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Abstract

Isocyanates play an essential role in modern manufacturing processes, especially in polyurethane production. There
are numerous synthesis strategies for isocyanates both in industrial and laboratory conditions, which do not prevent
searching for alternative highly efficient synthetic protocols. Here, we report a detailed theoretical investigation of
the mechanism of sulfur dioxide-catalyzed rearrangement of the phenylnitrile oxide into phenyl isocyanate, which was
first reported in 1977. The DLPNO-CCSD(T) method and up-to-date DFT protocols were used to perform a highly
accurate quantum-chemical study of the rearrangement mechanism. An overview of various organic and inorganic
catalysts has revealed other potential catalysts, such as sulfur trioxide and selenium dioxide. Furthermore, the present
study elucidated how substituents in phenylnitrile oxide influence reaction kinetics. This study was performed by a
self-organized collaboration of scientists initiated by a humorous post on the VK social network.

1 Introduction
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Figure 1: A general scheme of the existing synthetic approaches to isocyanates.

Isocyanates are important and versatile reagents for both fine and large-scale organic synthesis.[1–4] The main use
of isocyanates is the production of widely used polyurethanes (PU) – indispensable component in the manufacturing
process of protective coatings, adhesives, dyes, sealants, various wear-resistant materials, biomaterials, etc.[5–8] In
addition, methyl isocyanate is an important intermediate in the synthesis of carbamate pesticides.[9] The large-scale
manufacture of isocyanate is usually based on the reaction of amines with toxic phosgene (Figure 1, reaction A). On a
laboratory scale, isocyanates are usually prepared by one of the rearrangement reactions – e.g., Lossen rearrangement
(Figure 1, reaction B),[10] Hofmann rearrangement (Figure 1, reaction C),[11] and Curtius rearrangement (Figure
1, reaction D).[12, 13] At the same time, alternative approaches toward isocyanates have also been described in the
literature. One such reaction is the thermal or catalyzed rearrangement of nitrile oxides.[14]
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Figure 2: A proposed mechanism of isomerization reaction from nitrile oxides to isocyanate catalyzed by SO2 from
Ref. [14] found in the initializing post in the VK social network.[15]

Possible pathways of rearrangement between isomeric nitrile oxides (R−C−−−N+−O– ), cyanates (R−O−C−−−N), and
isocyanates (R−N−−C−−O) have captivated the attention of chemists for over a century.[16] Since the development
of computational chemistry, numerous studies have aimed to explain the nitrile-oxide-to-isocyanate isomerization;
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however, usually, the objects were “spherical cows molecules in a vacuum.”[17] Thus, chemically unreliable barriers
exceeding 50 and sometimes even 80 kcal/mol were obtained.[18–21] In 1977, fascinatingly illogical isomerization
from nitrile oxides to isocyanate under relatively mild conditions was demonstrated, but remained almost unnoticed
(see Figure 2).[14] Authors speculated that the reaction proceeds through the 1,3-dipolar cycloaddition (Huisgen
reaction), and thus isomerization is an oxygen exchange, with SO2 playing an atypical role of a catalyst. This
assumption also bridges the suggested mechanism with a reaction between nitrile oxides and sulfinylamines that results
in carbodiimides.[22, 23] However, such a chemical transformation caused some confusion when one of our research
team members came across a post on the VK social network.[15] Thus, an idea to create a crowd-effort project to study
this rearrangement pathway came out. The result of this was the creation of self-organized collaboration, initiated
with the corresponding post in the VK social network.[24]

In the current study, we present a detailed state-of-the-art in silico mechanistic investigation of the reaction
mechanism of SO2-catalyzed conversion of phenylnitrile oxide into phenyl isocyanate. Based on the established reaction
mechanism, we conduct a theoretical screening of other potential inorganic and organic catalysts. In the final part of
the study, we also provide a screening of other possible substrates and their influence on the reaction’s kinetics.

2 Results and discussion

2.1 SO2-catalyzed conversion of phenylnitrile oxide into phenyl isocyanate

N+

O-

O N
O

SO2

C
O S

ON

O

C
N+

O S

O

-O

O
C

N

O N

+ SO

+ NO + SO

+ OSO (SO2)

Intermediate #1

Intermediate #2

O

+ SO2

ONOS

Figure 3: The results of the initial screening of the probable reaction pathways for phenylnitrile oxide and SO2 system
at the B3LYP-D3(BJ)/6-31G level of theory. The bold solid arrows indicate the only feasible reaction mechanism.
The colors of the atoms illustrate whether they initially belong to the reactant (blue) or catalyst (red).

To explore the chemical space of the original conversion reaction of nitrile oxide into isocyanate in greater detail,
we first screened the possible pathways at B3LYP-D3(BJ)/6-31G level of theory in the gas phase. The results of this
screening are outlined in Figure 3. We explored two main pathways, proceeding through two possible intermediates,
denoted as Intermediate #1 and #2. Intermediate #1 resembles the initially assumed mechanism (see initial post),
in which the whole nitrile oxide (C−−−N+−O– ) group of the reactant and a single S−−O bond of the SO2 participate in
[3+2]-cycloaddition to form a five-membered ring. In the Intermediate #2, a similar process occurs with the whole
SO2 and C−−−N+ part of the C−−−N+−O– -group.

The pathways for both intermediates were explored by manual chemical intuition-guided transition state (TS)
search. In addition, metadynamics (MTD) simulations of the Intermediate #1 were performed with three different
collective variables. The full set of results can be found in the electronic supplementary information (ESI). Various
possible chemical outcomes were identified, as shown in Figure 3. However, only phenyl isocyanate (PhNCO) was
an exothermic reaction product with a low enough barrier of 35.9 kcal/mol separating the Intermediate #1 from
the products. In the case of the alternative pathway through Intermediate #2, the rate-limiting step had a barrier
of 46.4 kcal/mol. Therefore, we can ignore other found products and mechanisms as highly improbable and focus
on the reaction of SO2-catalyzed conversion of phenylnitrile oxide into phenyl isocyanate, proceeding through the
Intermediate #1.

We have calculated the intermediate states and TS of the most probable pathway in Figure 3 using various methods
and approaches (details are given in ESI). To confirm, that the mechanism indeed proceeds only through two TS, we
have performed the intristic reaction coordinate (IRC) scans for both of these TS. The results at the r2SCAN-3c level

3
https://doi.org/10.26434/chemrxiv-2023-02n4r-v2 ORCID: https://orcid.org/0000-0003-3167-3104 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-02n4r-v2
https://orcid.org/0000-0003-3167-3104
https://creativecommons.org/licenses/by/4.0/


Reaction coordinate

E
ne

rg
y 

[k
ca

l/m
ol

]

-60

-40

-20

0

20

A
TS1

B

TS2

C

Figure 4: Concatenated IRC plots for the reaction of phenylnitrile oxide conversion to into phenyl isocyanate catalyzed
with SO2 calculated by r2SCAN-3c/CPCM(toluene) method (ORCA program).

of theory in toluene is shown in Figure 4, and more IRC scans, including the animations, are given in the ESI. As we
can see, the reaction indeed proceeds upon a formation of the intermediate cyclic adduct, which then converts into
the isocyanate in a single step. To ensure that we are not missing an intermediate structure in this complex motion,
we performed an additional relaxed internal rotation scan for the internal rotation of two rings was made at the
ωB97x-D3(BJ)/def2-TZVPPD level of theory in both gas phase and benzene. No stable conformer of the intermediate
B was found (results are shown in ESI).

The mechanism of the phenylnitrile oxide conversion to into phenyl isocyanate catalyzed with SO2 presented in
Figure 4 can be described with the following kinetic scheme:

Reagents � A � B→ C � Products . (1)

First, the reactant (PhCNO) forms a pre-intermediate A with the catalyst (SO2). Then, it converts into the interme-
diate B by a [3+2]-cycloaddition through the transition state TS1. Then, the intermediate B converts into products
through the TS2. In this case, the newly formed five-membered ring rotates by 90◦ with respect to the phenyl ring,
and the nitrogen moves towards the phenyl group. Then, the post-intermediate C is produced, which is a complex of
the reaction product (PhNCO) with the catalyst, and in the end, they dissociate into separate species.

The resulting mechanism was recomputed by various high-level pure DFT and composite methods (computa-
tional details are thoroughly described in ESI) in the gas and liquid (benzene, toluene solvents) phases emulated
with the CPCM and COSMO continuum models. Here, we will base our discussion on the reaction pathways com-
puted in benzene with a composite method of DLPNO-CCSD(T)/CBS//DFT, where the DFT method used is ei-
ther r2SCAN-3c or ωB97X-D3(BJ)/def2-TZVPP, as shown in Figure 5. The reference reaction pathway was com-
puted with a ZORA DLPNO-CCSD(T1) protocol that involved both CBS and infinite PNO space extrapolation.[26]
These calculations were based on r2SCAN-3c geometries. We compared these results with the DLPNO(NormalPNO)-
CCSD(T)/CBS//DFT and pure DFT results. The standard deviations (SD) for the reaction pathway were below 1
kcal/mol for DLPNO(NormalPNO)-CCSD(T)/CBS results, while pure DFT calculations differed more significantly,
exceeding the chemical accuracy by 2-4 kcal/mol. Therefore, further discussions on the other reaction pathways will
be based on the DLPNO-CCSD(T)/CBS//r2SCAN-3c results, as they match the benchmark calculations with nearly
chemical accuracy.

To compare the reaction pathways with each other, it is advantageous to represent them with a single number.
For that, we propose a simplified chemical model. We can assume that pre-intermediate A and post-intermediate C
are in equilibrium with reagents and products, respectively. A and B are connected through TS1, and the conversion
from B to C is irreversible due to the largest barrier of 72 kcal/mol 5. By applying a steady state approximation[27]
for the catalyst (SO2) and Intermediate #1 (B), details are given in ESI, we can describe this scheme with a single
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Figure 5: Computed reaction pathways of the SO2-catalyzed conversion of phenylnitrile oxide into phenyl isocyanate
at the various levels of theory in the benzene simulated with CPCM continuum solvation model. The “DLPNO” de-
notes DLPNO(NormalPNO)-CCSD(T)/CBS(3/4) single point energies. The “ωB97X” denotes ωB97X-D3(BJ)/def2-
TZVPP level of theory. Here, the standard Jmol[25] atom coloring scheme is used. White atoms are hydrogens, gray
are carbons, blue are nitrogens, red are oxygens, and yellow are sulfur.

effective reaction barrier

∆G‡eff = ∆G‡AB + ∆GRA −∆GPC + kBT ln

(
1 + exp

(
∆G‡BC −∆G‡BA

kBT

))
, (2)

where kB = 1.38 × 10−23 J/K is the Boltzmann constant, T is the absolute temperature, ∆G‡XY is the Gibbs free
energy barrier for a transition from state X to state Y at a given temperature, ∆GPC is the Gibbs free energy of
the reaction step Products→ C, and ∆GRA is the Gibbs free energy of the reaction step Reagents→ A. This barrier
provides an estimate of the rate of an effective reaction Reagents −−→ Products with a rate constant given by the
Eyring–Polanyi equation:[28, 29]

keff =
kBT

h
exp

(
−

∆G‡eff

kBT

)
, (3)

where h = 6.63× 10−34 J·s is the Planck constant. This effective energy barrier ∆G‡eff from Equation 2 at T = 298 K
will be later used for comparison of the modifications of the original reaction.

2.2 Survey of other possible solvents

First, we provided a survey of how the solvent influences the reaction (Figures 2) kinetics going through the two-
TS mechanism (Figures 4 and 5). For this, we took the gas-phase calculation of the reaction at the DLPNO-
CCSD(T)/CBS//r2SCAN-3c level of theory and applied the recently developed Solv model,[30] applied in SPT-V
scheme. We have selected 28 of the most common laboratory solvents, ranging from nonpolar (hexane, carbon disul-
fide) to the most polar (water). The studied solvents span a substantial polarity range, allowing us to explore the
polarity influence on the effective reaction barrier height. It was decided to use two well-established polarity descrip-
tors: the relative dielectric constant and Reichardt’s polarity parameters. The latter one was introduced by Reichardt
et al in 1963 and since then has been extensively used for studies involving solvent polarity. [31–35] The full list of the
studied solvents, as well as the corresponding dielectric constant and Reichardt’s parameter values, can be found in
ESI. The correlations of the effective barrier heights (Equation 2) with solvents’ dielectric constants ε and Reichardt’s
ET (30) parameters are shown in the Figure 6. The polarity of the solvent increases with increasing ε and ET (30),
and as we can see from the results, the increase of the polarity of the solvent decreases the effective reaction barrier,
making the reaction faster. It is worth noting that the effect of solvent polarity on the effective reaction barrier height
is not dramatic since the maximum difference observed for water (the most polar solvent studied) is still less than 1
kcal/mol. It is consistent with the previously reported observations that the pericyclic reactions are not sensitive to
solvent polarity due to the absence of significant degree of charge separation in a course of the reaction.[36]
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Figure 6: Survey of change in effective reaction free energy barrier (Equation 2) for 42 solvents of various polarity.
The gas-phase energies were computed at the DLPNO-CCSD(T)/CBS//r2SCAN-3c, while the free-energy correction
for solvation was computed within Solv model[30] applied in the SPT-V scheme. Sulfolane has been excluded from
the correlation plot with ET (30) parameters since, to the best of our knowledge, no value for it has been reported in
the literature so far.

2.3 Survey of other possible catalysts

2.3.1 Inorganic catalysts
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Figure 7: Summary of reaction pathways identified in the inorganic catalysts survey for the phenylnitrile oxide into
isocyanate conversion. The effective barrier height (Equation 2) in benzene at DLPNO-CCSD(T)/CBS//r2SCAN-3c
level of theory were the following. The original reaction’s (Figure 3) effective barrier is 12 kcal/mol, for SeO2 as a
catalyst, it is 3 kcal/mol, for SO3 as a catalyst, the reaction in the same treatment is barrier-less. The colors of the
atoms illustrate whether they initially belong to the reactant (blue) or catalyst (red).

To investigate other possible catalysts, we considered a set of small three-atomic molecules: ozone (O3), selenium
dioxide (SeO2), and nitrous oxide (N2O). O3 and SeO2 were chosen as direct analogs of the SO2.[37–39] SeO2 is
also a ubiquitously used organic catalyst.[40–42] In addition, sulfur trioxide (SO3) was also tested, as it was shown to
produce a similar intermediate in a tetrahydrofuran (THF) medium.[43]

The found reactive pathways for the chosen inorganic molecules are shown in Figure 7. For ozone and nitrous
oxide, we did not find any path leading to the desired phenyl isocyanate, as they tend to oxidize the molecule into
N-oxobenzamide. SeO2 and SO3 follow the same pathway as SO2 yielding the desired compound. The effective barrier
height (Equation 2) in benzene with SO2 as a catalyst is 12 kcal/mol, whereas with SeO2 it is only 3 kcal/mol, i.e.,
it should be a more active catalyst than the original. SO3 in THF gives an effectively barrier-less reaction, which
probably indicates the nonphysical nature of assumptions made in the derivation of Equation 2 for this particular
pathway. However, the barrier from the intermediate towards the products is lower by 2 kcal/mol, which indicates
SO3 also being a superior catalyst compared to the SO2.
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2.3.2 Organic catalysts
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Figure 8: Summary of the reaction pathways identified in the organic ketones survey for the nitrile oxide into isocyanate
conversion. The colors of the atoms illustrate whether they initially belong to the reactant (blue) or catalyst (red).

As an alternative organic catalyst, we first briefly investigated the possibility of replacing the S−−O moiety with
C−−O in the [3+2]-cycloaddition leading to the intermediate formation. The initial screening was done using the
r2SCAN-3c method in the gas phase. For this, we tested acetone, methyl 3,3,3-trifluoropyruvate, and 3,5-di-tert-
butyl-o-benzoquinone (Figure 8). All these compounds can provide a similar reaction pathway as the SO2 through
the 1,3-dipolar cycloaddition reaction.[44–46] The computed effective reaction barrier (Equation 2) in the gas phase
for the SO2 at the r2SCAN-3c level of theory is 9 kcal/mol, whereas for acetone it is 17 kcal/mol, for methyl 3,3,3-
trifluoropyruvate it is 11 kcal/mol, and for 3,5-di-tert-butyl-O-benzoquinone it is 10 kcal/mol. Thus, all investigated
alternative organic molecules are predicted to be significantly less effective catalysts for the reaction of interest.
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Figure 9: Summary of the reaction pathways for the phenylnitrile oxide reaction with N-sulfinylaniline. The two
products are diphenyl carbodiimide (from Intermediate A) and phenyl isocyanate (from Intermediate B). The effective
barrier height (Equation 2) in THF at DLPNO-CCSD(T)/CBS//r2SCAN-3c level of theory were the following: for
a pathway through Intermediate A is 19 kcal/mol, while for a pathway through Intermediate A is 23 kcal/mol. The
colors of the atoms illustrate whether they initially belong to the reactant (blue) or catalyst (red).

As an example of an organic catalyst participating in [3+2]-cycloaddition with nitrile oxide through the S−−O
bond, we chose N-sulfinylaniline (Ph−N−−S−−O). However, unlike SO2, which is symmetric in the [3+2]-cycloaddition
reaction, PhNSO is asymmetric, leading to the two possible intermediates that are labeled A and B as shown in Figure
9, where PhNSO is a reactant in pathway A and a catalyst in pathway B. The product arising from the intermediate A
is diphenyl carbodiimide (Ph−N−−C−−N−Ph), while the intermediate B leads to the catalytic conversion of phenylnitrile
oxide into phenyl isocyanate. The effective reaction barrier in THF for the pathway A is calculated to be 19 kcal/mol.
In contrast, the effective reaction barrier for the pathway B is remarkably higher (23 kcal/mol). Therefore, the simple
estimation of the selectivity from the rate constants is given by Eyring–Polanyi equation (3). The ratio of these
constants is 860:1, with reaction pathway A being the preferred one.

More detailed kinetic modeling of the parallel reactions (A) and (B) involving reagents PhCNO and PhNSO
predicts reaction (A) to be the main pathway, which is in line with the previously obtained experimental data.[47, 48]
Furthermore, non-negligible amounts (7% at 298 K, 12% at 383 K) of the corresponding product are predicted to
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form via the pathway (B). Thus, it is hypothesized that the PhNSO compound formerly obtained in 14-18% yield
in benzene is a product of the parallel reaction (B) and not the unreacted reagent.[48] It should be noted that upon
changing the solvent from benzene to diethyl ether, the reagents are not purified from the final reaction mixture.[47]
These observations are consistent with the results of in silico investigations: barrier heights of the first reaction
steps (determining the ratio of the final product) in the pathways (A) and (B) are predicted to differ by 1.5 and 2.2
kcal/mol for reactions in benzene and in THF, respectively. The difference between the barrier heights determines the
higher selectivity for reaction in THF compared to that in benzene. The explicit kinetic modeling was based on the
rate constants calculated with the Eyring-Polanyi equation, which uses the Gibbs free energies of the transition states.
These values were obtained with the state-of-the-art ab-initio method DLPNO-CCSD(T)/CBS//ωB97X-D3(BJ)/def2-
TZVP in CPCM(THF).

2.4 Survey of substrates
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Figure 10: Effective reaction barriers (Equation 2) for the substituted phenylnitrile oxides. The x-axis denotes the
substitution position. A solid horizontal line is an effective barrier for the unsubstituted species (12 kcal/mol).

The last effect that was studied is the substitution of the phenyl ring with various substituents, in particular,
fluorine (−F), chlorine (−Cl), bromine (−Br), methoxy (−OMe), trifluoromethyl (−CF3), and nitro (−NO2) groups.
The resulting changes in the effective reaction barrier are summarized in Figure 10. From there, we observe (Figure 10)
that all the electron-withdrawing groups, in general, slow down the conversion reaction, except for the p-Cl substituted
PhCNO, where the effective barrier decreases, and the o- and p-OMe substituted cases, where the effective barrier
stays almost the same (within 0.5 kcal/mol in difference). The m-substituted derivatives show very similar activation
energies, whether in the cases of the o- and p-substituted PhCNO, we see a larger spread in reachable energies.

To rationalize the observed trend of effective activation energies, we have tried to correlate these changes with
descriptors, characterizing the coupling between the phenyl ring (Ph) and the benzonitrile oxide group −CNO. The
descriptors used were the bond order of the Ph−CNO formally single bond and the net atomic charge of the phenyl
group. Mayer bond orders were tested, whereas for the atomic charges, we used Mulliken, Löwdin, and Hirshfeld
partitions. The results can be seen in Figure 11. Detailed information is available in the Excel file in the ESI.

The highest absolute values of Pearson correlation coefficient (PCC) were observed in the case of Hirshfeld charges
for a benzene ring with a substituent and it generally demonstrates a negative correlation. This trend is valid for TS1
and TS2 as well. Interestingly, PCC in the gas phase for reagent and TS2 is identical and equals –0.74. The same
tendency is observed in the condensed phase, yielding PCCs of comparable magnitude for reagent and TS2 (–0.61 and
–0.64, respectively). Furthermore, PCCs for TS1 are –0.45 and –0.47 in the gas phase and benzene accordingly. This
suggests that the reagent and TS2 are more affected by the nature of the substituents, although the PCC is still low
to establish a clear relationship with the effective reaction barrier. We collected Mayer bond orders and bond lengths
(Å) and determined the PCC with the corresponding effective Gibbs free energy values. The correlation is weak for

all cases, especially for the bond order with ∆G‡eff , for which PCC correlation coefficient is close to zero. The smallest
bond orders of R−C6H4−CNO bond were detected for m-substituted reagents and the shortest bond lengths – for
o-substituted reagents. Moreover, the bond order growth was observed in m-F < m-Br < m-Cl < m-MeO < m-CF3 <
m-H < m-NO2 row, and almost the same row was obtained for bond lengths: o-NO2 < o-F < o-Cl < o-Br < o-MeO.
No other dependencies have been identified. The row of growing bond order is difficult to interpret, whereas the row
of growing bond length does not contradict the chemical intuition and corresponds well with ∆G‡eff values. Thus,
an increase of electron-acceptor properties of the substituent in the o-position slows down the chemical reaction with
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Figure 11: Correlation of the various descriptors, characterizing coupling between the substituted phenyl ring
(R−C6H4) and the −CNO group in the substituted PhCNO, demonstrated in Figure 10. (a) Shows the substi-
tuted reagent molecule with a violet circle denoting the two groups of atoms (within and outside the circle) used
for charge calculations and the bold C-N bond indicating the bond for which Mayer bond orders and lengths were
computed. (b) Correlation of net atomic charges of R−C6H4 fragment with the effective reaction barrier heights. (C)
Correlation of the Mayer bond order of the C-N bond with the effective reaction barrier heights. (d) Correlation of
the C-N bond length with the effective reaction barrier heights. All the calculations were done at the r2SCAN-3c level
of theory in benzene.

PCC being –0.85.

3 Conclusions

We have thoroughly investigated the mechanism of the Thiemann-type SO2-mediated conversion of the phenylnitrile
oxide (PhCNO) into phenyl isocyanate (PhNCO). The reaction proceeds through the five-membered ring intermediate,
with reagents and products being separated from this intermediate by only a single transition state (Figures 3 and
5), respectively. Thus, we confirmed a previously proposed mechanism for this and similar reactions. In addition, we
have suggested better inorganic catalysts for such rearrangement, namely SO3 and SeO2.

A small survey of the organic catalysts did not reveal any possible better candidates. However, as a byproduct, we
found a mechanism of the reaction of PhCNO with the N-sulfinylaniline PhNSO that produces diphenyl carbodiimide
(Ph−N−−C−−N−Ph). As it turns out, the reaction proceeds by a similar mechanism, through the formation of the five-
membered ring and then eliminating SO2 upon PhNCNPh formation. The PhNSO-catalyzed conversion PhCNO −−→
PhNCO is also a possible but less favorable reaction pathway, and it explains the found traces of PhNCO in the
reaction mixture.[47, 48]

In the end, we also surveyed the effect of phenyl ring substituents on the reaction kinetics. It turns out that such
substitution slows down the reaction with respect to the unsubstituted PhCNO. The reaction seems to proceed slower
with the increasing electron-withdrawing effect of the substituent.

We also wanted to highlight that we tried to follow the unbiased data representation during this research to avoid
the positive result bias.[49, 50] Namely, we reported both successful cases that we found and the dead-ends that we
encountered, such as the N2O, O3 catalysis (Figure 7) or the highly improbable reactions of PhCNO with SO2 (Figure
3).

This study was a popular social network-based, self-organized collaboration that yielded fruitful ideas generation
and knowledge exchange. Therefore, we believe that we provide a proof-of-concept case for the possibilities of such
web-based theoretical chemistry collaborations.
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Methods

We used recommendations given in the publication by Bursch et al. as the starting point for our computations.[51]
Quantum-chemical calculations were done using the ORCA 5,[52, 53] AMS 2021,[54] Firefly 8.2.0,[55] and Priroda[56]
program suits. For drawing the 3D-molecular structures and for visualization of the calculation results, the Jmol,[25]
ChemCraft,[57] and Molden[58, 59] molecular viewers were used.

The following quantum-chemical approximations were applied in the calculations. The DFT functionals applied
were B3LYP,[60–62] PBE,[63] PBE0,[64] r2SCAN,[65] ωB97X.[66] Dispersion corrections used were D3(BJ)[67] and
D4.[68, 69] Along with DFT, optimizations of the structures and search for TS were done with the MP2 method.[70]
Solvation effects were accounted for using conductor-like polarizable continuum model (CPCM),[71, 72] Conductor-like
Screening Model (COSMO),[73–75] and a recently developed Solv model,[30] applied in SPT-V scheme. Based on the
DFT geometries, the accurate single-point energies of the structures were obtained using the DLPNO-CCSD(T) level
of theory,[76] including the CPCM-based results.[77] The basis sets used were 6-31G,[78] def2-TZVP, def2-TZVPP,[79]
(aug)-cc-pVTZ, and cc-pVQZ.[80, 81] With DLPNO-CCSD(T) calculations, a complete basis set (CBS) extrapo-
lation scheme CBS(3/4) based on cc-pVTZ and cc-pVQZ basis sets was applied.[82–84] The zeroth-order regular
approximation (ZORA)[85] was used in reference DLPNO-CCSD(T1) calculations[86] together with CBS(3/4) extrap-
olation based on ZORA-def2-TZVPP and ZORA-def2-QZVPP basis sets[87] and 6/7 extrapolation to the complete
PNO space.[26] In Priroda calculations, the Λ01 basis set was used[88, 89]. In AMS calculations, the TZ2P Slater-
type-orbital basis set[90–92] was applied. A major part of DFT calculations was performed using the r2SCAN-3c
approximation.[93]

For the stable species (reagents, products, and intermediates), we performed geometry optimizations. Transition
states (TS) between these species were identified using the nudged elastic band (NEB) method[94, 95] and scans along
various internal coordinates. The local minimum and TS were confirmed by follow-up harmonic frequency calculations.
To visualize the mechanism, intrinsic reaction coordinate (IRC) scans were performed.[96]

The bond-breaking Bohmian metadynamics (BBBMTD) simulations[97] of the isomerization in the intermediate
were performed at the B3LYP-D3(BJ)/6-31G level of theory with PyRAMD[98, 99] software. ORCA 5 package was
used as a source of the forces. The simulations were 5 ps in duration with 1 fs time step. The initial velocities were
sampled from Maxwell-Boltzmann distribution at 300 K. The bias potential was updated every 10 fs with a Gaussian
wavepacket width of σ = 0.05 Å. A Berendsen thermostat[100] at 300 K with a relaxation time of 100 fs was used
to prevent overheating. Three sets of simulations with five trajectories were set. These sets differed by the collective
variable (CV) definition.

More specific details about the calculations performed can be found in ESI.

Open data statement

The reaction energetic profiles and the optimized structures of the reagents, products, and transition states are provided
in the ESI. As a part of ESI, we provide animations of the IRC scans. Raw data can be found in the GitLab repository:
https://gitlab.com/madschumacher/crazyreactionstudy.
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[10] Mikaël Thomas, Jérôme Alsarraf, Nahla Araji, Isabelle Tranoy-Opalinski, Brigitte Renoux, and Sébastien Papot.
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[95] Vilhjálmur Ásgeirsson, Benedikt Orri Birgisson, Ragnar Bjornsson, Ute Becker, Frank Neese, Christoph
Riplinger, and Hannes Jónsson. Nudged elastic band method for molecular reactions using energy-weighted
springs combined with eigenvector following. Journal of Chemical Theory and Computation, 17(8):4929–4945,
2021. doi: 10.1021/acs.jctc.1c00462. URL https://doi.org/10.1021/acs.jctc.1c00462. PMID: 34275279.

[96] Kazuhiro Ishida, Keiji Morokuma, and Andrew Komornicki. The intrinsic reaction coordinate. an ab initio
calculation for hnc→hcn and h-+ch4→ch4+h-. The Journal of Chemical Physics, 66(5):2153–2156, 08 2008.
ISSN 0021-9606. doi: 10.1063/1.434152. URL https://doi.org/10.1063/1.434152.

[97] Denis S. Tikhonov. Metadynamics simulations with bohmian-style bias potential. Journal of Computational
Chemistry, 44(21):1771–1775, 2023. doi: 10.1002/jcc.27125. URL https://onlinelibrary.wiley.com/doi/

abs/10.1002/jcc.27125.

[98] Denis S. Tikhonov. Pyramd manual. https://confluence.desy.de/display/CFA/PyRAMD, 2021.

[99] Denis S. Tikhonov. Pyramd. https://stash.desy.de/projects/PYRAMD/repos/pyramd/browse, 2021.

[100] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics
with coupling to an external bath. The Journal of Chemical Physics, 81(8):3684–3690, 10 1984. ISSN 0021-9606.
doi: 10.1063/1.448118. URL https://doi.org/10.1063/1.448118.

16
https://doi.org/10.26434/chemrxiv-2023-02n4r-v2 ORCID: https://orcid.org/0000-0003-3167-3104 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.10255
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.10255
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20030
https://doi.org/10.1080/00268970412331333618
https://doi.org/10.1063/5.0040021
https://www.sciencedirect.com/science/article/pii/0039602894007314
https://doi.org/10.1021/acs.jctc.1c00462
https://doi.org/10.1063/1.434152
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.27125
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.27125
https://confluence.desy.de/display/CFA/PyRAMD
https://stash.desy.de/projects/PYRAMD/repos/pyramd/browse
https://doi.org/10.1063/1.448118
https://doi.org/10.26434/chemrxiv-2023-02n4r-v2
https://orcid.org/0000-0003-3167-3104
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Results and discussion
	SO2-catalyzed conversion of phenylnitrile oxide into phenyl isocyanate
	Survey of other possible solvents
	Survey of other possible catalysts
	Inorganic catalysts
	Organic catalysts

	Survey of substrates

	Conclusions

