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Abstract: We introduce Chemspyd, a lightweight, open-source Python package for operating the 

popular laboratory robotic platforms from Chemspeed Technologies. As an add-on to the existing 

proprietary software suite, Chemspyd enables dynamic communication with the automated platform, 

laying the foundation for its modular integration into customizable, higher-level laboratory workflows. 

We show the applicability of Chemspyd in a set of case studies from chemistry and materials science. 

We demonstrate how the package can be used with large language models to provide a natural language 

interface. By providing an open-source software interface for a commercial robotic platform, we hope 

to inspire the development of open interfaces that facilitate the flexible, adaptive integration of existing 

laboratory equipment into automated laboratories.  

 

Introduction  

Laboratory automation has been identified as a key strategy for increasing the rate at which new 

discoveries are made in chemistry and materials science.1–6 Automation serves two central purposes: 1) 

to increase the experimental throughput via continuous and/or parallel execution of otherwise repetitive, 

manual tasks, and 2) to foster more standardized and reproducible results. While the history of 

automation in chemistry traces back to the mid-20th century,1 recent years have seen a “renaissance” of 

automation in both academic and industrial laboratories. Advances in robotics and engineering have 

enabled the automation of increasingly challenging laboratory operations such as thin-film fabrication,7 

sample handling under inert gas,8,9 or dosing of powders, gels and slurries.10,11 Integrating such 

automated modules into larger workflows has demonstrated the potential to tackle increasingly complex 

scientific challenges in an automated fashion.12 This surge in automated experimentation has produced 

a growing market of instruments, particularly platform solutions consisting of multiple experimental 

modules. Arguably, the most prominent such systems have come from companies such as Chemspeed 

Technologies and Unchained Labs, and have shown the enormous potential to enable highly complex 

discovery workflows across various fields in chemistry and materials science. Examples include the  
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Figure 1: The Chemspyd API enables dynamic control of Chemspeed Technologies platforms. a) Dynamic instrument 

control is needed for adaptive decision-making and SDLs. b) Schematic overview of the integration of Chemspyd with the 

existing software and hardware framework from Chemspeed Technologies.   

 

discovery of battery electrolytes,13 new catalysts,14–16 organic laser materials,17,18 polymer 

formulations,19–21 or stereoselective synthesis.8  

The current phase in the evolution of automated laboratories involves the transition from static, pre-

defined automation workflows to modular and flexible labs where decisions about the next experimental 

steps are adaptively made in real time (Fig. 1a).22–24 Particularly with recent strides in data-driven design 

and machine learning,25 this has the potential to optimize the use of automated resources, and thereby 

accelerate scientific discoveries. Especially against the background of modularity and adaptive decision 

making, the availability of open software interfaces (application programming interfaces, APIs) for 

automated platforms are essential for the seamless incorporation into flexible, customizable 

workflows.26,27 At the same time, such dynamic APIs are often not provided by instrument 

manufacturers, whose software tends to follow a workflow- and instrument-centric philosophy. In fact, 

available APIs are often constrained to the configuration and post-run evaluation of static workflows. 

This presents a major barrier to integrating further instruments into the workflow, or to making adaptive 

data-driven decisions in real time.  

To address these gaps, we introduce Chemspyd, an open-source Python API specifically designed for 

Chemspeed platforms. This API enables real-time, adaptive control of Chemspeed instruments, 

empowering researchers to seamlessly integrate these robotic platforms into custom workflows and 

automated or self-driving laboratories (SDLs). We use three experimental case studies to demonstrate 

https://doi.org/10.26434/chemrxiv-2024-33sfl ORCID: https://orcid.org/0000-0001-5238-0058 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-33sfl
https://orcid.org/0000-0001-5238-0058
https://creativecommons.org/licenses/by/4.0/


 3 

how Chemspyd can be used for experiments in the chemical and materials sciences. Most importantly, 

Chemspyd is designed as a modular and expandable open-source project,28 and can therefore serve as a 

blueprint for the development of similar interfaces that meet the evolving demands of modern, flexible, 

and customizable automated laboratories.  

 

“Under the Hood”: The Design of Chemspyd  

Chemspyd’s architecture is guided by three core design principles: 1) dynamic and fine-grained control 

over the robot’s actions; 2) easy installation and usage with existing Chemspeed setups; 3) modular, 

extendable open-source architecture, facilitating continuous development by the community, and 

enabling effortless integration with experiment planning and scheduling workflows. Because of 2) and 

3), Chemspyd comes as a lightweight Python package that dynamically interacts with Chemspeed’s 

proprietary AutoSuite software.  

Chemspyd is organized following object-oriented design principles and is structured into two main 

classes: the Controller and the Executor. Whereas the Executor handles the communication with 

the instrument’s control software (for details, vide infra), the Controller provides a standardized, 

public API for users to develop customizable, adaptive workflows in Python. For this purpose, it houses 

an extensive catalog of elementary actions that encompass a wide range of the functionalities that the 

Chemspeed robotic platforms offer. These elementary actions enable dynamic and fine-grained control 

over the action space. A full list of elementary actions is provided in the Supplementary Information, 

as well as the detailed package documentation.29  

Chemspyd communicates with AutoSuite through the Executor, which read and writes shared CSV 

files, providing a standardized means of communication that is human-readable and supported by both 

Python and AutoSuite (Figure 1b). This enables bidirectional communication between AutoSuite (and 

thereby, the Chemspeed robotic platform) and Chemspyd, containing the instrument status, execution 

commands and parameters, instrument return values, and general metadata. A full description of the 

communication protocol is provided in the Supplementary Information.   

To enable dynamic control on the Chemspeed side, we created a dedicated AutoSuite application file, 

referred to as the Manager, that listens for command files, and executes actions based on the provided 

keywords and parameters. Each elementary Controller method has an execution counterpart in the 

Manager. As a result, Chemspyd allows users to perform individual actions (helpful during development 

and troubleshooting) or perform different routines without needing to restart the platform.  

Beyond the fine-grained control over elementary actions, we developed Chemspyd to contain a series 

of optional tools to assist with operation safety, accurate resource management, and standardized data 

collection. These safety checks include, for example, a simulation mode for testing software before 

deployment in a “digital-twin”-like scenario. In addition, operations or workflows can be validated prior 

to execution to ensure that liquids or solids can be added or removed from the specified wells. At a 

higher level, Chemspyd’s resource management features also allow users to ensure that wells won’t be 

overfilled or depleted by accident. The herefore required attributes of each well (type, volume, ...) are 

automatically extracted from the instrument configuration, avoiding manual input by the user (see 

section “Installation and Usage” for further details).   

To streamline workflow development and enhance convenience for the user, we have organized 

common experimental routines within the routines sub-package. Examples of such routines include 

the priming of syringe pumps, evacuate–backfill cycles (i.e., “Schlenk cycles”), filtration and collection 

steps, and injection to on-deck HPLC ports. Notably, the routines sub-package provides a framework 
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for implementing further custom experimental routines, highlighting the modular, open-source nature 

of Chemspyd, and fostering continued active development by the community.  

 
Figure 2: Installing and using the Chemspyd Python library. a) During initial installation, Chemspyd can read the platform’s 

configuration and convert it into the necessary configuration file. b) Example Chemspyd workflow showing how both routines 

and individual actions can be access through the API.  

  

Installation and Usage  

The Chemspyd Python package can be installed from the PyPI repository (Figure 2a). The source code 

repository can be accessed at its GitLab page30 under the Apache 2.0 license, and provides extensive 

documentation,29 including installation instructions, usage guides and tutorial examples. Once installed, 

Chemspyd code can be written entirely in Python (versions ≥ 3.9), and, thus, enables users to developed 

and test their code on any platform.  

The process of setting up Chemspyd on any local platform involves two stages: 1) creating a custom, 

local Manager and 2) extracting the platform’s hardware configuration. In the first stage, users should 

create a new Manager application file in AutoSuite whose instrument configuration matches that of their 

platform. All pre-defined commands, which are provided as part of Chemspyd (see package 

documentation for further details) should be copied into this application file. Second, for extracting the 

hardware configuration from the Manager and making it accessible to Chemspyd, we provide an 

automated solution to ease the installation process. For this purpose, Chempyd interacts with 

AutoSuite’s .NET API. For user convenience, this process is fully wrapped in the 

chemspyd.autosuite.get_config() function (Figure 2a, see package documentation for further 

details). As a result, the installation of Chemspyd is largely automated, and does not require a tedious 

configuration procedure, but is designed for the seamless integration with existing robotic setups. 

Should the API not be accessible, the resulting configuration file can also be created manually.  
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Figure 3: Experimental use cases of Chemspyd. a) Condition screening for silver nanoparticle formation. Left: 48 parallel 

experiments for silver nanoprism formation were conducted using different stoichiometric ratios of the ingredients, followed 

by analysis via optical spectroscopy. Center: A t-SNE plot shows the colors and extinction coefficients (depicted by marker 

size) of obtained nanoprisms. Right: Optical absorption spectra of selected nanoprisms. b) Condition screening for Buchwald-

Hartwig couplings. Left: A combinatorial screen of 48 Buchwald-Hartwig coupling conditions was performed by automated 

reaction execution, followed by filtration and direct HPLC injection. Right: Heatmap of relative HPLC yields for all 48 

reactions. c) Kinetic monitoring of an amide coupling reaction. Left: A two-step amide coupling was performed on the 

Chemspeed platform, and aliquots were automatically derivatized and submitted to an in-line HPLC at defined time intervals. 

Right: Relative quantities of reactants, intermediates and products, as determined by HPLC-UV.  

  

Once the Python package and the corresponding AutoSuite Manager have been properly set up, 

executing Chempyd code on a Chemspeed platform requires the following two steps: (1) start the 

Manager in AutoSuite, (2) execute one or multiple Chemspyd scripts, an example of which is shown in 

Figure 2b.  
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Experimental Use Cases  

In order to showcase the different features of Chemspyd, we demonstrate a set of experiments from 

inorganic and organic chemistry as possible use cases of the software in automated laboratories. All 

experiments were performed on the Chemspeed SWING XL robot available in our laboratory at the 

Matter Lab at the University of Toronto.  

As a first use case, we performed a systematic evaluation of reaction conditions for the formation of 

silver nanoprisms.31–33 The size distribution of the nanoprisms – and thereby, their absorption properties 

– are determined by the stoichiometric ratios of the silver source (AgNO3), the reductive component 

(NaBH4), the oxidative component (H2O2), the buffer (sodium citrate) and the silver concentration 

mediator (KBr). We selected a representative set of conditions from this five-dimensional continuous 

parameter space through Latin hypercube sampling. Using Chemspyd, we were able to quickly write 

the execution code, simply looping over all hypercube samples, and the required liquid transfer and 

stirring operations were performed automatically. Optical absorption measurements were carried out 

on our spectroscopic characterization platform.17 The resulting dataset of spectroscopic properties of 

the obtained nanoprisms is shown in Figure 3a.  

Our second use case targeted the screening of experimental conditions for the Buchwald–Hartwig 

coupling reaction, one of the most prominent reaction classes in organic and medicinal chemistry.34 

Specifically, we created a combinatorial dataset by varying three categorical parameters, namely the 

palladium precursor, ligand, and base.35 Exploiting our platform's capacity to perform reactions under 

an inert gas atmosphere, all synthesis (inertization, reagent addition, temperature control, vortex 

stirring), workup (filtration) and analysis (injection to an HPLC) were encoded in Chemspyd, and run 

without manual intervention. Notably, the modular design of Chemspyd was crucial for the software-

level integration with our group’s HPLC-MS instrument and its Python control code. Relative yields 

(with respect to an internal standard) for each reaction are visualized in the heatmap in Figure 3b.  

The dynamic nature of the communication between Chemspyd and the instrument is emphasized in a 

third experiment, in which we perform a two-step amide coupling with continuous reaction 

monitoring.36 Here, a Python script dynamically orchestrates the execution of the individual reaction 

steps, the timed preparation and derivatization of aliquots, and their injection to our HPLC system. At 

the same time, the script interacts with the HPLC instrument to ensure synchronization of both 

instrument operations. The kinetic traces of both reagents, the proposed intermediate, and the reaction 

product are shown in Fig. 3c, and are in good agreement with the traces obtained by Liu et al. in their 

dedicated reaction monitoring platform.36  

 

Simplified Adoption through a Natural Language Interface  

To further facilitate the adoption of Chemspyd and its rapid implementation into new laboratory 

routines, we provide a natural language interface for generating Chemspyd code. Such interfaces have 

recently proven to be powerful enabling technologies for automated or self-driving laboratories.37,38 

Similar to our recent work,39 we provide a web interface that uses a large language model to convert 

the natural language inputs into structured Chemspyd output.40   

In our implementation, all Chemspyd functions, along with their natural language documentation and 

all parameters, are organized in an associative array. Incoming natural language instructions are 

segmented into structured commands, which are then matched to the classes and functions in the 

associative array based on cosine distance. Subsequently, OpenAI’s GPT-441 is employed to translate 

the instructions into the corresponding code. Command-by-command, each section of the generated  
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Figure 4: Natural language interface for generating Chemspyd code. a) Web interface for interactively translating natural 

language input to usable Chemspyd code. b) Schematic overview of the software architecture.  

  

Chemspyd code is sent back to the user for feedback and validation. This match-translate cycle is 

repeated iteratively until satisfactory Chemspyd code is reached (Figure 4b). Eventually, the outcome 

is a responsive interface that effectively bridges the gap between user intent and the correct Chemspyd 

code, showcasing the power of NLP in user–system interactions, and providing a useful tool for non-

expert programmers to generate experiments with Chemspyd.  

 

Summary and Outlook   

We have introduced Chemspyd as a simple, lightweight and easy-to-use Python API for Chemspeed 

platforms. In contrast to existing software interfaces, Chemspyd allows for fine-grained, dynamic 

instrument control, thereby facilitating the usage of Chemspeed instruments in custom workflows and 

SDLs. With the rapid spread of Chemspeed platforms across academic and industrial laboratories across 

the world, we envision widespread adoption of this package, particularly in those scenarios where 

dynamic control and flexible integration with third-party software or hardware is required. Importantly, 

Chemspyd is an open-source project. Therefore, we encourage feedback and contributions from the 

community, and hope to inspire development of further functionality based on the needs of users outside 

our laboratory.  

Beyond extending the package’s functionality, the next critical steps will be to integrate Chemspyd with 

open-source standards for laboratory instrumentation, such as the XDL standard for encoding synthesis 

procedures,42 the SiLA2 standard for inter-device communication,43 and operating frameworks for 

orchestrating self-driving laboratories.27 We are convinced that such open, community-driven standards 

will be key for reusable, open-source software development.28 Eventually, we believe that Chemspyd 

can serve as an inspiration and blueprint for instrument manufacturers to provide the open APIs 

necessary for operating experimental modules in self-driving labs.  
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