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Abstract

Luminescent organic semiconducting doublet-spin radicals are unique and emergent

optical materials because their fluorescent quantum yields (Φfl) are not compromised

by the spin-flipping intersystem crossing (ISC) into a dark high-spin state. The multi-

configurational nature of these radicals challenges their electronic structure calculations

in the framework of single-reference density functional theory (DFT) and introduces

room for method improvement. In the present study, we extended our earlier de-

velopment of ML-ωPBE [J. Phys. Chem. Lett., 2021, 12, 9516], a range-separated

hybrid (RSH) exchange–correlation (XC) functional constructed using the stacked en-

semble machine learning (SEML) algorithm, from closed-shell organic semiconducting

molecules to doublet-spin organic semiconducting radicals. We assessed its performance

for a new test set of 64 doublet-spin radicals from five categories while placing all pre-

viously compiled 3,926 closed-shell molecules in the new training set. Interestingly,

ML-ωPBE agrees with the first-principles OT-ωPBE functional regarding the predic-

tion of the molecule-dependent range-separation parameter (ω), with a small mean

absolute error (MAE) of 0.0197 a−1
0 but saves the computational cost by 2.46 orders

of magnitude. This result demonstrates an outstanding domain adaptation capacity of

ML-ωPBE for diverse organic semiconducting species. To further assess the predictive

power of ML-ωPBE in experimental observables, we also applied it to evaluate absorp-

tion and fluorescence energies (Eabs and Efl), using linear-response time-dependent

DFT (TDDFT) and compared its behavior with nine popular XC functionals. For

most radicals, ML-ωPBE reproduces experimental measurements of Eabs and Efl with

small MAEs of 0.299 and 0.254 eV, only marginally different from OT-ωPBE. Our work

illustrates a successful extension of the SEML framework from closed-shell molecules

to doublet-spin radicals and will open the venue for calculating optical properties for

organic semiconductors using single-reference TDDFT.
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Introduction

An organic semiconducting doublet-spin radical can stabilize its unpaired electron through

the delocalized π-conjugation and exhibit a non-conventional non-Aufbau configuration where

the singly occupied molecular orbital (SOMO) is lower-lying than the highest (doubly) oc-

cupied molecular orbital (HOMO).1–10 Such a long-lived open-shell configuration and the re-

sulting compelling physicochemical characteristics, especially controllable optical properties

between the doublet ground (D0) and excited states (Dn≥1), make a radical like this a promis-

ing functional material for emergent scientific fields. For example, in photothermal therapy

(PTT), a radical anion like a supramolecular complex of benzodithiophene-fused perylene

diimide (BPDI) and cucurbit[7]uril (CB[7]) absorbs biologically transparent near-infrared

(NIR) light and dissipates the photon energy as heat.11–15 In an organic light-emitting diode

(OLED), the D1 state can, in principle, reach a 100% fluorescent quantum yield (Φfl) because

it does not favor the intersystem crossing (ISC) into a high-spin dark state.4,7,16–18

The open-shell character of such an organic semiconducting radical makes its ground

and excited state electronic structures challenging to calculate.19 Density functional the-

ory (DFT) based multiconfigurational approaches can be physically correct and reliable for

this purpose, including complete-active-space density functional theory (CAS-DFT),20–22

multiconfiguration pair DFT (MC-PDFT),23–25 multiconfigurational short-range density-

functional theory (MC-srDFT),26–28 and multistate density functional theory (MSDFT).29–31

However, applications of these multiconfigurational DFT approaches have been limited to

small and simple systems because they are less user-friendly in terms of the difficult con-

struction of an appropriate active space without prior knowledge of the electronic structure

and the expensive computational cost (≃ NactN
4
orb) for an organic semiconductor species

with a typical size.32–34

The low computational cost (≃ N3
orb) and the black-box character of regular single-

reference DFT and linear-response time-dependent DFT (TDDFT) make themselves ap-

pealing again for organic semiconducting radicals despite the above-mentioned theoretical
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challenges and insufficient reliable benchmarks. DFT and TDDFT can generate ground

and/or excited state electronic structures of these radicals to a desired accuracy after careful

development and calibration of the exchange–correlation (XC) functional.35–44 Head-Gordon

and coworkers performed systematic studies for excited state properties of polycyclic aro-

matic hydrocarbon (PAH) radical ions37,45–49 using original TDDFT and its simplified vari-

ant with the Tamm–Dancoff approximation (TDA)50 along with common functionals like

BLYP51,52 and B3LYP.51–53 They found that TDDFT and TDDFT/TDA both reproduced

experimental excited state energies with errors smaller than 0.3 eV when the basis set was

reasonably large, despite inexact XC functionals and adiabatic approximations and the in-

ability to treat double excitations in a single-reference framework.54,55 They also concluded

that TDDFT/TDA outperformed TDDFT in capturing correct states by overcoming the or-

bital instability problem existing for some radicals.50,56–60 They further assigned the strongest

absorption of each radical to involve its SOMO.

Other researchers, such as Joblin,38,61–63 Jacquemin,40 Grimme,64,65 Furche,66–68 and

Allouche,69 performed similar benchmark analyses on organic semiconducting radicals us-

ing DFT and TDDFT and obtained essential insights into their electronic structures. All

these DFT-based studies demonstrated the advantage of using a global hybrid functional

(GH)53,70–72 or a range-separated hybrid (RSH) functional73–84 with molecule-dependent pa-

rameters for organic semiconducting radicals. This is due to the necessity to balance the

accuracy of the electronic density between the Hartree–Fock (HF) exchange functional and

a (semi)local XC functional like local-density approximation (LDA),77,85 Becke88 exchange

with “one-parameter progressive” correlation (BOP),86,87 or Perdew–Burke–Ernzerhof (PBE).88–90

One outstanding example of a molecule-dependent RSH functional was developed by

Kronik, Baer, and their coworkers based on the idea of optimal tuning (OT) based on Koop-

mans’ theorem.91–97 They utilized the range-separation parameter (ω), which characterizes

the inverse distance at which the functional transitions from a (semi-)local formula in the

short range to the HF formula in the long range, appearing in the separation of the Coulomb
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operator

1

|r− r′|
=

1− erf(ω|r− r′|)
|r− r′|︸ ︷︷ ︸
short range

+
erf(ω|r− r′|)

|r− r′|︸ ︷︷ ︸
long range

(1)

They optimized the value of ω by minimizing the metrics of

J2(ω) = [εHOMO(ω) + I(ω)]2 + [εLUMO(ω) + A(ω)]2 (2)

However, this non-empirical, first-principles OT protocol is expensive for large organic semi-

conducting compounds because it can cost twenty or more converged SCF calculations to

determine a single value of ω without implementing the analytical gradient. In our previous

study, we spent an average of 41,940 seconds of CPU time to optimally tune ω for each

molecule in our training set.84

Motivated by the urgent demand to efficiently determine the molecule-dependent value

of ω, as well as the rapid advancement in state-of-the-art machine learning (ML) models, we

designed a new RSH functional referred to as ML-ωPBE.84 Just like OT-ωPBE, we utilized

the same XC formula as LC-ωPBE with an arbitrary value of ω and optimized the value of

ω based on a stacked ensemble machine learning (SEML) algorithm98–103 and a composite

molecular descriptor (CMD).104–109 We systematically trained and benchmarked ML-ωPBE

using 3,926 closed-shell organic semiconducting molecules.84,110–115 The value of ω generated

by well-trained ML-ωPBE (ωML) agreed perfectly with its counterpart from OT-ωPBE (ωOT).

The mean absolute error (MAE) was as small as 2.5% of the average ωOT (⟨ωOT⟩), but the

computational cost was as low as 0.22%. We also compared ML-ωPBE-predicted optical

properties with OT-ωPBE and many popular functionals,51–53,70–72,74,79,88,89,116 and found

that ML-ωPBE reproduced the accuracy of OT-ωPBE and outperformed everyone else. It

is worth noticing that the test set in that study included some “external” molecules with no

structural analogs present in the training set.83,117–119 Successful predictions for these external

molecules indicate the advantages of our SEML model and ML-ωPBE functional that were
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seldom observed in other ML models and XC functionals, referred to as a substantial capacity

in transferability or domain adaptation.

In the present study, we will assess the capacity in domain adaptation for the SEML

algorithm and the ML-ωPBE functional from closed-shell organic semiconducting molecules

to doublet-spin organic semiconducting radicals (Figure 1). We will achieve this goal by

benchmarking its predictive power in the optimal value of ω and vertical absorption and

fluorescence energies (Eabs and Efl) between D0 and D1 states. We will show that organic

semiconducting radicals can adopt the success of ML-ωPBE.

Closed-
Shell

Doublet-
Spin

Source

Target

Accurate 
Prediction of ω in 

ML-ωPBE

Potential 
Challenge

Domain Adaption

LARS

Base 
Learners

Meta 
Learner

LASSO_1

LASSO_2

SVM

RF

LightGBM

GBRT

XGBoost

KRR

Figure 1: Architecture of the SEML model for ML-ωPBE and potential challenges in domain
adaptation from closed-shell molecules to doublet-spin radicals.

Methods

Training and Test Sets

Our training set combined training and test sets from the initial development of ML-ωPBE,84

and includes a total of 3,926 organic semiconducting molecules from six open-source and

home-made datasets, including 1,941 from Harvard Clean Energy Project (CEP),110,111 904

from DeepChem,112 431 from ChemFluor,113 337 from Harvard Organic Photovoltaic 2015

(HOPV15),114 84 from uncompiled research of Aspuru-Guzik and coworkers,115 and 229 from

our compilation.84 We also compiled a brand-new test set with 64 charge-neutral, doublet-
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spin radicals. In particular, we selected 19 carbon-based radicals (C-1 through C-19),120–133

2 polyaromatic hydrocarbon-based radicals (PAH-20 and PAH-21),134,135 13 nitrogen-based

radicals (N-22 through N-34),136–144 6 nitrogen-oxygen-based radicals (NO-35 through NO-

40),145–150 and 8 aryl oxygen-based radicals (ArO-41 through ArO-48)151–158 to evaluate their

Eabs values. We also selected 16 carbon-based radicals (C-49 through C-64)17,122,127,159–165 to

evaluate their Efl values. We opted to use different sets of radicals for evaluating Eabs and

Efl because we wanted to reflect their most pertinent applications in electronic and biological

areas as well as the availability of reliable experimental measurements. In the Supporting

Information (SI), we will provide the Cartesian (XYZ) coordinates associated with optimized

geometries of these radicals for D0 and D1 states, as well as their experimental measurements

of Eabs or Efl and optimal values of ωOT and ωML. In the following sections, we will show

that the absence of radical species from the training set does not undermine the predictive

power of ML-ωPBE in the value of ω, electronic structures, and optical properties.

Composite Molecular Descriptor

To represent the structural and electronic configurations for all species in the training and

test sets, we constructed a CMD following the same procedure as the previous study.84

This CMD is a vector that collects information from a few computationally low-cost molec-

ular properties, including combined molecular fingerprints (CMFs),104–106 physical organic

descriptors (PODs),104 and semi-empirical electronic structure properties (ESPs) from tight-

binding method GFN2-xTB developed by Grimme and coworkers.107–109 Unlike closed-shell

molecules in the training set, we specified the number of unpaired electrons as one for every

doublet-spin radical in the test set. This tight-binding calculation turned out to be the

rate-determining step for acquiring ωML from well-trained ML-ωPBE.84
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Stacked Ensemble Machine Learning

Our “top-down” SEML algorithm, as described in detail in Figure S1 and Algorithm 1 in SI,

implemented the stacked generalization of eight successful descriptor-based regression models

(or base learners), including least absolute shrinkage and selection operator (LASSO 1 and

LASSO 2, differing in molecular descriptors),166 random forest (RF),167 gradient boosted

regression trees (GBRT),168 eXtreme Gradient Boosting (XgBoost),169 light gradient boost-

ing machine (LightGBM),170 kernel ridge regression (KRR),171 and support vector machine

(SVM).172 We selected these regression models rather than more popular neural networks

(NNs) because they are less expensive, less data-demanding, and interestingly, more potent

for smaller datasets of larger organic semiconducting species.173–180 Each base learner gener-

ated a non-linear quantitative relationship between the CMD and the optimal ωML. We also

used the least angle regression (LARS)181 method as the meta learner to collect and analyze

the above-mentioned quantitative relationships from all base learners and provide the final

prediction of ωML. Earlier studies demonstrated that stacked generalization is more power-

ful and accurate than every single base learner alone.84,98–103 The source code and database

associated with the present study have been uploaded to the GitHub repository of the Lin

Group.182

Computational Details

All semi-empirical tight-binding calculations as part of CMDs were performed using GFN2-

xTB developed by Grimmes and coworkers and the STO-3G minimal basis set in the xTB

package,107–109 with radical structures generated using RDKit183 based on their simplified

molecular-input line-entry systems (SMILES). All first-principles electronic structure calcu-

lations, including those using DFT, TDDFT, and complete active space self-consistent field

(CASSCF), were performed using the developmental version of the Q-Chem 6.1 package.184

Based on RDKit-generated radical structures as initial guesses, D0 structures were optimized

using ground state DFT85,185 at the level of PBE070,71/6-311+G(d), and D1 structures were
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optimized using TDDFT186–188 at the level of CAM-B3LYP116/6-311+G(d). PBE0 and

CAM-B3LYP were selected for geometry optimizations of D0 and D1, respectively, because

of their proven superior performance to other functionals in earlier benchmark studies for

Eabs and Efl, respectively.
189–191 Values of ωOT were optimized using the golden section search

algorithm,192 and those of ωML were generated directly using the SEML model.

Using ML-ωPBE and correct atomistic structures, optical properties Eabs and Efl were

calculated based on equations

Eabs = E(D1|D0)− E(D0|D0) (3)

Efl = E(D1|D1)− E(D0|D1) (4)

These energies were compared with those generated by OT-ωPBE as well as eight conven-

tional functionals in the assessment, including LC-ωPBE (ω = 0.200 and 0.300 a−1
0 ),79,80

CAM-B3LYP (ω = 0.330 a−1
0 ),116 ωB97X-D3 (ω = 0.250 a−1

0 ),74 M06-2X,72 B3LYP,51–53

PBE0,70,71 and PBE.88,89 Across all other analyses of electronic structures, 6-311+G(d) and

the original version of TDDFT were used by default for all DFT-based calculations un-

less otherwise stated, while 6-311G(d) was employed for CASSCF calculations to reduce

the memory usage. Natural orbitals (NOs) were generated from CASSCF calculations as

benchmarks for DFT-calculated frontier MOs. They were obtained as eigenvectors of the

CASSCF-generated one-particle density matrix (P) and designated based on ranked occu-

pation numbers (eigenvalues) of P.

The switching/Gaussian implementation193,194 of state-specific,195–197 conductor-like po-

larizable continuum model (C-PCM)198–200 was used to model the solvent effect in all DFT-

based calculations. For each radical in question, the ground state version of C-PCM was

employed for the geometry optimization of D0 and the single-point calculation of Eabs with

the slow-fast charge separation performed at the solvent-equilibrium state of D0 (Marcus par-

tition). In particular, the non-equilibrium perturbative scheme was adopted for Eabs. On the
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other hand, the equilibrium excited state version of C-PCM was utilized for the geometry op-

timization of D1 and the single-point calculation of Efl with the slow-fast charge separation

performed at the solvent-equilibrium state of D1.
196,197,201,202 Solvents reported by corre-

sponding experimental measurements from which our test set was compiled17,120–143,145–164

were used in these calculations and their static and optical dielectric constants (εr and ε∞)

were obtained from the CRC Handbook203 and are provided in SI.

Results

Domain Adaptation

0 . 0 5 0 0 . 1 0 0 0 . 1 5 0 0 . 2 0 0 0 . 2 5 0 0 . 3 0 0 0 . 3 5 0 0 . 4 0 0
0 . 0 0 0
0 . 0 0 5
0 . 0 1 0
0 . 0 1 5
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�  ( a − 10 )

0 . 3 0 0

0 . 1 9 1

� M L

0 . 1 7 8
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Figure 2: Distributions of ωML and ωOT (a−1
0 ) for all doublet-spin radicals from the test

set, with average values ⟨ωOT⟩ = 0.178 a−1
0 and ⟨ωML⟩ = 0.191 a−1

0 labeled, as well as
ω = 0.300 a−1

0 used in LC-ωPBE.

In the present section, we will evaluate the performance of ML-ωPBE from a few different

aspects but will prioritize its potential in domain adaptation. We will confirm a high ca-

pacity of ML-ωPBE on this aspect by showing that the non-linear quantitative relationship

between the CMD and ωML can be extrapolated from the domain of closed-shell organic

semiconducting molecules to that of doublet-spin organic semiconducting radicals.

Figure 2 shows broad distributions of ωOT and ωML between 0.120 and 0.320 a−1
0 , as

generated for the entire test set of radicals. These lineshapes are similar to the training

set,84 and indicate the necessity to implement a molecule-dependent value of ω for any organic

semiconducting radical rather than selecting a universal value if reliable electronic structures
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Figure 3: Comparison between ωML and ωOT for all radicals from the test set, with signed
errors (SEs) ∆ω = ωML − ωOT = 0, ±⟨|∆ω|⟩, ±2 ⟨|∆ω|⟩ labeled.

are needed. For example, the typical choice of ω = 0.300 a−1
0 from LC-ωPBE79 is doomed

to failure to describe our radicals because the majority of ωML and ωOT values are far lower

than 0.300 a−1
0 . In addition, average values of ⟨ωOT⟩ = 0.178 a−1

0 and ⟨ωML⟩ = 0.191 a−1
0 are

even smaller than the training set (⟨ωOT⟩ = 0.206 a−1
0 ), suggesting that doublet-spin radicals

exhibit more diffusion and delocalized electronic structures in general.

Figure 3 compares ωML to ωOT for all radicals from the test set and illustrates an excellent

agreement. If we define the error of ωML to be the difference ∆ω = ωML−ωOT, the comparison

shows a small mean signed error (MSE) of ⟨∆ω⟩ = 0.0139 a−1
0 and a small MAE of ⟨|∆ω|⟩ =

0.0197 a−1
0 , as well as a narrow distribution of ∆ω. We found |∆ω| < ⟨|∆ω|⟩ for 33 out of the

64 radicals and ⟨|∆ω|⟩ < |∆ω| < 2 ⟨|∆ω|⟩ for other 27. Compared to the previous study on

closed-shell molecules,84 the MAE associated with doublet-spin radicals is more than three

times as large. However, we can still claim the successful domain adaptation of ML-ωPBE

because (1) this MAE value is only 11.1% of ⟨ωOT⟩ and 10.3% of ⟨ωML⟩ and turns out not

to significantly affect the predictive power of ML-ωPBE in further analyses of electronic

structures and optical properties, and (2) there are only molecules but no radicals in the

current training set. Regarding the computational complexity, ML-ωPBE spent an average
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of 221 seconds to generate ωML for each radical, while OT-ωPBE consumed an average of

63,442 seconds to evaluate ωOT, arriving at a substantial save of 99.7%. This result proves

that ML-ωPBE is as successful for radicals as for molecules, with a similar capacity to

generate ω to OT-ωPBE but a considerably higher efficiency.

Chemical Space

-100

-50

0 50 100

-100

-50

0

50

100

(a) ωOT

-100

-50

0 50 100

-100

-50

0

50

100

ωOT(b)

Figure 4: t-SNE results on closed-shell molecules (colorful spheres), as well as doublet-spin
radicals (black cubes) along with their hydrogenated counterparts (red tetrahedrons), are
described using (a) the composite ECFP4 (Morgan)105,204 and PaDEL205 fingerprint and (b)
the simple ECFP4 fingerprint. The color bar represents the scale of ωOT.

To explore the origin behind the successful domain adaptation of ML-ωPBE, we will vi-

sualize the high-dimensional CMD and analyze the chemical space occupied by training and
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Figure 5: Comparison in ωML between all radicals from the test set and their hydrogenated
counterparts.

test sets by illustrating the t-distributed stochastic neighbor embedding (t-SNE)206 diagram

with an embedded space of two (Figure 4). To extract important molecular representation

features and validate the advantage of a CMD, we compared the performance of a simplified

CMD constructed using ECFP4 (Morgan)105,204 and PaDEL205 fingerprints (Figure 4(a)),

and the simple ECFP4 fingerprint (Figure 4(b)). Our t-SNE results demonstrate obviously

that selected features of radicals in the test set are highly diversified as long as the chemical

space is described using an appropriate CMD, and their ranges significantly overlap with

molecules from the training set. This observation partially deciphers the cause of a suc-

cessful domain adaptation. Also, compared to the simple ECFP4 fingerprint, the t-SNE

diagram given by the simplified CMD from ECFP4 and PaDEL fingerprints shows a more

substantial although not perfect natural clustering, validating a stronger capacity of CMD

in differentiating species and indicating room for improvement in conventional molecular

representations.207–211

As a further validation of the overlap in the chemical space between training and test

sets, Figure 5 compares the value of ωML between every radical in the test set (A·) and its

closed-shell hydrogenated counterpart (with an additional hydrogen atom attached to the

13

https://doi.org/10.26434/chemrxiv-2023-zdh13-v5 ORCID: https://orcid.org/0000-0003-3271-5345 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-zdh13-v5
https://orcid.org/0000-0003-3271-5345
https://creativecommons.org/licenses/by-nc-nd/4.0/


C-7 N-23

ArO-42

C-13

N
S

Cl

Cl

O

AIE-16 TADF-8

C-6C-4

N

N

N
N

O

Cl
Cl

ClCl
Cl

Cl

Cl
Cl
Cl

Cl

N

Cl

Cl
Cl

Cl N

Cl Cl

ClCl ClCl

ClCl
Cl

Cl

Cl

Cl
Cl

Cl

Cl
Cl

Cl

Cl
ClCl

Cl
Cl

Cl

ClCl
Cl

Cl
Cl

Cl ClCl
Cl

Cl
Cl

ClCl
Cl

Cl

Cl
Cl

C-50 C-51

N

Cl

Cl

Cl
Cl

N

Cl
Cl

Cl
ClN

Cl
ClCl

Cl

Figure 6: Structures of representative molecules from our training set and radicals from our
test set.

radical site (AH) so that SOMO becomes doubly occupied). If we define their difference to

be ∆ω′(A) = ωML(AH) − ωML(A·), this comparison shows that they are very close to each

other with a tiny MAE of ⟨∆ω′⟩ = 0.00434 a−1
0 .

Figures S2 and S3 compare frontier α molecular orbitals (MOs) obtained from CASSCF

and ML-ωPBE for two representative radicals from the test set, N-23 and C-50, as well

as their hydrogenated counterparts, N-23-H and C-50-H. These two radicals show different

results, allowing us to interpret our observation from Figure 5. Like most radicals, the

remarkable similarity in MO configurations between N-23 and N-23-H (Figure S2) agrees

with the small ∆ω′ = +0.002 a−1
0 and proves that molecular features extracted by our CMD

and SEML model are so robust that similar electronic structures lead to similar predictions

of ωML. For a small portion of the test set, like C-50 (∆ω′ = +0.029 a−1
0 , Figure S3), the

large deviation is caused by a significant change in electronic structures after the additional

hydrogen atom is introduced, usually a broken π-conjugation and an enhanced localization

of the original SOMO. The same character shift was also reflected in CMD, especially in the

tight-binding calculation.
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Impact of Range Separation Parameter

Before we systematically discuss the accuracy of ML-ωPBE on radical electronic structures,

we will take a short detour and examine the sensitivity of electronic structures to the choice

of ω using the formula of LC-ωPBE, as motivated by the insufficient benchmark of RSH

functionals on open-shell systems. To facilitate this discussion we selected two representative

molecules from the training set, including AIE-16 with a locally excited (LE) singlet first

excited state (S1)
84,117 and TADF-8 with a charge transfer (CT) S1 state,84,119 as well as

three representative radicals from the test set, including C-6 with a primarily CT D1 state,

C-7 with a primarily LE D1 state, and N-23 with a partial CT D1 character (Figure 6).
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Figure 7: DFT-evaluated energies (hartree) of frontier α HOMO, SOMO, and LUMO for
C-6 and C-6+ as functions of ω (a−1

0 ) at the LC-ωPBE/6-311+G(d) level.

Figures 7 and S4 illustrate configurations of frontier MOs for α electrons associated

with C-6, C-7, and N-23. They were all evaluated using LC-ωPBE with various values of

ω between 0.050 and 0.400 a−1
0 . To understand and demonstrate the change in electronic

structures before and after introducing the unpaired electron to the SOMO, we also calcu-

lated orbital configurations of their corresponding closed-shell cations, namely C-6+, C-7+,

and N-23+. Figures S5 through S11 provide ω-dependent leading natural transition orbital
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(NTO) pairs associated with their D0 → D1 transitions. In addition to an expected energy

decrease from an unoccupied SOMO to its occupied counterpart, C-6 also exhibits a swapped

energy order between HOMO and SOMO, or, in other words, a non-Aufbau configuration,

after involving the unpaired electron. N-23 presents a mixing between nearly degenerated

HOMO−1 and HOMO. For both radicals, the β HOMO → SOMO transition dominates the

D0 → D1 transition because the corresponding energy gap is smaller than the α SOMO →

LUMO transition. Limited spatial overlaps within leading NTO pairs validate their CT and

partial-CT characters. C-7, on the other hand, maintains its Aufbau configuration, but its

D0 → D1 transition gives a mixture of α SOMO → LUMO and β HOMO → SOMO because

of similar energy gaps. Significant spatial overlap within each of the NTO pairs confirms its

LE character. These results endorse the possibility of vital change in an orbital configuration

when its occupation number varies.
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 C - 7  ( 2 . 8 6  e V )
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Figure 8: TDDFT-evaluated values of Eabs (eV) as functions of ω (a−1
0 ) at the LC-ωPBE/6-

311G+(d) level with experimental values in parentheses.

Figure 8 exhibits TDDFT-evaluated values of Eabs as functions of ω for AIE-16, TADF-

8, C-6, C-7, and N-23, and presents bimodal trends. For AIE-16, TADF-8, and N-23, Eabs

monotonically increases with ω as expected, because the raised effective fraction of HF ex-

change over-localizes electrons and over-estimates Eabs.
212 Their leading NTO pairs (Figures

S5, S6, and S11) remain similar across the broad range of ω, except that the amplitude of CT-
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transition monotonically decreases with ω, and small contributions (probability < 0.05) from

other transitions may appear. On the contrary, C-6 and C-7 demonstrate non-monotonic

trends in Eabs. Their values of Eabs increase first with ω, peak at ω = 0.310 and 0.290 a−1
0 ,

respectively, and decrease afterward. In addition to the ever-increasing localization of MOs,

their NTO pairs (Figures S7 through S10) also shift to more mixed characters, starting

between 0.200 and 0.300 a−1
0 .

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 00 . 7
0 . 8
0 . 9
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1 . 2
1 . 3
1 . 4
1 . 5
1 . 6
1 . 7
1 . 8
1 . 9

〈S2 〉
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 C - 6  S 0   C - 6  S 1
 C - 7  S 0   C - 7  S 1
 N - 2 3  S 0   N - 2 3  S 1
 〈 S 2 〉  =  0 . 7 5

Figure 9: DFT- and TDDFT-evaluated values of ⟨S2⟩ associated with D0 and D1 as functions
of ω (a−1

0 ) at the LC-ωPBE/6-311+G(d) level, with ⟨S2⟩ = 0.75 labeled for a pure doublet
state.

Figure 9 presents total spin configurations (⟨S2⟩) associated with D0 and D1 states for

C-6, C-7, and N-23, and further rationalizes the mixing of NTOs. Although all radicals

in question present a universally increasing spin symmetry breakdown with an increasing

fraction of HF exchange, N-23 experiences no obvious shift from an expected pure doublet

(⟨S2⟩ = 0.75) in both D0 and D1, while D1 states of C-6 and C-7 experience more substantial

mixing from quartets (⟨S2⟩ = 3.75) or even higher spin states compared to D0. This notable

breakdown of excited state spin symmetry in C-6 and C-7 agrees with the ever-increasing

mixing character of NTO pairs and explains bimodal configurations for Eabs. The situation

is exceptionally serious for C-6 because its NTO pairs are more delocalized and CT-like.

All discussions herein and later reveal an important reason for optimizing ω for organic
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semiconducting radicals: intrinsic difficulty and instability embedded in RSH functionals

when applied to open-shell systems, making the delicate balance between over-delocalizing

PBE and over-localizing HF a key to success. In particular, excited-state electronic structures

of doublet-spin radicals are susceptible to the choice of ω, especially when they exhibit more

delocalized or CT characters.

Optical Band Gaps
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Figure 10: TDDFT-evaluated values of (a) MSEs (eV) and (b) MAEs (eV) of Eabs and Efl

at the ML-ωPBE/6-311+G(d) level for different categories of doublet-spin radicals from the
test set, in comparison with nine conventional XC functionals. Functionals demonstrating
the best performance and the second and third positions are labeled using gold, silver, and
bronze circles.

We will benchmark ML-ωPBE by examining its predictive power of Eabs and Efl for rele-

vant doublet-spin radicals in the test set in the framework of TDDFT. We calibrated the pre-

cision and accuracy of ML-ωPBE-generated Eabs and Efl in terms of their MSEs and MAEs

concerning experimental measurements, and compared these results with OT-ωPBE83,84 and

eight other popular XC functionals as described in Computational Details.51–53,70–72,74,79,80,88,89,116

We will provide statistics of MSEs and MAEs evaluated by TDDFT/6-311+G(d) in Figures

10 and 11 and Tables S1, S2, S9, and S10 in SI, and their counterparts from TDDFT/TDA/6-
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Figure 11: TDDFT-evaluated values of (a) MSEs (eV) and (b) MAEs (eV) of Eabs and Efl

at the ML-ωPBE/6-311+G(d) level for all relevant doublet-spin radicals from the test set, in
comparison with nine conventional XC functionals. Functionals that demonstrate the best
performance and the second and third positions are labeled using gold, silver, and bronze
circles.

311+G(d), TDDFT/6-311G(d), and TDDFT/TDA/6-311G(d) in Table S3 through S10.

From these results, we will draw a few conclusions about the outstanding performance of

ML-ωPBE.

To begin with, we will re-validate the above-mentioned high sensitivity of the accuracy of

Eabs and Efl to the choice of ω, especially for radicals with CT D1 states like C-6. As expected

earlier, the standard LC-ωPBE functional with ω = 0.300 a−1
0 shows a poor performance

for almost all categories of radicals regardless of the choice of the TDDFT variant and the

basis set, because 0.300 a−1
0 is significantly larger than ωML for all radicals except for the

smallest ArO-42 (Figure 6). On the other hand, Reducing ω to 0.200 a−1
0 , a value closer to

⟨ωOT⟩ = 0.178 a−1
0 and ⟨ωML⟩ = 0.191 a−1

0 , allows LC-ωPBE to improve its performance, but

it does not reach consistently comparable MAEs and MSEs with ML-ωPBE and OT-ωPBE

because a fixed value of ω does not describe electronic structures for all radicals equally

well. This situation becomes serious for any large π-conjugated C-based radical with a low

value of ω, such as C-6 (ωML = 0.160 a−1
0 ) for which LC-ωPBE calculated values of Eabs
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give errors of +0.741 and +0.946 eV from ω = 0.200 a−1
0 and 0.300 a−1

0 , respectively. This

result re-validates the necessity to apply a molecule-dependent ω to organic semiconducting

radicals.

Next, we will show that well-trained ML-ωPBE outperforms the majority of conventional

functionals and accurately reproduces experimental optical band gaps. Within the Eabs test

subset, ML-ωPBE achieves the second position for C-based radicals and the third for N-

and NO-based radicals (Figure 10). It also illustrates the overall top performance among

all functionals with the smallest total MSE of +0.015 eV and the smallest total MAE of

0.299 eV (Figure 11). This result is only marginally different from OT-ωPBE (−0.034 and

0.299 eV). Other popular functionals like B3LYP or ωB97X-D3 occasionally perform better

for some categories of radicals, but they never show a universal balance in accuracy (MAE)

and precision (MSE). We attribute the success of ML-ωPBE to the excellent agreement

between ωML and ωOT (Figure 3), as well as the delicate balance between PBE and HF

and between LE and CT. Further, this result re-affirms the robustness of ML-ωPBE among

distinct domains of chemical species. In particular, our CMD can precisely represent features

of these radicals, and our SEML algorithm can reliably construct a quantitative relationship

between the CMD and ωML.

The behavior of ML-ωPBE on the Efl test subset with all C-based radicals is also fairly

good. Its performance does not enter the top three positions, but presents a reasonable

agreement to OT-ωPBE and outperforms all RSH functionals (LC-ωPBE with ω = 0.200

and 0.300 a−1
0 , CAM-B3LYP, and ωB97X-D3) due to a greater choice of ω. Among non-

RSH functionals in comparison, two GH functionals B3LYP and PBE0, with contributions

from both HF and (semi-)local exchanges, universally present smaller MSEs and MAEs for

Efl. This behavior is probably due to the accidental error cancellation between D0 and D1

or between HF and the (semi-)local exchange in use, as well as the usage of ωML that was

determined from ground state properties to an excited state geometry.

To visualize and strengthen our analyses about the predictive power of ML-ωPBE in
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Figure 12: (a) SEs (eV) of TDDFT-evaluated Eabs for C-13 from various XC functionals
at the 6-311+G(d) level. (b) Ordering of DFT-evaluated frontier β MOs of C-13 that bear
leading characters of HOMO−1 (green), HOMO (black), SOMO (red), and LUMO (blue)
from the benchmark CASSCF (7,10) calculation. Functionals that demonstrate the best
performance and the second and third positions are labeled using gold, silver, and bronze
circles.

radical electronic structures, we will assess the quality of frontier MOs using C-4 and C-13

as examples. Figure 12(a) gives signed errors (SEs) of Eabs for C-13 obtained from ML-

ωPBE (ω = 0.137 a−1
0 ), OT-ωPBE (ω = 0.130 a−1

0 ), and all other functionals in question,

and shows that errors of ML-ωPBE and OT-ωPBE are significantly smaller than other

functionals. It also presents frontier β NOs for C-13 generated by the benchmark CASSCF

(7,10) calculation and designated as HOMO−1, HOMO, SOMO, and LUMO based on their

occupation numbers 1.9955, 1.9954, and 1.0000, and 0.0047. We found that HOMO−1 and

HOMO are linear superpositions from the same set of three π orbitals but exhibit opposite

symmetries. From each independent DFT calculation, we identified frontier β MOs that are

involved in the D0 → D1 transition and bear the most similar characters to NOs predicted

by CASSCF (7,10), and ordered them based on energies (Figure 12(b)). We found that

ML-ωPBE, OT-ωPBE, LC-ωPBE (ω = 0.200 a−1
0 ), and PBE reproduce the order of NOs

predicted by CASSCF (7,10) so that their D0 → D1 transitions exhibit the same character.

At the same time all other functionals swap HOMO−1 and HOMO and present a different
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character for the same transition. In addition, considering re-ordered frontier MOs reported

by PBE0 (Figure 12(b), we concluded that an excellent energy agreement with experiments

does not necessarily equal a great description of electronic structures. This result justifies

the importance of obtaining correct key electronic structures in predicting optical properties,

and can be re-affirmed by the character of frontier α MOs from C-4 (Figure S12).
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Figure 13: TDDFT-evaluated values of SEs (eV) of Eabs of ArO-42 for both the fundamental
D0 → D1 transition and lowest-lying bright D0 → D3 transitions, at the ML-ωPBE/6-
311+G(d) level and in comparison with nine conventional XC functionals.

We observed that DFT underestimates the value of Eabs by more than 1.07 eV on average

for ArO-based radicals from the test set regardless of the choice of the functional, and

ML-ωPBE and OT-ωPBE do not demonstrate any improvement. We will show that these

vast errors originate from the existence of optically inaccessible dark D1 states. A careful

examination of all frontier MOs and dimensionless oscillator strengths

fif =
2me

3h̄2
(Ef − Ei)| ⟨ψf|R⃗|ψi⟩ |2 (5)

for ArO-based radicals revealed that the lowest-lying D1 state is typically dark due to a

strong CT character and a higher symmetry. Instead, the lowest optically “bright” state

with f ≥ 0.01 appears to be D2 for ArO-43, ArO-44, ArO-45, and ArO-46 and D3 for ArO-

41, ArO-42, and ArO-47. This observation agrees with earlier theoretical and experimental
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studies of the phenoxy (ArO-42) radical.213–215

We re-analyzed the statistics of Eabs from these bright D0 → Dn transitions, labeled

them as ArO-bright in Figure 10 and Tables S1 through S8, and compared them to D0 → D1

transitions labeled as ArO-dark. Figure 13 showcases a straightforward comparison between

these two types of transitions for ArO-42. TDDFT-evaluated values of Eabs for these lowest

bright transitions illustrate considerable enhancement in precision and accuracy compared

with experimental measurement. For example, at the ML-ωPBE/TDDFT/6-311+G(d) level,

MAE and MSE for ArO-based radicals are reduced from −1.378 and 1.378 eV to −0.458 and

0.651 eV, respectively. Therefore, we used ArO-bright results in overall MSEs and MAEs

reported in Figure 11 and Tables S1 through S8 in place of ArO-dark.

Conclusion

In the present study, we performed a follow-up assessment of the capacity of ML-ωPBE84 that

was self-developed based on the top-down SEML strategy,98–103 and expanded its application

domain from closed-shell organic semiconducting molecules110–115 to doublet-spin organic

semiconducting radicals17,120–165 in the framework of single-reference DFT and TDDFT.

Even with only closed-shell molecules in the training set, ML-ωPBE reproduces molecule-

dependent values of ω generated by OT-ωPBE with a MAE of 0.0197 a−1
0 over all doublet-

spin radicals in the test set, but reduces the average computational cost by 2.46 orders of

magnitude.

Due to capturing accurate electronic structures, ML-ωPBE demonstrates the top predic-

tive power in experimentally observable Eabs for all radicals in the test set compared with

popular XC functionals. It also stands among those with the best behavior for Efl with-

out prominent error cancellations. Its overall performance is only marginally different from

OT-ωPBE, where it was trained from.51–53,70–72,74,79,88,89,116 For an ArO-based radical, we

found that the disagreement between the ML-ωPBE-predicted Eabs and the experimental
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optical gap should be attributed to its dark D1 state, and we obtained a substantially im-

proved alignment from ML-ωPBE when its lowest-lying bright Dn state rather than D0 was

collected for Eabs.

In summary, through our study, we strengthened the practical value of ML-ωPBE in

deciphering and predicting optical properties for luminescent organic semiconducting radi-

cals and endorsed its potential in application in large-scale computationally aided materials

discovery for various emergent areas.
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