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Ammonia is a promising hydrogen carrier, being rich in hydrogen and ease of transport. However, a microscopic
characterization of the ammonia cracking reaction is still lacking, hindered by extreme operando conditions.
Leveraging state-of-the-art molecular dynamics, machine learning potentials, and enhanced sampling methods,
we offer an atomistic view of the adsorption, diffusion, and dehydrogenation processes of NHx (x = 1, 3)
on two representative surfaces at operando temperature of 700 K. Dynamics pervasively affects all steps of
decomposition, including on the stable (110) surface where the high mobility of reaction intermediates affects
the reactivity. The role is even more dramatic on the (111) surface, where the mobility of Fe surface atoms
introduces new adsorption sites and alters the dehydrogenation barriers. In both cases, a detailed analysis of
reactive events shows that there is never a single transition state, but it is always an ensemble composed of at
least two pathways. Notwithstanding, a unified mechanism can be identified by following the charge transfer
along the different reaction pathways.

I. INTRODUCTION

The urgent need to move towards a green economy has
spurred growing interest in the potential use of ammo-
nia as a hydrogen vector1. Ammonia has a significant
weight fraction of hydrogen and, coupled with its practical
advantages such as the moderately low temperature at
which it liquefies of -33 ◦C at atmospheric pressure, offers
a significant advantage over molecular hydrogen (H2) in
terms of ease of transport and storage2,3. The attractivity
of hydrogen production from ammonia relies on its po-
tential for on-site and on-demand generation4. However,
the successful implementation of this step necessitates
the development of efficient methodologies for extracting
hydrogen from ammonia.

Thermal decomposition, or catalytic cracking, stands
as the predominant technique for hydrogen generation
from ammonia4. Having in mind industrial applications,
most of the attention has been concentrated on non-noble
metals like Fe, Co, and Ni and their alloys5. In the fol-
lowing, we focus on iron, which is a prototypical thermo-
catalyst in both the Haber-Bosch process and its inverse.
These reactions are known to be highly structure-sensitive,
with Fe(110) and Fe(111) representing two limiting cases
among the low-index surfaces. In fact, the former is char-
acterized by high density and stability but low catalytic
activity, while the latter has an open structure and high
activity6,7.

Unfortunately, in spite of more than a century of ef-
forts, a comprehensive characterization of both processes
remains elusive due to extreme operando conditions which
make experiments and simulations challenging. Indeed,
the operational temperatures for catalytic cracking on
iron at 1 atm lie in the range of 400-750 ◦C4. Experi-
mental information about the reaction intermediates has
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thus been obtained in conditions far from the operando
regimes8,9, or extrapolated through indirect temporal
analysis of products (TAP) measurements10. Notably, a
high surface sensitivity has been reported8,9, similarly
to what was observed in the synthesis process7,11. Only
very recently, direct operando probing of synthesis reac-
tion intermediates have been performed12, confirming the
structure sensitivity and showing nontrivial temperature
dependency in the rate-limiting step.

From a computational perspective, there is a large
number of theoretical studies on ammonia decomposi-
tion based on T=0 K density functional theory (DFT)
calculations10,13–22. However, these studies do not fully
consider the influence of dynamics, which is of paramount
importance in industrial catalysts23,24. This crucial role is
clearly emerging in recent simulations25–33. In particular,
in the case of ammonia decomposition, Gerrits and Kroes
have highlighted the role of dynamics on the Ru(0001)
surface through ab initio molecular dynamics (AIMD)
simulations28.

Molecular dynamics (MD) represents an ideal tool to
investigate the system dynamics, as it acts as a compu-
tational microscope with atomic resolution over multiple
time scales26,30. It can also operate effectively at high
temperatures without the practical constraints that in
operando experiments have. However, the high computa-
tional cost of DFT calculations limits the time-scales and
system sizes that can be simulated. Recent methodologi-
cal advances in machine learning (ML)-based interatomic
potentials and state-of-the-art enhanced sampling tech-
niques allowed lifting these limitations and elucidating
the mechanistic details of reactive processes since long-
timescales and large system-size simulations have been
made accessible32,34–38. Of particular relevance here are
the recent investigations of the dissociative chemisorption
of N2 on the Fe(111) surface32,33, where these techniques
have allowed the dramatic role that dynamics could play
at operando temperatures to be uncovered. Indeed, the dif-
fusion of surface atoms results in the continuous creation
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and destruction of active sites, highlighting the dynamic
nature of the catalytic process32 in line with the earlier
hypothesis. The effect of dynamics becomes even more
striking when we also account for lateral interactions33.

In this manuscript, we apply the methodology earlier
developed32 to investigate the adsorption, diffusion, and
deprotonation of nitrogen hydrides (NHx, x=1-3) at the
operando temperature of T=700 K on both the Fe(111)
and Fe(110) surfaces. We provide a comprehensive statis-
tical and chemical characterization of these processes on
the highly dynamic iron surfaces. An indispensable tool
in the characterization of these processes is our ability
to monitor the electronic charge distribution at modest
computational effort also in large systems. This ability al-
lows the adsorption environments and the progress of the
reaction under evolving surface conditions to be followed.
We find that, like in the case of the ammonia formations,
the two surfaces behave rather differently. In the more
rigid Fe(110) case, the low and high temperatures are
similar, and an Arrhenius-type behavior is observed. In
contrast, the highly dynamical behavior of the less dense
Fe(111) leads to the formation of new adsorption sites
and results in a non-Arrhenius behavior.

However, in spite of the different behavior that mani-
fests itself in a variety of transition states and reaction
pathways, a unified description can still be obtained. Fur-
thermore, we establish a correlation between diffusion and
dehydrogenation free energy barriers, underscoring once
again the role of dynamics in heterogeneous catalysis.

II. METHODS

A. Constructing an ab initio-quality potential

To accurately describe reactive simulations in which
chemical bonds can be formed and broken, an accurate
description of the electronic states as the system evolves
is mandatory. This could be obtained using AIMD. How-
ever, its high computational cost hinders its application
to realistic systems where large-scale structures have to
be simulated over extended timeframes, such as nanosec-
onds and beyond. Since the pioneering work of Behler
and Parrinello39, ML-based potentials have emerged as
a viable solution to bridge the gap between the accuracy
offered by DFT-based methods and the computational
efficiency of semiempirical force fields40. By fitting the
energy and forces as a function of the atomic positions
on a dataset of DFT calculations, these potentials can
provide an ab initio-like accuracy at a tiny fraction of
the cost. However, for this procedure to be successful,
all the thermodynamically relevant configurations need
to be included in the training set. In the study of cat-
alytic activity, it is particularly critical to include reactive
configurations for all steps of interest.

Since collecting all these reactive configurations through
AIMD simulations can be prohibitively expensive, we it-
eratively construct the reference database via an active

learning strategy. In each iteration, we use the machine
learning potential to sample new configurations through
MD simulations (the first one is fitted only on AIMD
data). Then, a subset of these structures is selected, and
single-point DFT calculations are performed. These data
are then incorporated into the training set to optimize
a new potential, which will be used to sample new con-
figurations. One way to identify structures that are not
adequately described by the potential is to use a query-by-
committee approach, in which the standard deviation of
the predictions of a set of models is used as a proxy for the
uncertainty. The usage of advanced sampling methods,
the same that we use later for studying the catalytic re-
activity (see Section II C 1), enhances this active learning
procedure. Indeed, it allows us to harvest uncorrelated
structures and especially reactive ones. Moreover, since
it has been shown that the query-by-committee selection
criterion does not always adequately describe all reactive
pathways, being unbalanced on reactants and products36,
we added more configurations belonging to the transi-
tion state region. This procedure (sampling, selection
and DFT single point, training) is iterated until a reli-
able potential for describing the full reactive pathways is
obtained.

The resulting dataset comprises about 110K configura-
tions, the detailed composition of which is given in the
Supplementary Information (SI) Tables S I, S II. These
include some of the calculations we collected for the ammo-
nia synthesis studies on Fe32,33, along with many others
made specifically for this work to ensure that all of the
following physical scenarios of interest were considered:

• long-term dynamics of Fe surfaces
• surface with nitrogen hydrides (NHx, where x ranges

from 3 to 1)
• diffusing hydrides
• reactive configurations of all dehydrogenation steps.

1. ML-based potential details

To fit the potential energy we employed the Deep Poten-
tial Molecular Dynamics (DeepMD)41,42 method. Here,
we report the technical details. Three hidden layers with
[30, 60, 120]/[240, 240, 240] nodes per each were used
respectively for the embedding and fitting network. A
cutoff radius of 6.0 Å (with 0.3 Å switching function for
continuity) was set for interacting atoms. In the training
phase, an exponential-type learning curve was applied
to decrease the learning rate from 0.001 to 3.5 × 10−8.
The decay step was set to 2 epochs, and the models were
trained for 200 decay steps. The performance was eval-
uated on energy and forces with a weighted root mean
square error (RMSE) loss function. The weights of the
energy and forces were adjusted during the optimization
from 0.02 to 1, and from 1000 to 1, respectively. In
the active learning procedure, an ensemble of 4 differ-
ent models is optimized in parallel on permutations of
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the training and validation datasets to assign an uncer-
tainty to the configurations. At the end of the active
learning procedure, the achieved RMSE for energy and
forces are 1meV/atom and 50meV/A, respectively (see
SI, Figure S1)

2. Reliability of ML-based potential

Furthermore, to benchmark the reliability of the poten-
tial, we used it to calculate the potential energy barriers
for all dehydrogenation steps. The dimer method was
used to identify the transition states43,44. A 4 × 6 × 5
Fe(110) slab (120 atoms) and a 4 × 4 × 6 Fe(111) slab
(96 atoms) along with an NHx (x=1-3) molecule were
implied at this stage. Geometries were optimized using
a force-based conjugate gradient method in all calcula-
tions. The lowest two and three Fe layers were kept fixed
during optimization and MD calculations for (110) and
(111) surfaces, respectively. Saddle points and minima
were considered convergent when the maximum force in
each degree of freedom was less than 0.01 eVÅ−1. So, we
recalculated the energy difference between the structures
obtained at the DFT level. SI Table S III shows the
achieved results. The activation energies are in excellent
agreement with a maximum discrepancy of 0.07 eV.

3. DFT calculations

All the AIMD simulations, as well as single point DFT
calculations used to build the reference database, were
performed using the PWscf code of Quantum ESPRESSO
(QE)45–47. Exchange-correlation effects have been treated
within the generalized-gradient approximation with the
Perdew-Burke-Ernzerhof (PBE) functional48. We em-
ployed ultrasoft RRKJ pseudopotentials49 along with
plane-wave basis with a 640 and 80 Ry cutoff for wave-
function kinetic energy and charge density, respectively.
The Marzari-Vanderbilt cold smearing technique50 with a
Gaussian spreading of 0.04 Ry was used to treat the state
occupations. Spin polarization was included to describe
the magnetic properties of iron properly. The lowest Fe
layers were kept fixed during optimization and MD calcu-
lations for (100) and (110) surfaces, while the lowest twos
were for the (111) and (211) surfaces. A vacuum layer of
at least 10 Å was included in the z-direction of all the slab
models to prevent self-interaction effect. The Brillouin
zone was sampled using a 2 × 2 × 1 Monkhorst-Pack
k-point grid51.

AIMD simulations were performed in a constant volume
and temperature (NVT) ensemble using the stochastic
velocity rescaling thermostat52 with a time step of 1.0 fs
at temperatures ranging from 600 to 800 K. In addition,
enhanced sampling simulations (see Section IIC 1) were
performed to simulate the reactive events and to explore
a broader configurational space.

4. Machine learning for partial charges

A key property that we monitor to understand the ac-
tivity of the catalyst is the amount of charge transferred
during the adsorption and the dehydrogenation step. Fol-
lowing the same methodology developed in Ref. 32, we
trained a second neural network to predict partial charges
based on the atomic positions and chemical species. Ref-
erence values are obtained from a subset of the dataset
used for the potential (comprised of ≈75,000 structures),
using the Bader charge decomposition scheme53,54. Since
partial charges are per atom property, the NN can be
trained on small systems and used to predict the charge
for arbitrarily large systems.

To train the NN we used the deep tensor neural network
SchNet55 architecture, using the same parameters as in
Ref. 32: 5 interaction layers, pairwise distances expanded
on 30 Gaussians and 64 atom-wise features, 3.5 Å cosine
cutoff, atom-wise module with 2 hidden layers and [64,
64] nodes per layer. To optimize the parameters, we use
the RMSE between the predicted charges {qi} and the
reference ones {qDFT

i } as loss function:

L =
1

Nat

∑
i

(qi − qDFT
i )2 (1)

The dataset is split in training/validation subsets with a
ratio of 80:20, and the model is trained using the ADAM
optimizer56 with a learning rate of 0.001 and the early
stopping criterion. With these parameters, the model
achieved an RMSE on the validation set of 10−4 e.

We then express the charge transferred between atoms
as the deviation from their nominal valence charge qv (8e,
5e, 1e for Fe, N, and H, respectively). The total charge
transferred from the metallic substrate to the NHx species
can be computed as qNHx =

∑
i∈NHx

(qi − qvi ).

B. Molecular dynamics simulations

Classical molecular dynamics simulations were per-
formed using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) software57, supplemented
by DeepMD-kit 2.158 and PLUMED59. The time step
was set to 0.5 fs, and the temperature was controlled with
a stochastic velocity scaling thermostat52 with a coupling
constant of 100 fs.

Small surfaces containing 40 to 108 Fe atoms and up
to 10 adsorbates (N/H) were simulated during the active
learning phase.

After having optimized the potential, longer simulations
of at least 20 ns were performed using an 8×10×10 Fe(110)
slab (800 atoms) along with an NHx (x=1-3) molecule
to simulate adsorption and dissociation. Analogously, an
8× 8× 12 Fe(111) slab (768 atoms) along with an NHx

(x=1-3) molecule were simulated. For the (110) and (111)
slabs, two and three layers of the slab were fixed to create
a boundary condition that imitates that of a semi-infinite
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slab. Periodic boundary conditions were utilized in the x-
and y-directions, while a reflecting wall was implemented
over the surface in the z-direction. The distance between
the wall and the top layer varied with temperature to
maintain a partial pressure of NH3 equal to 1 bar, based
on the ideal gas equation of state.

C. Free energy calculations

1. Enhanced sampling methods

Despite the existence of ML-based potentials, numerous
reactive processes, such as chemical reactions, unfold over
timescales that surpass the limits of conventional simu-
lations. Consequently, a spectrum of advanced sampling
methods has been devised to facilitate the simulation
of rare events, addressing the challenge posed by these
extended timescales. In this work, we used the collective
variables(CVs)-based method On-the-fly Probability En-
hanced Sampling (OPES)60,61, implemented in the open-
source PLUMED plugin59,62. CVs are analytical functions
of atomic coordinates R that are purposely chosen to rep-
resent hard-to-sample modes and to distinguish between
the metastable states. In OPES, a time-dependent ex-
ternal bias V (s(R)) is added to the interacting potential
U(R) in order to amplify the fluctuation of the CVs. Dur-
ing the simulation, the bias is adjusted according to the
equilibrium probability distribution P (s) in order to sam-
ple a predetermined target distribution P tg(s) as follows:

V (s) = − 1

β
log

P tg(s)

P (s)
, (2)

where β is the inverse thermodynamic temperature. At
convergence, the P (s) tends to the P tg(s). Here, we
assign the well-tempered distribution as the target, where
P tg(s) ∝ P (s)

1
γ . By choosing appropriately a value of

γ = β∆E > 1 the equilibrium distribution is broadened
and the free energy barriers are lowered by a bias factor
γ.

2. Free energy surface

The free energy surface (FES) along a set of collective
variables is defined as the logarithm of their marginal
probability P (s):

F (s) = − 1

β
logP (s). (3)

An unbiased estimate of the probability density can be ob-
tained from an OPES simulation via a simple reweighting
scheme60:

P (s) =
⟨δ(s− s(R))eβV (s(R))⟩V

⟨eβV (s(R))⟩V
(4)

which is valid when the bias has reached a quasi-static
regime. To derive P (s) from discrete simulation data,
we utilize a weighted Gaussian density estimator. The
weights in this estimator are determined by wt = e−βV (st).

In order to compute the minimum free energy pathways
from the two-dimensional FES, we utilized the Minimum
Energy Path Surface Analysis (MEPSA) package63.

3. Collective variables

An appropriate choice of the CVs to be biased allows us
to focus the sampling on the process of interest. Different
CV sets have been used for the different processes studied
here (adsorption, diffusion, and dehydrogenation).

An important CV used for both enhancing sampling
and analysis is the coordination number between the
nitrogen atom and iron/hydrogen atoms, computed in
differentiable form as:

CN,X =
∑
i∈X

s(ri) , s(ri) =
1− ( ri−d0

r0
)n

1− ( ri−d0

r0
)m

(5)

where ri is the distance between the N atom and the i-th
atoms of X specie, r0, d0, n, and m, are tunable parame-
ters. When used as a CV with OPES, the parameters are
set as follows: r0 = 3.0 (0.8)Å, d0 = 0.0 (0.7)Å, n = 6 (5),
and m = 10 (7) for CN,Fe (CN,H). In the analysis con-
text, the following set of parameters is adopted for the
CN,Fe: r0 = 1.5Å, d0 = 1.0Å, n = 6, and m = 12. This
latter choice allows us to identify a sharper coordination
number related to the only first neighborhood shell. Anal-
ogously, for inspecting the dehydrogenation events and
their transition state (see Section IIC 4), we define the
coordination between the reactive H and Fe atoms CH,Fe

with the following parameter: r0 = 1.5Å, d0 = 0.5Å,
n = 6, and m = 12.

To study the diffusion on NH over Fe(110), we use as
CVs the position on the plane of the center of mass of the
molecule expressed in terms of the lattice vector direction:

v11̄1 =
1

a
√
3 cosα sinα

(x sinα+ y cosα) (6)

v11̄1̄ =
1

a
√
3 cosα sinα

(−x sinα+ y cosα) (7)

where x and y are the coordinates of the center of mass
along the [001] and [11̄0] directions, α is the angle between
[11̄1] and [11̄0] directions, and a is the lattice parame-
ter. We set OPES barrier parameter ∆E equal to 40
kJ mol−1 and the OPES bias was updated every 500
steps. Harmonic restraints with an elastic constant of
10000 kJ mol−1were applied on both the two CVs when
|v| ≥ 1.6. In such a way, we restrict the number of acces-
sible metastable states without reducing the size of the
supercell. The same restraints were applied to study the
diffusion of NH3 and NH2, while no biases were applied
due to the small diffusion barriers.

https://doi.org/10.26434/chemrxiv-2024-0s8c9 ORCID: https://orcid.org/0000-0003-4750-5324 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0s8c9
https://orcid.org/0000-0003-4750-5324
https://creativecommons.org/licenses/by-nc-nd/4.0/


5

Figure 1. Adsorption Sites. Top view of Fe(110) (a) at 700K, Fe(111) at 300K (b) and 700K (c). Frames are captured
from unbiased simulations where the atomic positions are 10 ps averaged to suppress the thermal fluctuations. Iron atoms are
colored by layer. Gray-shaded areas mark the primitive unit cell. White-gray labeled circles are used to denote high-symmetry
adsorption sites. (a) For Fe(110): sb, short-bridge; lb, long-bridge; h, hollow. (b) For ideal Fe(111): b11, bridge between
top-layer atoms; b12, bridge between first and second layer. (c) For high-temperature Fe(111), we highlight the formation
of new adsorption sites due to the surface roughness: tri1, triangular reconstruction; tri2, high symmetry site between three
consequential layers; db, defective b12. These two last sites exist only on the defective surface due to the absence of b11 site

To simulate the first dehydrogenation step we use a
set of 3 CVs: the CN,Fe, the CN,H , and a geometrical
CV based on the angular distribution function defined as
follows:

Θ =

∫ β

α

∑
ij∈H

s(ri)s(rj)
1√
2πw

exp

(
− (θ − θij)

2

2w2

)
(8)

Where θij are the HNH angles, r are the NH distances,
α = 0.55π, β = 0.65π, and w = 0.5(α − β). The OPES
barrier parameter was set at 60 (80) kJ mol−1 for the 110
(111) surface and the OPES bias was updated every 1000
steps. A harmonic restraint was applied when CN,H ≤ 2.5,
utilizing an elastic constant of 2000 kJ mol−1. This re-
straint, which acts immediately after the dehydrogenation
occurs, is aimed at facilitating reversible sampling elimi-
nating the need to wait for hydrogenation to take place.

For the following dehydrogenation steps, we use as
biased CVs the CN,Fe, and the CN,H coordination num-
bers. The OPES barrier parameter was set at 40 (90)
kJ mol−1and 80 (50) kJ mol−1for the second and third
dehydrogenation steps over the 110 (111) surface, respec-
tively. The bias was updated every 1000 steps in all the
simulations and a harmonic restraint with an elastic con-
stant of 2000 kJ mol−1was applied when CN,H ≤ 1.5 or
CN,H ≤ 0.5.

4. Transition states characterization

To obtain an unbiased characterization of the transi-
tion states (TS), no bias potential should be added in this
region64,65. To this end, we perform an additional set of

simulations of each dehydrogenation step in the OPES-
flooding scheme described in66. Briefly, in this method,
the OPES barrier parameter ∆E is properly chosen to a
value lower than the effective barrier, and the transition
state region is excluded from any bias potential modifica-
tions. In such a way, dehydrogenation events are observed
to be bias-free. These simulations enable us to collect
statistics on the reactive pathways and characterize the
TS ensemble without any prior assumptions about the
location of the transition and final states.

The same CVs of the standard OPES simulations are
applied to describe each dehydrogenation step, but with
lower barrier parameters and no elastic constraints applied.
The OPES barrier parameters ∆E are set equal to 50(60),
20(65), and 65(50) kJmol−1for each step respectively,
while no bias is added in the region where CN,H is lower
than 2.82,1.85,0.9.

One hundred simulations of dehydrogenation events
were performed for each step and surface. We then defined
the TS as the configuration in which the bonding distance
between the N atom and the reactive H atom, dN,H ,
is closest to 1.40 Å. This definition coincides with the
maximum free energy of the dehydrogenation barrier (see
SI, Figure S4). To characterize the TS ensemble, we
apply the k-medoids cluster analysis as implemented in
the kmedoids Python library67 to identify at least two
classes of TS geometry for each dehydrogenation step
on both surfaces by using the coordination coordinates
CN,Fe and CH,Fe
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III. RESULTS

We study the interaction of an ammonia molecule with
the surface, its adsorption, and subsequent cracking at
operando temperature. The interaction of each interme-
diate species (NH2 and NH) with the surface is studied
through independent simulations, as well as each dehy-
drogenation step.

In order to study the reported surface dependence 7–9,11,
we study both the dense Fe(110) and the more open
Fe(111) at the operando temperature of 700K.

At 700 K on the Fe(110) surface, the surface atomic
arrangement is stable, and we do not observe any atomic
diffusion. We can anticipate that adsorption sites remain
the same as those found in the low-temperature regime,
as shown in Fig 1a. That is why we do not report this
surface’s 300 K behavior, which can be easily deduced
from the operando temperature results. This is to be
contrasted with the highly mobile behavior of the Fe(111)
surface atoms as already reported in Ref. 32. This be-
havior results in continuously forming and destroying
surface defects, such as ad-atoms and vacancies. Thus,
being the surface behavior rather different from the low
temperature one, we also report the 300 K results for
comparison. In particular, we find that in addition to the
low-temperature absorption sites (Figure 1b), several new
ones are available in the operando regime, as shown in 1c.

A. Interaction between NHx and iron surfaces

We now discuss the results of simulations of the ad-
sorption and diffusion of the intermediates of the reaction
(NH3, NH2, and NH) on Fe(110) and Fe(111). In the
dynamic approach adopted, adsorption and diffusion are
intimately related and describe the catalyst’s interaction
with the absorbed species. Two-dimensional free energy
surfaces (FES) projections are used to explore the coordi-
nation numbers, charge transfers, and diffusion pathways.

1. Fe(110)

First, we present the results of the Fe(110). The most
energetically stable adsorption configurations of nitrogen
hydrides have already been investigated through DFT
static calculation; top, short-bridge, and hollow sites have
been computed as the minimum energy adsorption sites
for NH3, NH2, and NH, respectively10,16. At T=0 K,
our results are in agreement with the previous theoretical
work. In the following, we thus focus on the effects of
temperature on this more rigid surface.

In Figure 2, we report the most probable adsorption
state obtained from the minimum of free energy surfaces
(FES) as a function of the nitrogen-iron coordination
number CN,Fe, and the total charge transferred from the
metallic substrate to the NHx species qNHx

. This allows

Figure 2. Interaction of NHx with Fe(110) surface. Most
stable adsorption sites for the nitrogen hydrides on Fe(110)
surface at 700K as a function of the nitrogen-iron coordina-
tion number CN,Fe and the total charge transferred from the
metallic substrate to the NHx species qNHx . Ammonia in both
the gas and adsorbed phases is reported. For the adsorbed
species, the profiles coincide with the minimum of their FES
within the range 0-2 kBT and are accordingly colored. For
NHg

3, the representation reduces to a point since CN,Fe=0 in
the gas phase.

characterizing the available adsorption sites, both from
geometrical and chemical points of view. In Figure 3,
FES are projected along the two in-plane crystallographic
directions [001] and [11̄0], from which we can analyze the
diffusion mechanism and the related free energy barrier.

NH3 is preferentially adsorbed on top sites (1-fold co-
ordination). No charge transfers are observed from the
substrate to the molecule (Figure 2), However, the am-
monia dipole induces a local redistribution of the iron
charges, which in a first approximation can be described as
a dipole dipole-induced interaction (Figure 3c). This weak
bond allows the NH3 to diffuse easily at 700K through
short bridge sites (Figure 3a-b). The computed free en-
ergy barrier for diffusing along this pathway is 0.15eV.
This diffusion mechanism competes with desorption and
subsequent physisorption process.

Contrary to NH3, NH2 forms strong chemical bonds
with the surface, preferring bridge to top sites. In these
2-fold coordination sites, the metal substrate transfers
a charge of -0.6 e to the molecule (Figure 2). Despite
its strong chemisorption energy (-3.17 eV16), NH2 is the
most mobile surface species. As shown in Figure3a-b
amide diffuses between short and long bridge sites through
hpc sites (3-fold coordination) with an estimated free
energy barrier of 0.05 eV, less than 1 kBT . So, we can
not speak of a single adsorption site due to NH2 almost
barrierless diffusion. The temperature effects play an
important role even on these hard surfaces. We can
anticipate that the absence of long-lived adsorption states
implies a non-negligible increase in the free energy barrier

https://doi.org/10.26434/chemrxiv-2024-0s8c9 ORCID: https://orcid.org/0000-0003-4750-5324 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0s8c9
https://orcid.org/0000-0003-4750-5324
https://creativecommons.org/licenses/by-nc-nd/4.0/


7

Figure 3. Diffusion of NH∗
x on Fe(110) surface at 700K. (a) Free energy of NH∗

x interaction projected along the two
crystallographic directions [001] (x-axis) and [11̄0] (y-axis). Local minima represent the metastable states, and fuchsia dashed
lines denote the minimum free energy diffusion pathways. (b) Free energy calculated along the minimum free energy pathways.
The high symmetry adsorption sites are labeled according to Figure 1. Different scales are used for the free energy to highlight
the minima. (c) Snapshots of representative geometries of the minimum free energy adsorption states. Iron atoms are colored
according to net charges predicted by the neural network model.

for dehydrogenation.

Finally, NH lives on the hollow sites (4-fold coordina-
tion). In this configuration, as shown in Figure 2c, there
is a charge transfer of approximately −1e to the molecule,
coinciding with an oxidation state of the iron substrate of
+2. Among the nitrogen hydrides, NH is the less diffusive
species. As shown in Figure 3a, imide diffuses between
two adjacent hollow sites through a short bridge site. The
computed free energy barrier for the diffusion is 0.54 eV
(Figure 3b), making the diffusion of NH a rare event. For
this species, we can thus speak about long-live adsorption
state.

In passing from NH3 to NH, despite the coordination
interaction strength increases in terms of charge transfer
and coordination (Figure 2), no such relationship with
the intermediates’ mobility (Figure 3).

2. Fe(111)

We now discuss the interaction of nitrogen hydrides
with the Fe(111) surface, contrasting, as anticipated, the
behavior at T=300K and T=700K. In Figure 4, we show
free energy surfaces as a function of the nitrogen-iron coor-
dination number CN,Fe, and the total charge transferred
qNHx for each species in the two different temperature
regimes. It is important to recall that at T=700K, the
surface iron atoms become mobile, forming additional
adsorption sites (see Figure 1c). As shown in Figure 4,
all the N exhibit a tetrahedral environment due to the
chemical drive of N to form an sp3 hybrid. As a result
of surface mobility, this aim can be achieved in different
ways in high-temperature regimes. In contrast, at low
temperatures, such environments are not accessible. The
paradoxical effect of this is to stabilize the adsorption at
high temperatures, as indicated by the sharpest minima
in the free energy profiles, Figure 4. Such behavior is
particularly important for the last two intermediates and
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Figure 4. Interaction of NHx with Fe(111) surface. Free energies as a function of the N-Fe coordination and the total
charge transferred from the metallic substrate to the NHx species at T=300 K (a,c,e) and T=700 K (b,d,f). In the snapshots,
representative configurations belonging to the adsorption free energy minima are shown.

has significant implications for dehydrogenation, as will
be discussed below.

As in Fe(110), NH3 shows on-top adsorption at low
and high temperatures, with no charge transfer. How-
ever, unlike Fe(110), NH3 does not diffuse on the surface.
This can be rationalized by considering that the shortest
pathway between two on-top sites must go via the lower
layers, passing via configurations less favorable than in
the gas phase (see Figure 1).

As mentioned above, the adsorption of NH2 is very
different in the two temperature regimes. At T=300K,
the amide is bonded in bridge sites between the first and
second layers (b12, Figure 1b). In this configuration, NH2

can move almost barrierless (≈ 0.04eV) between three
equivalent b12 bridge sites via the top-layer bridge site
(b11, Figure 1b). This behavior is reported in SI Fig-
ure S2 and explains the free energy ring minima between
the two- and three-fold coordinated state of Figure 4c.
At T=700K, these low-temperature adsorption sites are
no longer observed, and NH2 is placed only at defective

bridge sites (db, Figure 1c). In this configuration, barrier-
less diffusion of NH2 is not observed, and the adsorption
is stabilized in this two-fold coordinated state.

Finally, we present the interaction of NH with Fe(111),
which exhibits significant differences between the high-
and low-temperature regimes. At 300K, NH is adsorbed
at bridge sites (b11, Figure 1b), while at 700K, a variety
of geometrical configurations is observed. The most stable
sites for adsorption are the tree-folded coordinated ones
(tr1 and tri2, Figure 1c), but also four-fold coordination
defective ones are still observed. Despite variations, the
iron substrate consistently shares two electrons (qNH ≈
−1e) with NH, similar to Fe(110).
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Figure 5. Dehydrogenation charge variation. Atoms in the molecule charge variation during reactions as a function of the
distance between nitrogen and reactive hydrogen. Each line in the plot (one for each atom) corresponds to a reactive simulation
(100 for each event). For each simulation, 40 ps were plotted around the transition state (dN,H = 1.40 Å). On the left, we report
three snapshots corresponding to the first dehydrogenation step on the Fe(110) surface.

B. Dehydrogenation steps

1. Reaction mechanism analysis

As outlined in Section II C 4, one hundred simulations
of dehydrogenation events were performed for each step
and surface at operando temperature, using the OPES-
flooding approach. The statistical sampling of reactive
pathways was performed without preconceived assump-
tions about the transition and final states.

A visual inspection revealed a variety of reaction path-
ways. To get a unified perspective, we use, as in32, the
charge transfer to the nitrogen hydrides to describe the
reaction processes. The evolution of the charges in the
nitrogen moieties qx during each dehydrogenation event
occurring on both surfaces are plotted in Figure 5. We
reasonably assume that the TS is closest to the point
where the distance dN,H reaches the breaking point of
1.40 Å (see Section IIC 4) and plot the charge variably
on a segment of 40 fs centered around the TS.

It can be seen that throughout the reaction, a significant
charge variation takes place only to the H atom that is
being reduced. This distinctive behavior is exemplified in
the left panel of Figure 5, which shows a representative
first-step dehydrogenation event on the Fe(110) surface.

When the reactions are studied through these Bader
charge lenses, a coherent underlying reaction mechanism
becomes evident in spite of the fact that the reaction
evolves following different geometrical trajectories. Strik-
ingly, not only is this shared between the individual reac-

tions but also across all the different steps and surfaces.

2. Transition state ensembles

We will now describe the observed complexity in TS
configurations.

At the operando temperature, the adsorbed molecules
and the surface atoms exhibit a pronounced mobility
that gives each reactive event a distinctive geometric
character. Therefore, it is not possible to identify a single
transition state (TS); instead, it must be described by an
ensemble of structures68–70. In SI Figure S3, we report the
TS coordinations CN,Fe vs CH,Fe for all reaction steps
on the Fe(110) and Fe(111) surfaces. These variables,
which provide a coarse geometrical representation of the
molecule on the surface during the reaction, exhibit a
broad distribution.

Through the application of k-medoids analysis, we iden-
tified two clusters within each TS ensemble, as outlined in
Section II C 4. The resulting clusters, along with their re-
spective medoids, are depicted in Figure 6 for both Fe(110)
and Fe(111) surfaces. In the top panels of Figure 6, we
observe for Fe(110) at least two distinguishable classes of
geometries, primarily differentiated by CN,Fe for the first
and third dehydrogenation steps, and by the coordination
number CH,Fe for the second dehydrogenation step. A
parallel analysis is conducted for dehydrogenation steps
on Fe(111). As depicted in the bottom panels of Figure
6, the first and second TS ensembles are classified based

https://doi.org/10.26434/chemrxiv-2024-0s8c9 ORCID: https://orcid.org/0000-0003-4750-5324 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0s8c9
https://orcid.org/0000-0003-4750-5324
https://creativecommons.org/licenses/by-nc-nd/4.0/


10

Figure 6. Transition state ensemble. Distribution of the coordinations between nitrogen and iron and between reactive
hydrogen and iron for the transition state configuration. For each reaction, data are separated in two clusters according to the
k-medoids analysis (see Section II C 4). The medoids are indicated with white crosses and shown in the snapshots. Iron atoms
are colored to guide the eyes to the difference between clusters: CN,Fe for the second dehydrogenation step on the Fe(110)
surface and the last one on the Fe(111) surface; CH,Fe for the others. Row data are reported in SI Figure S3.

on CN,Fe, while the third is distinguished by CH,Fe. It is
noteworthy that the coordination number CN,Fe at the
TS consistently exceeds that observed in the most stable
adsorption configuration of the reactant (refer to Figs. 2,
4 for Fe(110) and Fe(111), respectively).

The purpose of the above analyses is not to precisely
characterize the different TS ensembles but rather to
illuminate the great variety of the TS encountered. Thus,
we chose to determine only two clusters for each TS
ensemble, aimed at obtaining an economical description
of such complexity.

3. Dehydrogenation barriers

In Table I we present the free energy barriers associ-
ated with the dehydrogenation steps on both surfaces
at the operando temperature. The values are obtained
from the corresponding free energy profiles, depicted in
SI Figure S5 and Figure 7 for Fe(110) and Fe(111), re-
spectively. As described in Section II C 1, our calculations
include dynamic aspects, such as the diffusion of adsor-
bate species and all the possible transition pathways. We

Free energy barriers ∆G [eV ] at T=700K

Fe(110) Fe(111)

NH∗
3 → NH∗

2 +H∗ 1.01 1.14

NH∗
2 → NH∗ +H∗ 0.79 1.22

NH∗ → N∗ +H∗ 1.25 1.10

Table I. Free energy barrier. Estimated free energy barrier
for each dehydrogenation step on Fe(110) and Fe(111) surface
at T=700K. The values are derived from the associated free
energy profiles, illustrated in SI Figure S5 and Figure 7, re-
spectively. Considering the accuracy of the ML-potential and
the sampling uncertainty of the free energy calculations, we
estimated an uncertainty within the range [0.05-0.1] eV.

point out that the calculated free energy barriers read
from the FES at the operando temperature differ from
the internal energy differences obtained through the static
methods (see SI, Figure S6). Dynamical effects are very
significant in half of the reactions studied, and in these
cases, they cannot be accounted by using the harmonic
approximation. Thus, once again32, the operando tem-
perature properties cannot be understood based on the
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Figure 7. Fe(111) dehydrogenation barrier. Free energy profiles of dehydrogenation steps on Fe(111) surface. Blu solid
and red dotted lines refer to T=300K and T=700K, respectively. The free energy is projected along the coordination number
between nitrogen and hydrogen atoms CN , H. The free energy of each initial state is set to zero.

low-temperature behavior.

Figure 8. Correlation between dehydrogenation and
diffusion barriers on Fe(110) Free energy barrier of de-
hydrogenation steps as a function of the diffusion barrier on
Fe(110) surface. All the calculations are performed at the
operando temperature of 700K. The gray dashed lines follow
the linear trend as a guide to the eye.

On Fe(110), the dehydrogenation barriers of various
nitrogen hydrides differ significantly, similar to what the
diffusion barriers do. Figure 8 shows the clear correlation
between these two processes. This is a reflection of the
fact that the reduction of one hydrogen atom is driven by
the kinetics of NHx on the surface.

In the case of Fe(111) surface, calculating the diffu-
sion barrier at operando temperature is more complex
due to surface dynamical behavior, and we have not at-
tempted to do so. However, the shape of the absorption
free energy surfaces (Figure 4) can provide indirect infor-
mation about the species stability, with broader minima
indicating greater dynamism.

If we use this indicator, as well as a visual inspection,
we find that NH can perform much longer excursions
than NH3 and NH2, which have similar behavior (see
Figure 4 b,d,f). Thus, also in this case, albeit somewhat
indirectly, a correlation between dehydrogenation and
diffusion barriers can be observed.

The comparison between T=300K and T=700K is also
illuminating. The different adsorption behavior of the
nitrogen hydrides, which has been discussed in Section
IIIA 2, is reflected in the dehydrogenation barriers at
different temperatures (see Figure 7). Since for NH3, the
adsorption sites and diffusion mechanism are very close
at the two temperatures, the two free energy profiles can
be almost exactly superimposed. Instead, for NH2 and
NH the 111 surface dynamics forms new, more stable
adsorption sites in which the two nitrogen hydrides can
be accommodated such that the N atom can have a tetra-
hedral geometry. This leads to a significant increase in
the dehydrogenation barriers.

Consistent with experimental evidence8, our calcula-
tions predict NH as the most stable reaction intermediate
on the Fe(110) surface. In the Fe111 case, we observe an
interesting change in the rate-limiting step as a function
of temperature. At 300K, the most stable intermediate is
NH3. Instead, at 700K, the role of the most intermedi-
ate is played by NH2 in encouraging agreement with the
experiments9.

IV. CONCLUSION

In this study, we have investigated the decomposition
of ammonia, and described the adsorption, diffusion, and
dehydrogenation of an ammonia molecule on two clean
iron surfaces. All through these reaction steps, the ef-
fects of dynamics manifest themselves pervasively and in
multiple ways.

Even on the (110) surface, which is the most compact

https://doi.org/10.26434/chemrxiv-2024-0s8c9 ORCID: https://orcid.org/0000-0003-4750-5324 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0s8c9
https://orcid.org/0000-0003-4750-5324
https://creativecommons.org/licenses/by-nc-nd/4.0/


12

and stable, we saw how the high mobility of the reac-
tion moieties plays a non-negligible role. The effect is
even more dramatic for the open (111) surface, where in
addition to the intermediates mobility one has to take
into account the iron surface atoms diffusivity that, by
creating new adsorption sites, significantly alters the free
energy profiles.

Analyzing the transition states makes it clear that
there is not a single, well-defined one. Still, rather one
has to consider an ensemble of transition states. For
each dehydrogenation step, there are indeed at least two
possible reaction channels. This is the case not only for
the more “dynamic” surface (111) but also for the more
“static” one (110).

It is important to note how these dynamical effects
result in a nontrivial temperature dependence, confirming
the gap between the standard approach based on idealized
assumption and what happens in the messier operando
environment.

Molecular dynamics and enhanced sampling techniques,
on the other hand, fully account for entropic and dynamic
effects, allowing these processes to be studied without
any previous assumption. However, it is interesting to
note that the same tools that have allowed us to simulate
the complex behavior of the system also allow unifying
all different dehydrogenation steps on different surfaces
using the charge transfer as a descriptor.

Of course, this is a simplified model compared to the ac-
tual industrial catalyst, which should require considering
the entire catalytic cycle and other effects, such as lateral
interactions with adsorbed intermediates and promoter
activities. Nevertheless, our study lays the foundation
for a principled understanding of the catalytic mecha-
nism of hydrogen extraction from nitrogen hydrides and,
consequently, for the rational design of new catalysts.
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