU cores fully occupied.

• Utilizing symmetries. Redundant work can
be avoided by utilizing symmetries in a variety of
the intermediate calculations. For example, the
ERIs have 8-fold symmetry (µν|λσ) = (µν|σλ) =
(νµ|λσ) = (νµ|σλ) = (λσ|µν) = (λσ|νµ) =
(σλ|µν) = (σλ|νµ). There are additional sym-
metries in the density matrices (Dpq = Dqp) that
can also be utilized to reduce computational ef-
fort.

The algorithm presented in Section 5 aims to address
these challenges to obtain a high-performance and scal-
able RI-MP2 gradient implementation for GPU clusters.

5 Algorithm and implementation

The calculation of the RI-MP2 gradient can be split
into 6 consecutive steps as shown in Figure 1. First, an
HF calculation is performed to find the MO coefficients
and eigenvalues. Second, the first few steps of an RI-
MP2 energy calculation are used to obtain the BP

ia and
JPQ intermediates. Third, these integral intermediates
are used to form the two blocks of the density matrix
Dij and Dab along with ΓP

ia. Fourth, ΓP
ia is used to

calculate the MP2 Lagrangians L′ and L′′. Fifth, the
Z-vector equation (19) is solved iteratively to find the
full MP2 relaxed density matrix. Finally, all the inter-
mediate values are combined with integral derivatives
to calculate the full analytic gradient.
The present work builds on the existing RI-MP2 en-

ergy algorithm in EXESS141 detailed in a previous
publication.80 The MO coefficients and eigenvalues are
taken from the HF stage and a similar approach is used
to calculate the BP

ia and JPQ intermediates. The follow-
ing four subsections will detail our novel multi-GPU al-
gorithms for each of the final four stages of the gradient
calculation. This will be followed by a brief discussion
of some implementation details in Section 5.5.

Figure 1: Overview of the 6 algorithmic steps for com-
puting RI-MP2 energy gradients. Required inputs and
outputs for each step are labelled along with their time
complexities.

The EXESS software utilizes distributed MPI paral-
lelism with one MPI process per GPU along with an
additional coordinating process for dynamic work distri-
bution.141 The majority of the intermediate values are
stored in a MPI shared memory window to avoid dupli-
cation across ranks and reduce communication costs.80

5.1 Step 3: Contraction of BP
ia

The first step unique to the RI-MP2 gradient calcula-
tion is computing the intermediate values Dij , Dab and
ΓP
ia through contraction of BP

ia. This is the only quin-
tic scaling step making it the primary bottleneck for
sufficiently large molecular systems.
The cubic tensors BP

ia and ΓP
ia are allocated in pinned

CPU memory for fast asynchronous GPU transfers and
shared between all processes using an MPI shared mem-
ory window. The GPU memory footprint is reduced to
O(N2) by copying the aforementioned tensors from the
CPU to the GPU memory in slices. The Dij and Dab

data structures are duplicated across each GPU and re-
duced across GPUs once at the end to minimize syn-
chronization.
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1 for i′ ∈ batch i do
2 for j′ ∈ batch j ≥ i′ do
3 Copy BP

i′a, B
P
j′b slices to GPU

4 forall a, b do
5 (i′a|j′b)RI =

∑
P BP

i′aB
P
j′b

6 Xab
i′j′ =

(i′a|j′b)RI

ϵi′+ϵj′−ϵa−ϵb

7 end
8 forall a, P do

9 Γ
′P
i′a =

∑
bj′(2X

ab
i′j′ −Xba

i′j′)B
P
j′b

10 end
11 if i′ ̸= j′ then
12 forall b, P do

13 Γ
′P
j′b =

∑
aj′(2X

ba
i′j′ −Xab

i′j′)B
P
i′a

14 end
15 forall b, P do

16 ΓP
j′b +=

∑
Q Γ

′Q
j′bJ

L
PQ

17 end
18 forall a, b do
19 Dab +=∑

i′j′c(2X
ca
i′j′ −Xac

i′j′)X
cb
i′j′

20 end

21 end
22 forall a, P do

23 ΓP
i′a +=

∑
Q Γ

′Q
i′aJ

L
PQ

24 end
25 forall a, b do
26 Dab +=

∑
i′j′c(2X

ac
i′j′ −Xca

i′j′)X
bc
i′j′

27 end

28 end

29 end
30 for a′ ∈ batch a do
31 for b′ ∈ batch b ≥ a′ do
32 Copy BP

ia′ , BP
jb′ slices to GPU

33 forall i, j do
34 (ia′|jb′)RI =

∑
P BP

ia′BP
jb′

35 Xa′b′

ij =
(ia′|jb′)RI

ϵi+ϵj−ϵa′−ϵb′

36 end
37 forall i, j do

38 Dij +=
∑

a′b′k(2X
a′b′

ki −Xa′b′

ik )Xa′b′

jk

39 end
40 if a′ ̸= b′ then
41 forall i, j do
42 Dij +=∑

a′b′k(2X
a′b′

ik −Xa′b′

ki )Xa′b′

kj

43 end

44 end

45 end

46 end
47 Copy and reduce Dij , Dab on CPU

Algorithm 1: BP
ia contraction computing Dij , Dab

and ΓP
ia intermediates

The full multi-GPU algorithm for the BP
ia contraction

steps is shown in Algorithm 1. The algorithm is split

into two parts. The first part (lines 1–29) computes
the Dab and ΓP

ia intermediates, whilst the second part
(lines 30–45) computes the Dij intermediate.
At each iteration of each loop, two slices of the BP

ia

matrix are copied to the GPU and used to form the inte-
grals (ia|jb)RI (lines 5 and 34) and the energy weighted

integrals Xab
ij (lines 6 and 35). The intermediate Xjb

ia

is then used to form Dab in the first loop (line 26) and
Dij in the second (line 38). Despite the two blocks
of the density matrix D both depending on Xab

ij , they
must be computed in separate loops as they require very
different access patterns. When forming Dab, the sum∑

c X
ca
ij X

bc
ij must be calculated over all virtual orbitals

c. To perform this efficiently, Xab
ij must be stored for

all virtual orbitals a and b simultaneously. However, to
calculate Dij , X

ab
ij must be stored for all occupied or-

bitals i and j. This is infeasible in a single loop as Xab
ij

is too large to store in full. Thus, the computation of
Dab must be batched over the occupied orbitals i, j as is
done in the first loop. Likewise, the computation of Dij

is batched over virtual orbitals a, b in the second loop.
Following the two loops, the components of Dij and

Dab computed on each GPU are copied back to the
host and added together to provide the full occupied-
occupied and virtual-virtual blocks of the MP2 density
matrix respectively. The computation of Γ

′P
ia (lines 9

and 13) followed by ΓP
ia (lines 16 and 23) is inserted

into the first loop as it can re-use the batched values of
X used for computing Dab.
We exploit the (ia|jb) = (jb|ia) symmetry by only

using batches of orbitals where i ≤ j and where a ≤ b
in the first and second loops respectively. This halves
the memory bandwidth required for copying the BP

ia

slices to the GPU and halves the number of elements of
Xab

ij that must be computed. This makes the reduction

of ΓP
ia more challenging as multiple processes are accu-

mulating the same region of the tensor. This requires
synchronization as described in Subsection 5.1.2
The most significant modification relative to the orig-

inal CPU based approach of Weigend and Häser106

is that instead of storing Xab
ij between the Dab and

Dij computation loops, these values are instead recom-
puted. This both reduces storage requirements and
helps overcome memory bandwidth latencies on the
GPU.
Ishikawa and Kuwata have previously presented an

approach that reduces the memory consumption by
avoiding storing the full ΓP

ia tensor.97 This was achieved
by additionally batching over the auxiliary basis func-
tions P when computing ΓP

ia. However, this requires
repeating some calculations and reduces the dimensions
of the matrix multiplications. Hence, this approach was
not utilised in the GPU implementation as the host
memory consumption was not found to significantly
limit the sizes of systems that could be considered.
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Figure 2: Illustration of the first few iterations of the multi-stream scheduling implementation of the ΓP
ia and

Dab formation in Algorithm 1 for a single GPU. Note that the diagram is not to scale and the calculation and
accumulation of the j slice of ΓP

jb is not shown for clarity.

5.1.1 Hiding memory transfer latency

To maintain peak computational throughput, it is es-
sential to overlap memory copies with GPU computa-
tions. This can be achieved using asynchronous kernel
calls in multiple CUDA streams. Whilst one stream
is copying matrix slices from the host to the device or
vice-versa, the other stream can be performing useful
computation. In this implementation, we utilise two
groups with three streams each. Each group is split
into a computation stream, a memory copy stream and
an accumulation stream. The memory stream manages
the copying of BP

ia from the host to the GPU, the accu-
mulation stream manages the accumulation of ΓP

ia, and
all remaining computation is performed in the compu-
tation stream. This allows overlapping of the host ΓP

ia

accumulation with useful computation whilst simultane-
ously copying the next BP

ia slices for the next iteration.
An example schedule is shown in Figure 2.
CUDA events are used for synchronization between

streams — for example the compute stream must wait
on the BP

ia copies before beginning computation. In
addition, BP

ia memory slices are re-used to hold ΓP
ia,

hence the next iteration’s BP
ia copies must wait until

ΓP
ia has been copied to the host for accumulation.

5.1.2 Mutual exclusion for ΓP
ia

Since the elements of ΓP
ia are dependent on (ia|jb)RI

for all indexes of j, synchronization is required to reduce
these values without race conditions when batching over
i and j (as these tensors are too large to be duplicated
across GPUs). As ΓP

ia is stored in host shared memory,
this accumulation is performed asynchronously on the
host in a CUDA host callback function.
Initially these accumulates were implemented using

the built in MPI function within the shared mem-
ory window, however this became a significant bottle-
neck (likely due to excessive synchronization despite low
contention). Instead, the accumulation synchronization
was performed manually using inter-process atomics.
One C++ atomic int was created in the shared mem-
ory window per occupied index i. This was then used
as a lock for mutual exclusion of updates to the corre-
sponding slice of the tensor ΓP

ia. When performing an
accumulation, a process will loop through each of the i
indices in it’s allocated slice, obtain the lock, perform
the memory increment and then release the lock for that
index before moving onto the next index. This reduced
the synchronization overhead sufficiently that the accu-
mulation could be fully overlapped with computation.

5.1.3 Load balancing

One of the significant challenges with any multi-GPU
algorithm is load balancing. This requires compu-
tational work to be evenly distributed between the
GPUs. In this case, the occupied and virtual batch
sizes must be sufficiently small that the matrix slices
can be distributed between the GPUs and hide any
size-discrepancies between slices. However, it is also
important that each of the computational operations is
sufficiently big relative to the memory copies to fully
hide the transfer latency. For example, the data trans-
fer from CPU to GPU in a DGX A100 node is limited by
the PCIe Gen 4 bus bandwidth which is approximately
25 GB/s. Compared to 19.5 TFLOP/s of double preci-
sion compute performance on a NVIDIA A100, this re-
quires a computational intensity of at least 780 FLOPs
per byte of memory transferred from the host to device.
Compute kernels must also have enough threads to fill
all the compute cores on the GPU. There is hence a
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vital compromise between minimizing load imbalances
between GPUs whilst maintaining peak throughput on
each GPU. It was empirically found that a maximum
batch size of Nocc

2×#GPUs is a good compromise.

Figure 3: Dynamic load distribution scheme for schedul-
ing work across GPUs.

To overcome load imbalances due to differently sized
workloads, a dynamic load distribution scheme was used
where the coordinating process maintains a list of work
and distributes it to the worker processes as depicted
in Figure 3. This minimizes time spent idle waiting
for other processes to finish their work. To avoid syn-
chronization costs, this distribution is performed asyn-
chronously with respect to the computation stream.
This allows the compute stream to begin working on
the next iteration as soon as it has finished the previous
without waiting on the memory copy.

5.2 Step 4: L formation

A very similar approach to that used for the Dij reduc-
tion in Algorithm 1 is employed to compute the MP2 La-
grangians L′

ip and L′′
ap (Equations 13 and 14) as shown

in Algorithm 2. Here, the 3C integrals are re-computed
as (pq|P ) is required for all orbitals p and q. This keeps
the memory footprint to O(NoccNvirtNaux) rather than
O(N2Naux) if all 3C integrals were stored. A dynamic
load distribution scheme is of increased importance here
as the integral computation incurs vastly different com-
putational effort for basis functions with different angu-
lar momenta.142

1 for P ′ ∈ batch P do
2 forall µ, ν do
3 Compute (µν|P ′)
4 end
5 Transform (µν|P ′) → (pq|P ′)

6 Copy ΓP ′

ia slice to GPU
7 forall i, q do

8 L′
iq += 2

∑
aP ′ ΓP ′

ia (aq|P ′)

9 end
10 forall a, q do

11 L′′
aq += 2

∑
iP ′ ΓP ′

ia (iq|P ′)

12 end

13 end
14 Copy and reduce L′

iq, L
′′
aq on CPU

Algorithm 2: Computing L′
ip and L′′

ap intermedi-
ates

5.3 Step 5: Z-vector equation

Once the intermediates Dij , Dab, L′
iq, and L′′

aq have
been calculated, the Z-vector equation (Eq. 19) must
be solved to obtain the occupied-virtual block of the
MP2 relaxed density matrix. The Z-vector equation is
a linear equation requiring self-consistency and is thus
solved iteratively until convergence. A single iteration
to calculate a new Dai is performed as follows

Dai =
Lai −

∑
bj AaibjDbj

ϵa − ϵi
, (20)

where

Lai =

(
L′′
ai − L′

ia −
∑
pq

AaipqDpq

)
(21)

is the MP2 Lagrangian which is constant throughout
iterations of Eq. 20. There are several challenges pre-
sented by this formulation. The primary algorithmic
challenge of this formulation is that the four-center in-
tegrals Aiajb (defined in Eq. 15) are too large to store in
memory and must be computed on the fly for each itera-
tion. This sum can be performed directly in the atomic
orbital basis instead. In this manner,

∑
bj AaibjDbj is

reduced to Tµν =
∑

λσ AµνλσDλσ. This approach is
summarized in Algorithm 3.
The sum

Tµν =
∑
λσ

AµνλσDλσ (22)

is computationally identical to the Fock build process

Fµν =
∑
λσ

[2(µν|λσ)− (µσ|λν)]Dλσ. (23)

Thus, the existing multi-GPU Fock-build implementa-
tion described in previous work79,80 was used directly
for this component. This utilizes the 8-fold symmetry
of the four-center integrals to avoid redundant calcula-
tions and digests the values immediately into the Fock
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1 Transform Dij ⊕Dab → Dµν

2 forall µ, ν do
3 Mµν =

∑
λσ AµνλσDλσ

4 end
5 Transform Mµν → Mai

6 forall a, i do
7 Lai = L′′

ai − L′
ia −Mai

8 end
9 Guess Dai = 0

10 while ¬ (Dai converged) do
11 Transform Dai → Dµν

12 forall µ, ν do
13 Tµν =

∑
λσ AµνλσDλσ

14 end
15 Transform Tµν → Tai

16 forall a, i do
17 Dai =

Lai−Tai

ϵa−ϵi

18 end

19 end
Algorithm 3: Solving the Z-vector equation.

matrix.
The convergence of the Z-vector equation is acceler-

ated using Direct Inversion of the Iterative Subspace
(DIIS).143,144 This extrapolates a guess at each itera-
tion using a linear combination of the previous guesses.
The single iteration change in the density matrix Dai

was used as the error metric for the extrapolation.

5.4 Step 6: Gradient accumulation

Following the calculation of required intermediates (L′
ip,

L′′
ap, Γ

P
ia, and Dµν), the final step is accumulating the

gradient as given in Eq. 6. The accumulation of each
term is shown in Algorithm 4. The evaluation of the
atomic orbital integral derivatives (e.g., (µν|λσ)ξ) is
performed using the approach outlined by Head-Gordon
and Pople.145 A comprehensive analysis of the integral
derivative evaluation on GPU clusters will be released
in a future publication.
For the first term calculating 3C integral derivatives,

the accumulation is batched over auxiliary orbitals P .
This significantly reduces the memory consumption by
allowing Γ to be stored only in the molecular orbital ba-
sis. The second term involving 2C integral derivatives
requires similarly computing γPQ by batching over oc-
cupied orbitals.
The third and fourth terms involving the Fock and

overlap derivatives are transformed into the atomic or-
bital basis as this allows the gradient accumulation
without storing any of the integral values. Symmetry
utilization allows the derivatives of the four-center inte-
grals (µν|λσ)ξ to be calculated with respect to the first
basis function only, i.e. (dµdξ ν|λσ).
At first, it appears that the computational cost of

calculating all of the integral derivatives (for example

(P |Q)
ξ
) would scale with the number of atoms multi-

Term 1: 3C derivatives
∑

µνP ΓP
µν(P |µν)ξ

1 for P ′ ∈ batch P do

2 Transform ΓP ′

ia → ΓP ′

µν

3 Eξ
RI−MP2 += 4

∑
µ≤νP ΓP

µν(P |µν)ξ

4 end

Term 2: 2C derivatives
∑

PQ γPQJ
ξ
PQ

5 for i′ ∈ batch i do
6 γ′

PR +=
∑

i′a Γ
P
i′aB

R
i′a

7 end

8 γPQ =
∑

R γ′
PRJ

L
RQ

9 Eξ
RI−MP2 −= 2

∑
PQ γPQJ

ξ
PQ

Term 3: Fock derivative
∑

µν DµνF
ξ
µν

10 Eξ
RI−MP2 += 2

∑
µ≤ν Dµνh

ξ
µν

11 for Batch µνλσ do

12 Eξ
RI−MP2 +=

2
∑

µνλσ(2DµνD
SCF
λσ −DµσD

SCF
νλ )(µν|λσ)ξ

13 end

Term 4: Overlap derivatives
∑

µν WµνS
ξ
µν

14 Yµν =
∑

λσ AµνλσDλσ

15 Transform Yµν → Yip

16 Wpq = 1
2

{
(ϵp + ϵq)Dpq ⊕ Yip ⊕ L′

iq ⊕ L′′
aq

}
17 Transform Wpq → Wµν

18 Eξ
RI−MP2 −= 2

∑
µν WµνS

ξ
µν

Algorithm 4: Gradient accumulation

plied by the number of integrals. However, the deriva-
tive (P |Q)

ξ
with respect to a nuclear position perturba-

tion is only non-zero if one of the basis functions P or
Q is centered at the corresponding nuclei. For each pair
of basis functions {P,Q}, the derivative is non-zero for
at most 6 elements (3 directions for each of the 2 atom
centers). This applies for the three and four-center inte-
gral derivatives as well making the computational cost
of the integral derivatives a constant factor higher than
the cost of the integrals themselves.

5.5 Resource acquisition

Through performance testing and profiling, it was dis-
covered that resource acquisition of BLAS handles,
pinned memory allocation and GPU memory allocation
added significant non-parallelizable overhead to EXESS
calculations. The EXESS code was hence refactored to
avoid repeat allocations of memory resources by utilis-
ing memory pools. At the beginning of a calculation,
80% of the available GPU memory is allocated and then
all subsequent GPU allocations are made within this
pre-allocated memory pool. This memory pool uses
a custom stack allocation scheme which ensures there
is no memory fragmentation and allows extremely fast
allocation and de-allocation regardless of object size.
A similar approach is used for host pinned memory,
however this is more expensive to allocate so the ex-

9
https://doi.org/10.26434/chemrxiv-2024-hr1hf ORCID: https://orcid.org/0000-0001-5109-4279 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-hr1hf
https://orcid.org/0000-0001-5109-4279
https://creativecommons.org/licenses/by-nc-nd/4.0/


act pinned memory requirements are predicted and al-
located up front, then re-allocated in the same manner.
This allows the memory to be allocated and pinned once
and re-used for multiple calculations or fragments in a
fragmented calculation.

6 Results

In this Section, we present results from the new RI-
MP2 gradient GPU implementation. In Subsection 6.1
we demonstrate the scaling of each component with re-
spect to system size followed by the floating-point per-
formance in Subsection 6.2. The parallel strong scal-
ing efficiency is then presented in Subsection 6.3 along
with a performance comparison against the Q-Chem
and ORCA software packages in Subsection 6.4. Fi-
nally, an analysis of the performance benefits of a MBE3
fragmentation is provided in Subsection 6.5.
The GPU timing results were obtained by running

the code on a NVIDIA DGX A100 node with 2 × 64-
core AMD EPYC 7742 2.25 GHz CPUs, 2 TB of DDR4
memory and 8 NVIDIA Ampere A100 GPUs (released
Q2 2020), each with 80 GB of High-Bandwidth Mem-
ory. All results across both GPU and CPU codes were
obtained using double floating-point precision.
The performance tests were run on poly-glycine

chains of varying lengths using the standard cc-pVDZ
primary and cc-pVDZ auxiliary basis sets with a carte-
sian orbital representation. Each glycine in the chain
adds 30 electrons across 7 atoms C2H3NO with H and
OH end caps. We will denote a poly-glycine chain
of length n as glyn = H(C2H3NO)nOH. With the
cc-pVDZ primary basis and cc-pVDZ-RIFIT auxiliary
basis, this has 75n + 25 primary basis functions and
309n + 96 auxiliary basis functions. This has a max-
imum of d orbital angular momentum in the primary
basis and f angular momentum in the auxiliary basis.
Currently, EXESS only supports four-center repulsion
integral derivatives up to d functions, however there is
ongoing work to enable support for higher angular mo-
mentum basis sets such as cc-pVTZ. There is also ongo-
ing work to support density-fit Hartree-Fock, in which
case the analytic derivatives would no longer require
four-center integrals.
The correctness of the implementation was verified

against finite-differences and cross checked against the
RI-MP2 gradient implementations in Q-Chem134 and
ORCA.146

6.1 Scaling

To investigate the bottlenecks in the current implemen-
tation, the execution time of each component of the RI-
MP2 gradient calculation was measured for a variety of
system sizes. The execution time is broken into 5 com-
ponents; the base HF time, the BP

ia contraction time
(Algorithm 1), the L formation time (Algorithm 2), the
Z-vector solution (Algorithm 3), and the final gradient

accumulation (Algorithm 4). This breakdown for poly-
glycine chains of length 5 to 45 is shown in Figure 4.
Note that the second step computing JPQ and BP

ia has
been incorporated into the BP

ia timing as it formed a
negligible portion of the overall time.

Figure 4: Computational time for each of the 5 compo-
nents of the RI-MP2 gradient calculation. Timings for
chains of 5 to 45 glycine amino acids are compared on
8 A100 GPUs.

As expected, most of the execution time is spent in
the quintic scaling contraction of BP

ia to form Dij , Dab

and ΓP
ia (Algorithm 1), particularly for larger systems.

The rest of the time is split between the Z-vector calcu-
lation and the final gradient accumulation, which have
comparable cost to the HF energy calculation regardless
of system size.

6.2 FLOP performance

To determine the hardware utilization of the current
implementation, its floating-point performance is com-
pared to the theoretical peak performance of the A100
GPUs. A single A100 GPU can perform up to 19.5
double precision TFLOP/s when using the tensor cores.
This defines a maximum theoretical performance of 156
TFLOP/s when using 8 GPUs.
The floating-point performance and percentage of

peak for each of the poly-glycine chains is presented
in Figure 5.
More than half the peak floating-point throughput is

achieved for all systems larger than gly20 and greater
than 80% of peak performance for gly45.
The reduced performance for smaller systems is pri-

marily due to the increased proportion of time spent in
the Z-vector and gradient accumulation components as
seen in Figure 4. These components have much lower
floating-point throughput as the integral computations
are mostly limited by memory bandwidth. In addition,
for smaller systems, the contraction of BP

ia does not fully
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Table 1: Timings of the multi-GPU EXESS RI-MP2 gradient implementation on 8 A100 GPUs for various sized
water clusters using the cc-pVDZ and def2-SVP basis sets (with the respective cc-pVDZ-RIFIT and def2-SVP-RIFIT
auxiliary basis sets). The timings for Q-Chem 6 on 104 core Sapphire Rapid node are presented for comparison.
OOM indicates Out Of Memory due to the reduced host memory capacity of the Sapphire Rapid node

Software Basis set
Time (s)

(H2O)10 (H2O)20 (H2O)30 (H2O)40 (H2O)50 (H2O)60 (H2O)70 (H2O)80 (H2O)90 (H2O)100

EXESS
cc-pVDZ 1.58 4.48 10.6 19.9 36.7 62.6 107 183 285 462
def2-SVP 2.11 4.46 8.15 16.9 31.5 54.5 88.5 161 275 404

Q-Chem
cc-pVDZ 7.60 41.5 183 573 2312 5012 11602 19183 26090 OOM
def2-SVP 7.85 42.1 125 503 1174 4769 9343 18000 26875 OOM

Figure 5: Floating point performance of RI-MP2 gradi-
ent implementation on 8 A100 GPUs. The data labels
represent the percentage of the theoretical peak.

utilize the GPU since the ratio of computations to mem-
ory transfers is much lower. It is likely that for these
smaller systems the overhead of transferring memory
to the GPU is limiting the floating-point performance.
For larger systems, the contraction of BP

ia can fully uti-
lize the GPU and hence the floating-point performance
is much closer to the theoretical peak. There is also
decreased parallel efficiency and load imbalances when
using 8 GPUs, as load distribution is more challenging
with smaller workloads. For example, the calculation of
the RI-MP2 gradients for gly5 is faster on 1 GPU than
8.

6.3 Multi-GPU strong scaling

To explore the parallel efficiency of the code, the overall
strong scaling speedup of the RI-MP2 gradient was mea-
sured on increasing numbers of GPUs. This is shown in
Figure 6. A very good speedup is observed on 8 GPUs
obtaining greater than 89% total parallel efficiency for
gly20. This indicates efficient load distribution across
the 8 GPUs even for a mid-size system.
The drop in efficiency is primarily caused by load im-

balances due to insufficient work in the dynamic dis-
tribution pool which improves significantly for larger

Figure 6: Strong scaling of multi-GPU RI-MP2 gradient
implementation with respect to the number of GPUs
for a gly20 chain (148 atoms, 1525 primary and 6276
auxiliary basis functions). The labels denote the total
parallel speedup efficiency as a proportion of the ideal
speedup relative to 1 GPU.

systems (as seen with the corresponding improvement
in floating-point performance in Section 6.2)

6.4 Timings and speedups over existing
software

The current implementation was compared to the ex-
isting CPU-based RI-MP2 gradient code in ORCA as
well as the Q-Chem 6 software package. This was run
on both a CPU node with 2 × 24-core Intel Xeon Plat-
inum 8274 (Cascade Lake) 3.2 GHz CPUs (released Q2
2019) with 192 GB DDR4 RAM as well as a next gener-
ation node with 2 × 52-core Intel Xeon Platinum 8470Q
(Sapphire Rapid) 2.1 GHz CPUs (released Q1 2023) and
512 GB DDR4 RAM. The timing comparison is shown
in Figure 7. We compare the full single-node to single-
node performance as this is the primary limiting factor
when fragmentation calculation are used in EXESS, as
a single fragment is assigned to a single node.
Relative to the current fastest CPU implementa-

tion (Q-Chem 6 on 104 Sapphire Rapid cores), a 95×
speedup is observed for gly20. The speedup would likely
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Figure 7: Comparison of the multi-GPU RI-MP2 gradi-
ent implementation with the single node CPU and GPU
performance of Q-Chem.

be improved even further for gly25 onwards given the
improvements in floating-point performance observed
above for these systems. The gly45 calculation demon-
strated here is the largest single fragment MP2 level
gradient calculation reported in literature, reducing a
calculation that would take several days on a CPU node
down to just 36 minutes. Additional timings for water
clusters with 10 to 100 water molecules are presented in
Table 1.
Another important comparison is the power effi-

ciency as the primary cost of running modern high-
performance computing infrastructure is the electricity
consumption. The Intel Xeon Platinum 8470Q CPUs
have a power draw of approximately 350 W whilst each
A100 GPU has a maximum power draw of 400 W. An
8 GPU node will therefore consume approximately 5×
more power than the dual CPU nodes used in the com-
parisons above. Thus, the 95× speedup in execution
time corresponds to a 19× improvement in power effi-
ciency. This still represents a remarkable decrease in
cost allowing a greater array of systems to now be op-
timized with correlated wavefunction level accuracy.

6.5 Fragmentation

A successful technique to reduce the computational cost
of large electronic structure calculations is to divide the
system into fragments rather than considering the sys-
tem as a whole. The simplest fragmentation approach is
the Many Body Expansion (MBE) truncated to a finite
order.
The EXESS codebase is built on top of an efficient

massively parallel, distributed memory molecular frag-
mentation framework. This enabled us to perform a
comparison of the full execution time of non-fragmented
(traditional) calculations presented in previous subsec-

Figure 8: Comparison of MBE3 fragmented and non-
fragmented RI-MP2 gradient performance.

Table 2: Comparison of the MBE3 fragmented and non-
fragmented RI-MP2 gradient accuracy for poly-glycine
chains.

glyn
Absolute error (Hartree/Bohr)

Mean Max RMSD

20 4.87E-07 2.54E-05 2.05E-06
25 9.76E-07 3.96E-05 3.56E-06
30 1.44E-06 4.95E-05 5.12E-06
35 1.83E-06 6.36E-05 6.59E-06
40 2.19E-06 7.78E-05 7.92E-06
45 3.15E-06 8.84E-05 9.67E-06
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tions with MBE3 calculations for glycine chains, as
shown in Figure 8. Note that these timings are slightly
longer than those presented above as the full execution
time is included, accounting for the additional walltime
of the startup overhead and the HF energy components.
Linear poly-glycine chains were chosen to highlight

the reduced scaling and analyse the accuracy relative to
a non-fragmented system. For the MBE3 calculations,
the molecules were fragmented into gly5 sub-chains with
H caps added on broken single bonds. Conservatively,
all fragments that contributed more than 10−6 Hartrees
to the total energy were considered. This includes all
dimers with centre of mass within 120 Å and all trimers
with adjacent glycine units. Asymptotically, this will re-
duce the theoretical scaling of the RI-MP2 calculations
from O(N5) to O(N).
As shown in Figure 8, the MBE3 performance is su-

perior to the non-fragmented algorithm for all systems
larger than gly25 (≈ 1700 basis functions). Specifically,
the MBE3/RI-MP2 algorithm achieves a sub-quadratic
computational scaling with system size for the larger
poly-glycine molecules in our benchmark, yielding a
speedup of 4.75× for the gly45 system over the corre-
sponding non-fragmented calculation.
There is remarkably little loss in accuracy due to frag-

mentation with a maximum single-atom absolute er-
ror of 8.84 × 10−5 Hartree/Bohr relative to the non-
fragmented gradient. This is tighter than the conver-
gence threshold of 10−4 used by most geometry opti-
mizers. An additional advantage of the fragmentation
based approach is the additional parallelism that can
be exploited by computing fragments in parallel across
many nodes. This further reduces the time to solution
for larger systems.

7 Conclusions

In this work, a novel high-performance multi-GPU RI-
MP2 gradient algorithm and implementation were pre-
sented. The algorithm was integrated in the EXESS
software package, where it can leverage its massively
parallel molecular fragmentation framework.
Without exploiting fragmentation, the algorithm

maintains the standard quintic scaling but has a reduced
CPU memory requirement of O(NNoccNvirt) and flexi-
ble GPU memory footprint of just O(N2) by calculating
many intermediates in batches or on the fly. The im-
plementation incorporates highly efficient multi-stream
scheduling to hide GPU-CPU data transfer latencies
and allow 8 A100 GPUs to operate at over 80% of the-
oretical peak floating-point performance. The code ex-
hibits near-ideal strong parallel scaling demonstrating
efficient resource usage and parallelization. Without
fragmentation, substantial speedups were observed rel-
ative to the Q-Chem and ORCA software packages with
95× single-node speedup leading to a 19× improvement
in power efficiency for larger inputs.
Furthermore, by utilizing molecular fragmentation in-

cluding up to three-body terms (MBE3) a reduction in
the computational scaling of the algorithm from quin-
tic to sub-quadratic was observed. This enables a sig-
nificant reduction in time to solution while retaining
high numerical accuracy in the resulting gradients. For
instance, in our benchmark tests with large molecu-
lar systems such as gly45 the MBE3/RI-MP2 algorithm
yields a speedup of 4.75× over the corresponding un-
fragmented approach.

8 Supporting Information

The supporting information contains the xyz structures
of the glycine chains and water clusters used for the
performance benchmarking.
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Merz Jr, K. M.; Götz, A. W. Open-source
multi-GPU-accelerated QM/MM simulations
with AMBER and QUICK. J. Chem. Inf. Model.
2021, 61, 2109–2115.

(127) Seritan, S.; Bannwarth, C.; Fales, B. S.; Ho-
henstein, E. G.; Isborn, C. M.; Kokkila-
Schumacher, S. I.; Li, X.; Liu, F.; Luehr, N.;
Snyder Jr, J. W.; others TeraChem: A graph-
ical processing unit-accelerated electronic struc-
ture package for large-scale ab initio molecular
dynamics. Wiley Interdiscip. Rev. Comput. Mol.
Sci. 2021, 11, e1494.

(128) Pederson, R.; Kozlowski, J.; Song, R.; Beall, J.;
Ganahl, M.; Hauru, M.; Lewis, A. G.; Yao, Y.;
Mallick, S. B.; Blum, V.; others Large scale quan-
tum chemistry with tensor processing units. J.
Chem. Theory Comput. 2022, 19, 25–32.

(129) Dang, D.-K.; Wilson, L. W.; Zimmerman, P. M.
The numerical evaluation of Slater integrals on
graphics processing units. J. Comput. Chem.
2022, 43, 1680–1689.

(130) Manathunga, M.; Aktulga, H. M.; Götz, A. W.;
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