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Abstract 

The SARS-CoV-2 virus contains a host of nonstructural proteins (NSPs) that contribute to its structure and viral 

function. Among them is the nonstructural protein 3 (NSP3), which contains a macrodomain (Mac1) that interferes 

with antiviral adenosine diphosphate (ADP)-ribosylation signaling. Catalytic mutations in Mac1 render viruses 

nonpathogenic, making this enzyme a promising target for antiviral development. For this reason, the third CACHE 

challenge focused on identifying binders of the Mac1 domain of NSP3 for the development of novel antivirals against 

SARS-CoV-2. To this end, we used available structural data of the NSP3 Mac1 domain in complex with known 

fragment binders as starting points for ligand discovery; our efforts were primarily focused on sub-sites of the ADP 

binding site in the NSP3 macrodomain. Then, using Artificial intelligence (AI)-guided and knowledge-based fragment 

merging and expansion approaches, we generated novel molecules that would serve as templates to identify highly 

similar compounds in the Enamine REAL database that would be commercially available. Our design yielded a library 

of 12,800 molecules, which was docked with our program FITTED to a representative crystal structure of NSP3. We 

ranked the predicted binding poses based on docking score, followed by visual pose analysis of the best 200 

compounds. We finally selected and proposed 150 compounds for testing, followed by further shortlisting to yield a 

final list of 107 molecules. 91 compounds were purchased from Enamine and are being tested at the Structural 

Genomics Consortium (SGC). Our approach and findings will further contribute to our open science efforts, and we 

aim to continue to engage the scientific community.   
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1. Introduction 

Coronaviruses, including SARS-CoV-2, are a diverse family of positive-sense single-stranded RNA (+ssRNA) viruses 

that are capable of infecting mammals, among other species.1 In the host system, the +ssRNA is translated into two 

polyproteins – pp1a and pp1ab – which are further post-processed into nonstructural proteins (NSPs) by the papain-

like protease (PLpro) and the 3C-like protease (3CLpro). These NSPs are essential for the structure of the viral 

replication and transcription complex.2 Most efforts to develop SARS-CoV-2 antivirals have focused primarily on 

targeting PLpro 3, 4 and 3CLpro 5–8  (Figure 1), which culminated in the marketing of nirmatrelvir (active ingredient of 

PaxlovidTM
, Pfizer) and ensitrelvir (Xocora®, Shionogi) as orally-available medications inhibiting 3CLpro. 9,10 

 

Figure 1. Selected  A) 3CLpro and B) PLpro inhibitors. 11–14 

However, antiviral resistance is one major concern related to targeting 3CLpro, afforded by viral mutations. Indeed, 

several 3CLpro mutations have been associated with a significant decrease in Paxlovid and Xocora inhibitory 

activity.13,14 Thus, an alternative approach is to focus efforts on other key proteins. One promising candidate is NSP3, 

which contains a highly conserved macrodomain (Mac1) that interferes with adenosine diphosphate(ADP)-

ribosylation signaling, a key component in mediating the human immune response.15  This domain contains several 

binding sites, including the catalytic site and the ADP sub-site. Due to the high degree of Mac1 conservation across 

all species,16  it has been posited that catalytic mutations in the Mac1 domain would lead to loss of viral 

pathogenicity.17,18 This approach should then circumvent the resistance issues faced by 3CLpro and PLpro inhibitors. 

Recent work to identify fragment binders of the NSP3 Mac1 domain has led to an explosion of structural data, with 

over 200 crystal structures deposited in the Protein Data Bank (PDB).16,19 These comprehensive crystallographic data 

have marked a turning point in the development of Mac1 inhibitors, leading to the identification of several (low) 

micromolar binders (Figure 2).  

 

Figure 2. Selected SARS-CoV-2 NSP3 Mac1 domain binders. 

Despite continued research, there remains a limited number of antiviral drugs on the market that can serve as 

alternatives to current treatments for SARS-CoV2.  Drugs such as Remdesivir, Molnupiravir, and Paxlovid have shown 
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varying degrees of effectiveness, ranging from moderate to less effective and some of the reported compounds still 

display a degree of toxicity .20–22 Thus, it is crucial to develop novel chemical series that not only demonstrate 

increased potency but also address previously identified issues of toxicity and resistance. With this goal in mind, we 

aimed to participate in the CACHE challenge #3, where we could leverage our medicinal and computational 

chemistry expertise along with the available molecular and structural data to identify novel Mac1 binders with 

enhanced potency. 

2. Approach 

Our roadmap begins with the analysis of the structural characteristics of the Mac1 domain. There are over 200 Mac1 

crystal structures complexed with small molecules and fragments that are available in the PDB, provides ample 

information for identifying and developing new Mac1 binders. We thoroughly analyzed the co-crystal fragments and 

their binding mode as well as Mac1 domain binding sites, protein and ligand flexibility, and key interactions patterns 

using our in-house Python scripts. For fragment-based merging and expansion studies, we have selected diverse co-

crystal fragments binding to the ADP sub-site to design potential Mac1 binders (Figure 3).  

 

 
Figure 3. Roadmap for designing novel Mac1 binders using fragment-based approaches. 

 

With the fragment-based expansion approach, we implemented a recurrent neural network (RNN-LSTM)-based 

generative model which is pre-trained on the CHEMBL database23–25 before fine-tuning it with known Mac1 binders. 

A pre-trained model leverages its learned patterns, weights, and knowledge to predict and construct new molecular 

structures irrespective of specific targets. A fine-tuned model was used for fragment expansion studies to generate 

molecules from the selected fragments and their corresponding positions. This process is repeated until all suitable 

positions for the selected fragments are addressed and potential molecules generated using the fine-tuned model. 

Furthermore, we have leveraged the chemical intuition and expertise of our team to manually select fragments for 

merging to generate ideas in addition to the generative AI approach. Once the ideation process was completed from 
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both approaches, we considered generated molecules as templates, to source Enamine REAL database to source 

analogues, either by substructure or similarity searches.  

Following the proposed roadmap, we processed the retrieved the list of compounds ready for docking taking 

advantage of the various programs integrated into our drug discovery platform FORECASTER.28 We virtually screen this 

set of small molecules against a representative crystal structure of the Mac1 domain with our docking program 

FITTED. The top 200 compounds ranked by docking score were visualized.  We focused on 1) overall molecule fit in 

the ADP sub-site, 2) interaction pattern between protein and ligand consistent with co-crystallized fragments, and 

3) structural diversity of ligands. Finally, as per the CACHE3 guidelines, we have shortlisted 150 compounds for 

purchase and testing. 

3. Results and Discussion 

A total of 455 crystal structures for Mac1 have been reported and deposited in the protein data bank (PDB), which 

is being investigated by a variety of research teams (as of February 2023).16,19,26–28  Of 455 structures, 176 of Mac1 

structures were complexed with small molecules, 249 with fragments, and the remainder were reported as either 

unbound or apo structures. For our study, we specifically considered those Mac1 crystal structures which are 

complexed with fragments, since these structures are particularly relevant to our research. 

3.1. Structural analysis of the active site 

A majority of the fragments co-crystallized with Mac1 were bound to the adenosine diphosphate ribose (ADPr) 

binding region while some were binding allosteric cavities. Dr. Fraser and colleagues have identified and termed 

specific regions as the Adenine, Oxyanion, Upper, and Lower sub-sites16 as highlighted in Figure 4. We used in-house 

python scripts to extract and filter the interactions observed between the co-crystal fragments and the respective 

Mac1 sub-sites. Following this interaction analysis with four known sub-sites, we refined our selection to 228 co-

crystal structures.  

 

Figure 4:   SARS-CoV-2 NSP3 macrodomain (Mac1) crystal structures (PDB: 5RTC, and 5RSW), protein structures are displayed in 

surface mode and co-crystal fragments were highlighted in ball and stick mode. Various sub-sites on the macrodomain surface 

are distinctly color-marked: the Adenine sub-site is in pink, the Oxyanion sub-site in blue, the Lower sub-site in yellow, and the 

Upper sub-site in green. Additionally, 2D-interaction diagram showcases adenine (PDB ID: 5RTC) and oxyanion (PDB ID: 5RSW) 

co-crystal fragments interacting with the Mac1 domain and highlights the crucial amino acids participating in these interactions. 
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The majority of these co-crystal fragments (122) bind to the adenine sub-site; they are involved in key hydrogen 

bonding interactions with Asp22 and Ile23 and they form stacking interactions with Phe156. Additionally, 62 co-

crystal fragments were found in the oxyanion sub-site, which is shaped by the backbone NH groups of Phe156 and 

Asp157. Our study focused on these two sub-sites because of their pocket size, the presence of key interactions, the 

potential scope for fragment expansion and generating hit-like molecules, and the presence of key residues, as 

shown in Figure 4. 

3.1.1 Adenine sub-site.  Of the 228 structures, 122 Mac1 structures contained fragments bound to the adenine sub-

site which we termed as adenine co-crystal fragments from here on. Most of the amino acids in the adenine sub-site 

are hydrophobic, including Phe156, Ile23, Val24, Gly48, Val49, and Ala52, as well as the polar Asp22. A majority of 

adenine co-crystal fragments form hydrogen bonds with Asp22, Ile23, Val49, while Phe156 is also involved in π-

stacking and π-cation interactions. Adenine co-crystal fragments typically had three key pharmacophoric features: 

1) a hydrogen bond acceptor, 2) a hydrogen bond donor within 3) a heteroaromatic core (e.g., thiazoles, pyridines, 

pyrazoles, pyrroles). The frequency of the key interactions observed in adenine sub-site and it’s cocrystal fragments 

are shown in Figure SF1A. 

3.1.2 Oxyanion sub-site:  Oxyanion co-crystal fragments refer to the fragments that are bound to the oxyanion sub-

site of the Mac1 crystal structures (62). The oxyanion site is adjacent to the adenosine sub-site. Many of these 

fragments (e.g., carboxylates, sulfones, isoxazoles, keto acids, and succinimides) contain highly polar functional 

groups. The oxyanion sub-site is composed primarily of hydrophobic amino acids, as well as exposed NH groups on 

Phe156 and Asp157's backbones. As oxyanion holes stabilize negatively charged intermediates or transition states 

of enzymatic reactions, this is somewhat expected. Almost all of the oxyanion co-crystal fragments hydrogen bonded 

with Phe156 and Asp157, and some directed groups overlap or extend toward the phosphate tunnel, others toward 

the lower site, and some overlap with the upper adenine sub-site.  The frequency of the key interactions observed 

in oxyanion sub-site and it’s cocrystal fragments are shown in Figure SF1B. 

3.2 Hit Discovery through a fragment-based approach: 

3.2.1 Selection of potential fragments as starting points for inhibitor design:  

Identification of a promising starting point for fragment linking or expansion is key for success in molecular design. 

In our fragment selection process, we carefully considered several factors, including the rule of three35 (molecular 

weight of the fragment < 300, LogP ≤ 3, number of hydrogen bond donors (HBDs) ≤ 3, and number of hydrogen bond 

acceptors (HBAs) ≤ 3), and number of rotatable bonds. These properties were computed using SMART, a module of 

the Forecaster suite. We carefully evaluated each fragment for their binding pose and interaction patterns with their 

respective sub-sites, as well as their orientation and scope for fragment-based studies. Leveraging our team's 

expertise, we carefully selected twenty starting anchor fragments that are suitable for strategies involving fragment 

expansion and merging. Out of twenty shortlisted fragments, thirteen of these were associated with the adenine 

sub-site and the remaining seven with the oxyanion sub-site. To conduct the fragment-based design, we employed 

two distinct approaches. The first strategy was based on an AI-guided fragment expansion, anchored by established 

active fragment for a more targeted foundation. In contrast, the second method utilized knowledge-driven 

techniques for fragment merging. These two approaches are detailed below. 

3.2.2 AI-guided fragment expansion: 

We implemented a deep recurrent neural network (RNN) 29 with long short-term memory (LSTM) cells for generation 

to design potential hit candidates for Mac1. RNNs have been instrumental in sequence modelling tasks, which 

predict or generate sequences of data (e.g., words making up sentences) where the temporal order or sequence of 

the data points is vital. RNN-LSTM models have found exciting applications in the field of generative AI, such as text 
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generation, music generation, art generation, and also for drug discovery.30–33  A filtered ChEMBL30 dataset, a 

repository rich in chemical diversity, was used to train the RNN-LSTM model initially. We trained our RNN-LSTM 

model on SMILES (Simplified Molecular Input Line Entry System), a textual representation of molecular structures, 

to accurately capture the chemical data. The dataset provided valuable insight into a wide variety of chemical 

structures and their properties. During this early stage of model development, it is crucial to learn the probability 

distribution of SMILES strings, which is crucial to the model's ability to process and generate chemical data 

accurately.  

For pre-training, the RNN-LSTM model was configured with 256 LSTM units and trained over 22 epochs to balance 

exposure to the dataset against the risk of overfitting. The Adam optimizer was employed for its adaptability across 

complex patterns. With a batch size of 256 and a 10% validation split, the model's progress was consistently 

monitored, leveraging verbose training feedback, checkpoints guided by validation loss. This model will be referred 

to as the pre-trained model. 

Following initial training, the models were fine-tuned through transfer learning, which refined their pre-trained 

capabilities for the specific task of identifying Mac1 inhibitors (200).16,19,27 This fine-tuning adjusted the models' 

weights and biases to focus on the distinct properties of the 200 known Mac1 inhibitors (refer to supporting files). 

At this stage, the model is now trained to generate realistic molecules which have properties similar to known Mac1 

inhibitors. A sampling temperature of 0.75 and a maximum SMILES length of 128 characters were set to balance the 

generation of diverse and complex molecular structures without taxing the model's capacity. This model will be 

referred to as the fine-tuned model. 

 
Figure 5: Schematic diagram of RNN-LSTM model training and sampling process. To explain the sampling process, here we 

considered bromobenzyl as the initial fragment, the 2nd position is marked by the 'G' sentinel token, directing model expansion 

at this location. 

The process of AI-guided molecular design (RNN-LSTM) begins with a sentinel token known as ‘G’. This token will be 

used in the initial sampling process (molecule generation) followed by a transfer learning approach for fine-tuning 

the hits in the second stage. Figure 5 illustrates the molecule generation process, which begins with a shortlisted 

fragment (called a "primer") and uses the sentinel token ‘G’ to indicate where the fragment needs to be expanded 

or grown. We selected seven of the thirteen adenine co-crystal fragments (PDB IDs: 5RVI, 5RTE, 5RSC, 5RUD, 5RTN, 

5RTM, and 5S2G) and two of the seven oxyanion co-crystal fragments (PDB IDs: 5RSP, 5RTG) for our study (Figure 6) 

as starting points for this approach. The RNN-LSTM utilizes its learned knowledge (from training) to iteratively build 

upon the fragment, improving compound design within the desired chemical space of Mac1 inhibitors. 
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Figure 6: 2D structures of co-crystal fragments shortlisted for AI-driven fragment expansion approach and 2D-structures. Color-

code: hydrogen bond acceptor features in red, hydrogen bond donor features in blue, and aromatic features in orange and 

sentinel token ‘G’ are assigned to each fragment and this token indicates the position for fragment growing into adjacent sub-

site. 

For the fragment growing experiment, we have selected the benzo[d]isothiazol-3(2H)-one 1,1-dioxide (LSA201), 

occupying the oxyanion sub-site of Mac1 (PDB ID of 5RSP) and anchoring it to the adenine sub-site. A close look at 

the binding mode revealed that the sulfonyl moiety of the fragment hydrogen bonding with Asp157 and the carbonyl 

moiety forms the hydrogen bonding with Gly130. As illustrated in figure 7, binding mode and orientation of the 

fragment suggest that 6th and 7th positions of the benzo[d]isothiazol-3(2H)-one 1,1-dioxide moiety are ideal for 

expansion. A conventional 'G' sentinel token will be incorporated into SMILES notation to indicate the direction in 

which the fragment will expand. We do this by inserting a 'G' token at the expansion site of the canonical SMILES 

string.  

With each iteration, the LSTM adds a new atom or bond to the existing fragment, expanding it progressively. Over 

successive iterations, the LSTM gradually expands the fragment into a small molecule.  For instance, from 

'O=S2(=O)NC(=O)c1cccc(c12)G', it might predict next character like 'O=S2(=O)NC(=O)c1cccc(c12)CG', and in next step 

it will generate 'O=S2(=O)NC(=O)c1cccc(c12)CCG', and grows the molecule in accordance with the model's guidance.  

This process continues until it either encounters the End of Sequence (EOS) stop code or reaches the specified 

maximum length of the token sequence (max 74). We sampled 500 SMILES strings from 10 iterations from the pre-

trained model and optimized by the fine-tuned model. 93% of the generated hits were valid and bearing the starting 

fragment. The fragment growing experiment was repeated twice for each of the 6th and 7th positions of the core.  

https://doi.org/10.26434/chemrxiv-2024-rw78s ORCID: https://orcid.org/0000-0002-4455-4713 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-rw78s
https://orcid.org/0000-0002-4455-4713
https://creativecommons.org/licenses/by-nc-nd/4.0/


[Public]  February 9, 2024 

   

 

 

Figure 7: AI-driven fragment expansion using a starting co-crystal fragment occupying the oxyanion sub-site (PDB 5RSP). For a 

given co-crystal fragment, 6th and 7th positions of the core are suitable for expansion. For the 1st iteration, the sentinel token ‘G’ 

added to 6th position, which dictates the direction of expansion towards the adenine site, guiding the LSTM model. The fragment 

exit vector is represented as an arrow, providing insights into the extension process. This process will be repeated by defining 

sentinel token ‘G’ to the 7th position of the core, to generate ideas from that position. From top hits, the best two Enamine results 

are highlighted here.  

A second example is pyrazine-2carboxamide (PZA), which occupied the adenine sub-site of Mac1 (PDB ID of 5RTM) 

and could expand into the oxyanion sub-site as shown in Figure 8. The binding mode indicated that the carboxamide 

moiety of this fragment forms hydrogen bonding with Asp22 and Val24, and the pyrimidine ring π-π stacks with 

Phe156. Based on the pose and orientation, we chose the 5th and 6th positions of the pyrimidine ring as suitable for 

further exploration. As mentioned in the above example, the SMILES of PZA is modified with a token ‘G’ added to 

specify the position (either 5th or 6th) to grow the fragment further. For each experiment, 500 suggestions were 

generated, and this process was repeated for each of the positions of interest explored.  

We repeated these fragment growing experiments on each of the nine selected fragments. In each iteration, 500 

SMILES were sampled using the pre-trained model then transfer learning techniques applied to refine the hits using   

fine-tuned model. Almost 90% of the generated hits retained the initial fragment and were valid SMILES. We 

conducted a visual analysis; we selected 5-10 molecules from each experiment. 
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Figure 8: AI-driven fragment expansion using the co-crystal fragment occupied the adenine sub-site (PDB : 5RTM). For a given   

co-crystal fragment, 5th, and 6th positions of the core are suitable for expansion. For the 1st iteration, the sentinel token ‘G’ added 

to 6th position, which dictates the direction of expansion towards the adenine site, guiding the LSTM model.  The fragment exit 

vector is represented as arrow, providing insights into the extension process. This process will be repeated by defining sentinel 

token ‘G’ to the 5th position of the core, to generate ideas from that position. From top hits, the best two Enamine results are 

highlighted here. 

Because these molecules are new and not necessarily commercially available (or even stable and/or synthetically 

accessible), they served as templates to search the Enamine REAL database for structurally similar molecules. The 

7,865 AI-inspired hits were then subjected to a wide range of filters (such as., Drug-like, PAINS, and toxic alerts), and 

cross-checked for duplicates with knowledge-based hit list. 

3.3 Fragment linking using knowledge driven approach: 

As part of our molecular design approach, our team also implemented knowledge-based fragment merging 

strategies. To select the appropriate fragments, we followed a set of criteria that included 1) identifying co-crystal 

fragments that are at a suitable distance from each other; 2) identifying linkers with the right geometry to connect 

them; and 3) ensuring the generated molecule maintains the interactions between the fragments and the protein. 

Of the original twenty, six of the thirteen adenine co-crystal fragments and five of the seven oxyanion co-crystal 

fragments were selected for this study. Figure 9 illustrates the 2D-structures of the fragments that were selected for 

this study. Figure 10 illustrates the knowledge-based fragment merging process using quinolin-3-amine (4FS) which 

binds to Mac1's adenosine sub-site (PDB: 5RV4) and 3-hydroxy-2-methylbenzoic acid (PF0), which binds to Mac1’s 

oxyanion sub-site (PDB ID of 5RTC). The superposition of these two crystal structures revealed that the 6th and 7th 

positions of the quinoline moiety of the 4FS is proximal to the benzoic acid moiety of the PF0, suggesting fragment 

merging. Using chemical intuition and expertise, we connected these fragments using common medicinal chemistry 

linkers and generated potential hits. These included commonly used linkers in medicinal chemistry such as amines, 

aliphatic linkers, carboxamides, and sulfonamides. Each fragment was explored for every possible combination and 

permutation to generate potential hits, using this strategy. 
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Figure 9: Co-crystallized fragments selected for knowledge-driven fragment merging approach. Notably, a majority of the 

shortlisted adenine co-crystal fragments contain an heteroaryl with one acceptor and one donor group in common. These are 

distinctly color-coded for clarity: Acceptor features in red, Donor features in blue, and aromatic features in orange. 

The manually generated ideas (28) served as templates to query the Enamine REAL database, and the resulting hit 

list (9,135) were compiled with AI-inspired hits, remove duplicates, and resulting 12,800 compounds were processed 

and submitted to docking. Figure SF2 illustrates the process of selecting matching hits, referred to as AI-inspired hits, 

identified by using AI-generated hits as templates.  

 

Figure 10: 2D-interaction diagram showed the selected crystal structures of Mac1 domain, one with complexed co-crystal with 
adenine site (PDB: 5RV4), and the other with oxyanion site (PDB: 5RTC). Another 2D-interaction diagram revealed the distances 
between both fragments as per the binding modes, interactions, and possible linking positions. Following this step, MedChem 
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linkers were used to connect both fragments, taking into account the positions in the fragment, the size of the linker, and the 
distance between them. The concepts generated from this process served as templates for our subsequent enamine search. 

3.4 Hit list creation and processing: 

In accordance with CACHE3 guidelines, we ensure our selected compounds from the Enamine REAL database met 

property cutoffs (logp </= 3.5 and mol weight < 400 da). Using our query templates (from the two approaches) for 

searching the Enamine REAL database, our strategy included structure searches for exact matches, substructure 

searches (where R groups were removed from molecules to find analogs or the same compound), and similarity 

searches with a 40% similarity threshold.  The Enamine search found a total of 17,588 hits. Further processing was 

carried out to evaluate drug-like properties, and PAINS (Pan-Assay Interference Compounds) alerts. The resulting list 

of 12,800 compounds was further processed for docking studies. 

3.5 Docking and compound selection: 

For docking studies, we selected Mac1 crystal structure (PDB: 5SQJ), with a resolution of 1.05 Å and complexed with 

a small molecule inhibitor and top active Z5021668601 (with an IC50 of 0.5 µM). We have followed the same docking 

protocol as we used in the first two CACHE challenges.34,35 We prepared the protein for docking with PREPARE and 

PROCESS—software within our drug discovery platform FORECASTER 26.  

The library of 12,800 compounds were then processed with CONVERT (adding hydrogens, 2D to 3D conversion) and 

SMART (assignment of atom types, charges, etc.), all part of FORECASTER.  We then split the library into 13 files to take 

advantage of our supercomputer parallelization and carried out the virtual screening with FITTED. Once complete, we 

collated the results and ranked the compounds by FITTED score. We then extracted the top 300 molecules for visual 

inspection.  

3.6 Selection Process:  

We classified the top 300 poses into different bins (“yes”, “no”, and “maybe”) according to several criteria: 1) overall 

fit of the ligands in the binding site, 2) occupancy of the correct sub-pockets and overlap with the relevant co-

crystallized fragments, 3) relative ligand strain, and 4) number and type of fulfilled and unfulfilled interactions, e.g., 

hydrogen bonding, π-stacking, van der Waals interactions. It is important to note that this process is subjective and 

dependent on the experience (and biases) of each of the team members involved. While this may be seen as a 

limitation to the discovery of truly novel compounds, it has been shown to be an effective methodology.36 To achieve 

a “yes” status, a compound must have passed a simple majority vote. For a “maybe”, the decision would have been 

split. Everything else was a “no”. Exceptionally, we would assign a “yes” if one member of our team decided to 

“champion” it. Each member of the team was allowed to champion a maximum of one compound. 
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Figure 11: Left panel: predicted binding pose of PV-002833638168 in the crystal structure of the SARS-CoV-2 NSP3 

macrodomain (PDB ID 5RTC), displayed in surface mode. Various sub-sites on the macrodomain surface are distinctly color-

marked as described in Figure 4. Right panel: key interacting amino acids displayed as sticks, with the ligand (PV-002833638168) 

shown in ball-and-stick. 

As an example, AI inspired hit PV-002833638168 (categorized in the “yes” bin) establishes key interactions (Figure 

11). It retains the essential hydrogen bonding interactions with Asp22 from adenine site, and Phe156 from the 

oxyanion sub-site. Following this voting system, we selected 150 initial compounds (100 from our generative AI 

strategy and 50 from knowledge-based design). Following the CACHE3 guidelines, which include considerations like 

compound cost, availability, drug-like properties, PAINS alerts, delivery timelines, we refined our selection to 91 

virtual hits, which were then forwarded for procuring and screening.  

4. Summary and Outlook 

In our pursuit to design competitive small molecule inhibitors for the Mac1 domain of NSP3, we embarked on two 

distinct approaches: AI-guided fragment expansion and knowledge-based fragment merging, specifically targeting 

the adenine and oxyanion sub-sites. These approaches purposefully led to molecules incorporating known binding 

fragments but not commercially available. These molecules were used as templates to identify similar molecules 

available for purchase. These analogues were then docked to Mac1 and through a consensus scoring methodology 

that incorporates the FITTED docking score, a visual score, and an interaction pattern, we identified 150 molecules, 

91 of which were acquired for experimental assessment.  

5. Methodology: 

 

5.1 AI-guided Generative models 

A recurrent neural network (RNN) is a type of neural network that is widely used for natural language processing 

tasks from simple language processing to complex cheminformatics problems. RNNs were used as autoencoders 

pre-trained to capture the structures (represented as SMILES strings) of 1,486,000 bioactive small molecules (covers 

around 14,850 biological targets) retrieved from ChEMBL30 (KD, Ki, EC50, IC50 < 1 μM).25   This pre-trained model 
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comprises two LSTM layers, each possessing a hidden state vector of size 256, which is regularized using dropout (as 

shown in Figure 5). These LSTM layers lead to a dense output layer complemented by a softmax activation function. 

The LSTM layers receive input in the form of a one-shot encoded sequence derived from a molecule's SMILES string, 

segmented into tokens. Each SMILES string initiates with a 'G' token (representing "go") and concludes with an 'E' 

token, signifying the end of the string. Padding with an 'A' token equalizes SMILES sequence lengths for RNN input, 

enabling uniform batch processing and streamlining model training. Post-training, these tokens are discarded, 

permitting the RNN to generate variable-length molecular structures. During the character sampling process, we 

integrated an additional temperature parameter into the softmax function. This pre-trained model can generate 

random molecules that resemble the chemical space of CHEMBL, independent of any specific target or biological 

endpoint. Generated hits were rigorously evaluated and benchmarked using molecular sets (MOSES),37  which 

assesses the quality (novelty, and validity) of generated SMILES. MOSES also checks for drug-likeness, synthetic 

feasibility, and compliance with medicinal chemistry standards, offering a comprehensive measure of the molecules' 

potential as drug candidates. 

Our deep learning models were implemented using TensorFlow (v2.2, www.TensorFlow.org) in Python (v3.7, 

www.python.org). RDkit (www.rdkit.org) was extensively employed for cheminformatics activities, including 

property calculations, SMILES validation, molecular fingerprint calculations, and molecular clustering calculations. 

The Jupyter notebook (www.anaconda.org) facilitated a detailed analysis of the generated SMILES strings. 

5.2 Rigid Docking 

To dock molecules, Fitted (Flexibility Induced Through Targeted Evolutionary Description) uses a combination of 

matching algorithm and enhanced genetic algorithm.38  The initial population of binding modes, which is optimized 

by the genetic algorithm, is generated using a matching algorithm. The latter is matching ligand pharmacophoric 

groups (e.g., phenyl = hydrophobic group, R-NH2 – hydrogen bond donor) with protein interaction sites, which are 

generated by PROCESS. For docking studies, shortlisted Mac1 crystal structure (PDB: 5SQJ) was downloaded from 

protein database using PREPARE module. PREPARE module cleans up the pdb files, then adds hydrogens, and optimizes 

their positions. For our study, we ignored the additional options to add particle waters and generate side chain 

conformations (for flexible docking studies). Prepared protein and ligand files are then saved as a .mol2 files and 

processed using PROCESS to assign protein atom types and charges. The ensemble of spheres cavity of the binding 

site was centered in the cavity and did not exceed 28 Å long. The grid resolution was 1.5 Å. Each ligand was charged 

using Sybyl Gasteiger-Huckel charges and processed using SMART. Large grids of spheres were prepared as well as 

constraint files. Default docking settings in FITTED were adjusted to increase the number of runs to three per molecule 

and three poses per molecules exported for subsequent analysis. PREPARE, SMART, and FITTED parameter files, as well 

as docking poses for the shortlisted 150 hits, are available for all users to replicate study and retrospective analyses. 
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