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ABSTRACT: A Ru(II)-catalyzed C(sp2)-H trifluoromethylthiolation and thioarylation of indolines using bench-stable rea-
gents have been explored. Diversely substituted indolines 
were successfully functionalized at C7 position in good to ex-
cellent yields. To support the proposed reaction pathway, 
radical quenching, deuterium labeling, KIE  experiments, and 
reaction order determination were performed. Gram-scale 
synthesis and post-transformation of the synthesized product 
have also been performed to demonstrate the applicability of the developed catalytic protocol. 

Site-selective C-H functionalization of heterocycles has 
emerged as a viable tool in modern heterocyclic chemistry.1 
Among the plethora of heterocycles, indoline scaffolds are 
important because they are found in many lead pharma-
ceuticals and natural products (Scheme 1A).2 Classically, 
C7 functionalized indoline can be synthesized via ortho-
lithation of N-carbamate indolines followed by electro-
philic addition.3 With the advancement in modern hetero-
cyclic chemistry, C-H activation strategy provides an atom 
and step economic protocol for the direct functionaliza-
tion of indolines. Despite these advancements, the proto-
cols for functionalization of indolines are mainly limited to 
C-C, C-N, and C-X (X = halogens) bond formations 
(Scheme 1B).2a, 4 C-S bond imparts some unique character-
istics to the molecules such as enhanced bioavailability 
and lipophilicity and thus improving the pharmacokinetic 
properties of the molecules. SAr, -SCN, SCF3 etc., are vital 
sulfur-containing functional groups whose importance 
spans pharmaceuticals and agrochemicals.5  Thus, direct 
C-H functionalization of the indolines for C-S bond for-
mation would be advantageous. In this direction, Wang 
group developed a Rh(III)-catalyzed protocol for C7 thio-
arylation of indolines using diphenyl sulfide as the cou-
pling partner.4b Later on, Song group reported Cu-cata-
lysed C7 sulfonylation of indolines using tosyl chloride 
(Scheme 1C).6 Recently, there has been an emphasis on 
utilizing the electrophilic thiolating bench stable reagents 
for the C-S bond formation.7 In 2014, Xu and Sen utilized 
N-trifluoromethylthiosuccinimide as a stable reagent for 
direct C-H thiotrifluoroomethylation of arenes.8 Later, 
Tatiana group exploited various reagents for C-S bond for-
mation via C-H activation.9 In 2021, we have developed a 
protocol for direct thiotrifluoroomethylation of 8-methyl 
quinolines and oxime using a bench-stable thiotrifluoro-
methylating agent.7a In our ongoing quest on transition 
metal catalyzed synthesis and functionalization of N-
heterecycles,10 herein, we have demonstrated a Ru(II)-
catalyzed strategy for the C7 trifluoromethylthiolation and 
thioarylation of indolines using bench stable reagents 
(Scheme 1D). To our knowledge, there has been no report 

on the Ru(II)-catalyzed C7 trifluoromethylthiolation and 
thioarylation of indolines. 

Scheme 1. Importance and C7 functionalization of in-
dolines. 

 

At the outset of the work, we carried out the reaction be-
tween N-pyrimidylindoline (1a) and N-(trifluoromethyl-
thio)succinimide (2a) in the presence of [Ru(p-cy-
mene)Cl2]2/AgSbF6 in HFIP at 100 °C for 24 h. To our de-
light, the desired C7 trifluoromethylthiolated was formed 
in 55% yield (Table 1, entry 2). The desired product was 
confirmed by NMR and ESI-mass spectrometry. No prod-
uct was obtained in the absence of [Ru(p-cy-
meme)Cl2]2/AgSbF6 (Table 1, entry 3). Other acids, such as 
PivOH or AdCOOH, in place of AcOH acid afforded infe-
rior results (Table 1, entries 4-5). TFE in lieu of HFIP gave 
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the desired product in 30% yield (Table 1, entry 6). Low-
ering the reaction temperature decreased the reaction 
yield (Table 1, entries 7-9). The use of [RhCp*Cl2]2 in place 
of [Ru(p-cymene)Cl2]2 provided the desired product in 85% 
yield (Table 1, entry 10). No product was obtained when 
C0Cp*(CO)I2 was used as a catalyst (Table 1, entry 11). Alt-
hough 2-pyridyl (1b) as a directing group gave the desired 
product in 80% yield, other directing groups were not 
found compatible under the developed reaction condition 
(Table 1, entries 12-13). Other electrophilic sources, such 
as N-(phenylthio)succinimide (4a) and N-bromosuccin-
imide (5) gave the corresponding thioarylated and bromin-
ated indolines in 80% and 34% yield, respectively, whereas 
N-(trifluoromethylthio)phthalimide (6) failed to provide 
any product. (Table 1, entries 14 and 15). No product was 
observed in the absence of the catalyst.11  

Table 1. Optimization study.a  

 
Sr. 
no. 

Variation from standard condition yield 
(%)b 

1. - 87 (85)c 

2 Without AcOH 55 
3 Without [Ru(p-cymene)Cl2]2/AgSbF6 nd 
4 PivOH instead of AcOH 42 
5 AdCOOH instead of AcOH 54 
6 TFE instead of HFIP 30 
7 At 80 °C 60 
8 At 60 °C 50 
9 At RT 23 
10 Rh(III) instead of [Ru(p-cymene)Cl2]2  85 
11 C0(III) instead of [Ru(p-cymene)Cl2]2 Nd 
12 1b instead of 1a 80 
13 1c or 1d instead of 1a nd 
14 4a instead of 2a 80 
15 5 instead of 2a 34 

 

 

aReaction conditions: 1a (0.10 mmol), 2a (1.0 equiv), [Ru(p-cy-
mene)Cl2]2 (5 mol%), AgSbF6 (20 mol%), AcOH (1.0 equiv), HFIP (0.5 
mL), 100 oC, 24 h. bNMR yield of crude reaction mixture using tetra-
chloroethane as an internal standard. cIsolated yield in parentheses, 
nd = not detected. Rh(III) = [RhCp*Cl2]2; Co(III) = CoCp*(CO)I2 

Next, diversely substituted indolines were tested under the 
developed reactions (Scheme 2). C2 substituted indolines 
gave the desired product in excellent yield (3ba-3da). In-
dolines substituted with acetyl at C3 position (3ea) and 
benzyloxy at C4 position (3fa) reacted smoothly to provide 
the desired product in good yields. Both electron-donating 

and electron-withdrawing groups at C5 position were well 
tolerated and gave the desired products in good to excel-
lent yields (3ga-3ma). Indoline substituted with fluro at C6 
position provided the desired product in 93% yield (3na). 
Unfortunately, nitro-substituted indolines failed to react 
(3oa-3pa).  

Scheme 2. Trifluoromethylthiolation of N-pyrimidylindo-
line.a 

 
aReaction conditions: 1a (0.1 mmol), 2a (1.0 equiv), [Ru(p-cymene)Cl2]2 

(5.0 mol%), AgSbF6 (20 mol%), AcOH (1.0 equiv), HFIP (1.0 mL), 100 
oC, 24 h  

Scheme 3. Thioarylation of N-pyrimidylindoline.a 

 
aReaction conditions: 1a (0.1 mmol), 4a (1.0 equiv), [Ru(p-cymene)Cl2]2 

(5.0 mol%), AgSbF6 (20 mol%), AcOH (1.0 equiv), HFIP (1.0 mL), 100 
oC, 24 h  
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After exploring the trifluoromethylthiolation of indolines,  
C7 thioarylation of indolines was explored (Scheme 3). In-
itially, 1a was reacted with 4a, to get the desired thiaolated 
product 7aa in 80% yield. The electron-donating and elec-
tron-withdrawing substituents at the ortho-position of aryl 
ring did not affect the reaction outcome and provided the 
desired products with excellent yields (7ab-7ac). The me-
thyl and bromo groups have also been well tolerated and 
gave the desired product in good yields (7ad-7ae). Excel-
lent yields were obtained with para-substituted aryl ring 
(7af-7ag).  

Next, a few mechanistic experiments were carried out to 
understand the course of the reaction. To check the radical 
pathway, the reaction was carried out in the presence of 
two different radical quenchers (Scheme 4). The desired 
product was obtained in 55% and 57% yield, implying that 
a radical pathway might not be involved under current re-
action condition. Int-A was observed in the crude reaction 
mixture's ESI-MS analysis, further confirming a radical 
pathway's non-involvement. 

Scheme 4. Radical quenching experiments. 

 
Deuterium labeling experiments were performed by react-
ing 1a with or without 2a under standard reaction condi-
tion in the presence of AcOD and TFE-d3 for 3h to get 75% 
and 58% deuteration, respectively, at the C7 position of the 
recovered 1a, suggesting the reversible nature of the C-H 
activation step (Scheme 5). Competition and parallel reac-
tion (performed using the initial rate method) suggested 
that C-H activation might not be the rate-determining 
step. The reaction order was found to be first with respect 
to 1a and second with respect to 2a. The total order of the 
reaction was found to be three.11 These experiments further 
confirmed that C-H activation step might not be the rate-
determining step.  

 

Scheme 5. Deuterium labelling and KIE experiments. 

 

Based upon these preliminary mechanistic experiments 
and literature reports,4a, 7a, 12 a plausible reaction mecha-
nism was proposed (Scheme 6). The reactive Ru(II) spe-
cies was generated initially, which reacted with 1a via C-H 
activation to yield Int-A. Now, 2a can react with Int-A to 
provide Int-C through nucleophilic substitution or oxida-
tion addition followed by reductive elimination. Int-C in 
the presence of AcOH provided the desired product 3aa, 
succinimide along with the regeneration of active Ru(II)-
species to continue the cycle. 

Scheme 6. Plausible mechanism. 

 

The reaction proceeded smoothly at the gram scale to pro-
vide the desired product in 71% yield (Scheme 7). 

Scheme 7: Gram scale synthesis. 
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The title compound  (7aa) was further subjected to post-
transformation reaction (Scheme 8).4a The oxidation and 
deprotection of the 7aa gave the desired product in 93% 
90% yields, respectively. 

 
Scheme 8: Post transformations 

 

Conclusion 
We have successfully developed Ru(II)-catalyzed novel 
strategy for trifluoromethylthiolation and thioarylation of 
indolines using an electrophilic thiolating reagent. The re-
action was applicable up to gram-scale synthesis. The syn-
thetic utility of the developed protocol further defined by 
easy uninstallation of directing group and transformation 
of functionalized indoline to indole. Preliminary mecha-
nistic experiments were performed to support the pro-
posed reaction pathway.  
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