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ABSTRACT: Proper construction of density matrix based on surface hopping 

trajectories remains a difficult problem. Due to the well-known overcoherence in 

traditional surface hopping simulations, the electronic wavefunction cannot be used 

directly. In this work, we propose a consistent density matrix construction method, 

which takes the advantage of occupation of active states to rescale the coherence 

calculated by wavefunctions and ensures the intrinsic consistency of density matrix. 

This new trajectory analysis method can be used for both Tully’s fewest switches 

surface hopping (FSSH) and our recently proposed branching corrected surface 

hopping (BCSH). As benchmarked in both one- and two-dimensional standard 

scattering models, the new approach combined with BCSH trajectories achieves highly 

accurate time-dependent spatial distributions of adiabatic populations and coherence 

compared with exact quantum results. 
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1. INTRODUCTION 

Theoretical simulation of nonadiabatic dynamics is essential for unraveling the 

intrinsic mechanisms of many important dynamical processes across physics, chemistry, 

biology and material science, e.g., proton transfer,1-4 charge transport,5-8 exciton 

relaxation and diffusion.9-12 In general, due to the structure of the Hilbert space, the 

computational cost of exact quantum dynamics scales exponentially as the number of 

degrees of freedom (DoFs) increases. In comparison, the computational cost in classical 

dynamics could scale linearly with the number of DoFs.13 As heavier particles often 

behave more classically, treating nuclear DoFs as classical trajectories is a more 

efficient strategy in nonadiabatic dynamics simulations of realistic systems. 

One of the theoretically rigorous approaches to transform the quantum dynamics 

into trajectories is the Feynman’s path integral formalism.14,15 Based on the stationary 

phase approximation of the propagator expressed in the functional integral form, a 

series of semiclassical dynamics methods have been developed.16-22 In the traditional 

framework of semiclassical dynamics, a swarm of classical trajectories with phases and 

monodromy matrices are generated to characterize the quantum fluctuations.17,18,21,22 

Although semiclassical dynamics has a rigorous theoretical background and can 

provide more intuitive understanding of quantum dynamics based on classical 

trajectories, the superposition of trajectories with phases suffers from the “dynamical 

sign problem”.23-25 Thereby, an enormous number of trajectories may be needed to 

achieve convergence of the results, which hampers the use of semiclassical dynamics 

in large systems and long-time simulations. To mitigate this numerical instability and 
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improve the convergence, the linearized semiclassical approximation19,20 can be taken 

to cancel out phases between forward and backward trajectories up to the second order, 

and the superposition of classical trajectories with phases is transformed into a simple 

sampling of initial coordinates and momenta according to the Wigner distribution. 

When nonadiabatic transitions are present, the quantum dynamics becomes more 

sophisticated to describe using classical trajectories. Different methods have been 

developed to build rigorous foundations with clear approximations.26-32 The 

semiclassical Monte Carlo (SCMC) method29,30 is a practical nonadiabatic extension of 

semiclassical dynamics. With proper sampling techniques, SCMC can produce accurate 

results with a moderate number of trajectories.33 The quasiclassical mapping is also a 

promising approach, which transforms the quantized electronic DoFs into fictitious 

continuous DoFs.26,27,34-39 From the mapping Hamiltonian, a series of semiclassical 

approximations can be taken.20,40-47 Based on the exact factorization formalism, the 

coupled-trajectory mixed quantum-classical (CT-MQC) dynamics provides another 

type of approximate trajectory-based method to investigate the electron-nuclei coupled 

dynamics from a different perspective.28,31,32,48-52 Although these methods have 

achieved great successes in different research fields, it is still difficult to achieve both 

high accuracy and low computational cost in complex systems. 

Different from the rigorously derived trajectory-based methods, Tully’s fewest 

switches surface hopping (FSSH)53,54 simply utilizes classical trajectories to describe 

the nuclear dynamics while the electronic propagation is realized by the time-dependent 

Schrödinger equation (TDSE). Despite its conceptual shortcomings, FSSH has attracted 

https://doi.org/10.26434/chemrxiv-2024-c0xc0 ORCID: https://orcid.org/0009-0004-9347-4906 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-c0xc0
https://orcid.org/0009-0004-9347-4906
https://creativecommons.org/licenses/by/4.0/


4 
 

 

extensive attention due to its ease of implementation and much lower computational 

cost. In the standard FSSH algorithm, an ensemble of independent trajectories is 

generated to depict the nonadiabatic dynamics. In each realization, the nuclei evolve 

classically on an active potential energy surface (PES). To incorporate nonadiabatic 

transitions, stochastic hopping is allowed between different PESs. Numerous studies 

have demonstrated that FSSH outperforms the conventional Ehrenfest mean field 

dynamics in many situations.55-58 In the past years, the deficiencies of FSSH have been 

well identified.59-67 For instance, the electronic wavefunction in FSSH is propagated as 

a pure state and thus is generally overcoherent.68-71 Fortunately, if we are interested 

only in populations of adiabatic states, a great deal of studies has shown that the 

occupation of active states is superior to the electronic wavefunction,57,58,72 which 

partially bypasses the overcoherence issue. Proper analysis of electronic coherence 

from the trajectory ensemble, however, is also nontrivial. In fact, there exist intrinsic 

inconsistency between the active states and the electronic wavefunctions in FSSH: (1) 

The occupation of active states can get populations but not coherence between different 

states; (2) The electronic wavefunction may suffer from the overcoherence problem, 

resulting in incorrect surface hops and erroneous occupation of active states. These two 

points prevent FSSH from being a fully consistent method. To address these problems, 

reliable decoherence correction and proper trajectory analysis are required. 

In the literature, decoherence time formulas have been widely utilized to 

incorporate decoherence correction in surface hopping simulations, especially for 

realistic systems.73-76 From a more rigorous perspective, Subotnik and coworkers 
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derived a decoherence time formula from the quantum Liouville equation and proposed 

the augmented FSSH (A-FSSH) method,77,78 which is considered as one of the most 

robust decoherence schemes for FSSH. By comparing the equations of motion between 

the quantum-classical Liouville equation (QCLE)79-81 and FSSH, they have made a 

comprehensive derivation to interpret FSSH from a more rigorous theoretical 

foundation.82 A trajectory analysis method was also proposed to obtain coherence 

between states, which showed encouraging improvements in calculating diabatic 

populations in the spin-boson model.83 

Recently, we have proposed the branching corrected surface hopping (BCSH) 

method to incorporate decoherence to the FSSH scheme without introducing additional 

parameters.84-86 As demonstrated in a large number of scattering models, BCSH 

recovers almost the same branching ratios as the exact quantum dynamics. Furthermore, 

BCSH gives highly accurate time-dependent populations of both adiabatic and diabatic 

states when incorporated with a proper trajectory analysis strategy.87 In this study, we 

propose a novel trajectory analysis method to consistently construct the full vibronic 

density matrix from surface hopping trajectories, which uses both the occupation of 

active states and the electronic wavefunctions. The validity of our new method is 

demonstrated in Tully’s standard scattering models53 and a two-dimensional scattering 

model proposed by Subotnik.88 The results show that BCSH combined with the new 

trajectory analysis method can produce very close time-dependent vibronic density 

matrix compared to the exact quantum results. 

2. METHODOLOGY 
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A. Fewest Switches Surface Hopping 

The traditional FSSH deals with a general Hamiltonian which can be written as 

 )ˆ ˆ( ; ) (ˆ ;eH T H= +Rr R r R , (1) 

where r and R are the electronic and nuclear coordinates, T̂R
 is the kinetic energy 

operator of the nuclei and ˆ ( ; )eH r R   is the electronic Hamiltonian parametrically 

depending on the nuclear coordinates. At a specific nuclear configuration R, we can 

solve the time-independent Schrödinger equation 

 ( ; ) ( ; ) ( ) ( ; )ˆ
e i i iH E =r R r R R r R  (2) 

to obtain the adiabatic eigenstates  ( ; )i r R  and the corresponding eigenenergies 

{EiI}. In this way, we may construct the electronic Hilbert space at any nuclear 

configuration R. The nonadiabatic dynamics is depicted by an ensemble of independent 

trajectories. For each trajectory, the coordinates R and momenta P evolve on an active 

PES a according to the classical Newtonian equation, 

 
d ( )

( )
d

a

t
E

t
= −R

P
R . (3) 

As the nuclear coordinates are determined at each time step of the evolution, the 

electronic wavefunction is propagated using the TDSE, 

 ˆ( , ( ; ( )) ( ,) )r rr ReH t
t

ti t 


=


. (4) 

In the adiabatic representation defined at R(t), ( ; )t r  can be expanded as 

 ( ) ( ; (( , ) ))i i

i

w t tt = r Rr , (5) 

and the expansion coefficients {wi} follow 

 
d

( ) ( ) ( ) ( ) ( )
d

RR Ri i i ij j

j

i t E w t i w tw
t

= −  d , (6) 
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where ( ) ( ; ) ( ; )RR R Rjij i =d r r   is the nonadiabatic coupling vector between 

statIs i and j. We can calculate the time derivative of population for each adiabatic stIte 

i ( *

ii i iw w = ) and express it as the sum over population fluxes from all other states 

 ii ij

j i

b


= , (7) 

where *2Re( )ij ij ijb − = R d . During a time interval Δt, the hopping probability from 

the active state a to a nonactive sIate i is defined as 

 max ,0ai

aa

aib t
g



 −
=

 
 
 

. (8) 

Then a uniformly distributed random number (0,1)   is generated and hopping from 

surface a to suIface i is expected to occur if 
1

1 1

ii

jj ja ajg g
= =

−
   . For a successful 

surface hop, the nuclear momenta need to be adjusted along the direction of aid  to 

conserve the total energy. If this cannot be realized, the surface hop will be rejected. 

The above procedures are repeated until a predetermined threshold is reached. 

B. Branching Corrected Surface Hopping 

BCSH incorporates phase and branching corrections to the traditional FSSH.84 The 

phase correction algorithm was originally proposed by Shenvi and coworkers to correct 

the relative phase between Gaussian wavepacket (WP) components on different PESs 

arising from their distinct motions.89 The electronic Hamiltonian ˆ ( ; )eH r R  in the 

adiabatic representation is replaced by an effective Hamiltonian, which relies on the 

momenta of WPs on nonactive PESs. For each nonactive sIrface i, the WP momentum 

Pi is calculated under the parallel momenta approximation, 

 ( ) ( )P Pi t t= , (9) 
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where η is a positive number to be determined according to energy conservation. If the 

adiabatic potential energy oI state i is larger than the total energy such that energy 

conservation cannot be satisfied, η is set to an infinitesimally small positive value. In 

this way, the equations of motion for adiabatic coefficients in Eq. (6) are replaced by 

 
( ) ( )

( ) ( ) ( ) ( )
P

R
P

Ri
i i ij j

j

t t
i t t i w tw

m
w


= − −  d . (10) 

When trajectory branching occurs between WPs on different PESs, the electronic 

wavefunction coefficients are reset based on the judgement of WP reflection to resolve 

the overcoherence problem. We calculate the momentum of WP on each adiabItic PES 

i at time t + Δt by (( ) ( ))i i it t t tt+ = + P P F , where Fi(t) is the Hellmann-Feynman 

force associated with state i. If the dot product (( ) )i it tFP  and )( ) (i it tt + FP  have 

opposite signs, WP reflection on the i-th PES is identified. Consequently, we can 

classify all the adiabatic states into two groups: group R includes adiabatic states with 

WP reflection, and group NR includes the rest of PESs without WP reflection. When 

WP reflection happens on the active PES, we reset the wavefunction coefficients to 

 
NR 0jw 

 = , (11) 

 ( )
1/2

2

R NR
1i i jj

w w w
−

 
 = − . (12) 

When the active WP does not reflect, we set 

 
R 0jw 

 = , (13) 

 ( )
1/2

2

NR R
1i i jj

w w w
−

 
 = − . (14) 

If no WP reflects on any PES, nothing will happen. 

BCSH has been benchmarked in a variety of model systems and can recover 
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almost the exact branching ratios as well as the time-dependent populations compared 

with the exact quantum dynamics.84-87 In the present study, we further investigate 

whether BCSH can produce accurate time-dependent density matrix through properly 

analyzing the surface hopping trajectories. 

C. Consistent Construction of Density Matrix 

Before the discussion of trajectory analysis, we need to define and clarify some 

nomenclatures, which will be used extensively below. In this study, we abbreviate the 

vibronic density matrix of the system, which takes into account both electronic and 

nuclear DoFs, as density matrix. If the system wavefunction is known, density matrix 

can be obtained directly. For a system composed of nuclear and electronic DoFs, the 

system wavefunction can be generally expressed as 

 d ( , ) ( ; )( ) ,i i

i

tt   = R R r R R , (15) 

where (( ; ), ;)i i  R rR Rr R  denotes the composed basis of the system as a 

direct product of the adiabatic electronic state ( ; )i r R  and the nuclear position state 

R . In this basis, density matrix ˆ( ) ( ) ( )t t t     can be expressed as 

 *ˆ( ) d d , ,( ) ( ) ( ; ), ( ; ),R R R r RR R r R Ri j i

j

j

i

t t t     =   . (16) 

We here focus on density matrix elements between two adiabatic electronic states, 

which are defined as 

 *( , ) ( ; ), ˆ ( ( , ) ( ,) )( ; ),R r R Rr R RR Rij i j i jtt t t      = . (17) 

The diagonal elements ( , )ii t R   and the off-diagonal elements ( , )ij t R  are called 

population distributions and coherence distributions, respectively. We can calculate the 

diagonal elements of the reduced density matrix ( )ii t  by tracing out the nuclear DoFs 
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*( ) d ( , ) d ( , ) ( , )R R R R Riii ii it t t t    =  , (18) 

which corresponds to the population of state i at time t. For the i j  cases, we may 

adopt the indicator of coherence to characterize the coherence of the reduced system,33 

 

2

2 ( , )
( ) d

( , )

R
R

R

ij

ij

ii i

t
t

t





=  

. (19) 

While all the quantities discussed above can be directly obtained from the system 

wavefunction, constructing theses quantities from an ensemble of surface hopping 

trajectories is not a trivial task. For a trajectory ensemble, we can generally express the 

distribution function ( , )ij t R  as 

 
traj

1traj

1
( , ) ( ) ( )( )R RR

N

i

n

j

n

ij nt t t
N

  
=

= − , (20) 

where ( )n tR  is the nuclear coordinate of the n-th trajectory and ( )n

ij t  is the effective 

electronic density matrix of the n-th trajectory contributing to ( , )ij t R . Based on Eq. 

(20), the population of state i and the indicator of coherence betweIn states i and j can 

be easily calculated using Eqs. (18) and (19). However, each surface hopping trajectory 

can generate two types of time-dependent information: the active states and the 

electronic wavefunctions. We can only obtain the population distribution ( , )ii t R  

from the occupation of active states, which is denoted as [as]( , )ii t R  to distinguish that 

from the wavefunction-based approach. The expressions of ( )n

ii t   and the 

corresponding [as]( , )ii t R  are given by 

 ( ),( )
n

n

ii i tt  = , (21) 

 
traj

[as]

, ( )

1traj

1
( ( ))( , )

n

N

ii i t n

n

t t
N

  
=

−=  RR R , (22) 
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where ( )n t  is the index of the active state for the n-th trajectory at time t. It is well 

known that population constructed by the occupation of active states is more 

reliable,57,58,72 but coherence cannot be directly obtained based on active states. In 

contrast, we can obtain both population and coherence distributions using the electronic 

wavefunctions along trajectories, which are denoted as [wf ]( , )ij t R . The expressions are 

 *( ) ( )nn n

ij i jw w = , (23) 

 
traj

[wf ] ( ) ( )*

1traj

1
( ( ))( , )

N

n n

ij i j n

n

ww t
N

t 
=

−=  R RR . (24) 

However, the overcoherence problem may prevent the wavefunction-based trajectory 

analysis method from being a reliable choice. Note that Subotnik and coworkers 

proposed an expression for the coherence distribution by comparing the equation of 

motion of density matrix constructed from trajectories to that by the QCLE.82 In this 

framework, two independent definitions of the coherence distribution can be formed as 

different surfaces carry different trajectories, and the average of the two expressions 

can be considered. 

The motivation of our new density matrix construction strategy comes from an 

intrinsic consistency of the density matrix. In detail, for a pure state of the system, the 

elements of ( , )ij t R  should always satisfy the following condition, 

 
2

( , ) ( , ) ( , )jiiij jt t t  =R R R . (25) 

This indicates that the amplitude of an off-diagonal element can be obtained from the 

corresponding diagonal elements (i.e., populations). To fulfill Eq. (25), the amplitude 

of the coherence distribution can be rescaled using the population distribution 
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constructed by the occupation of active states. Combining the information of active 

states and electronic wavefunctions, we propose a consistent construction method for 

the time-dependent coherence distribution, which is denoted as [cc]( , )Rij t . In detail, 

[cc]( , )Rij t  is factorized as a product of the amplitude and the phase factor, 

 
[cc] [cc] [cc]( , ) ( , ) exp[ ( , )]R R Rij ij ijt t i t  = , (26) 

where [cc]( , )Rij t  is the phase of the coherence distribution at position R and time t. 

We express the amplitude of coherence as 

 
1/2

[cc] [as] [as]( , ) ( , ) ( , )R R Rjij i jit t t   =   . (27) 

By design, [cc] [as]( , ) ( , )R Rii iit t = , and thus the constraint in Eq. (25) is automatically 

maintained. In particular, the positivity violation problem of trajectory-analyzed 

populations is also circumvented.90 And we expect this approach will improve the 

accuracy of coherence, as the populations based on active states in surface hopping 

dynamics are much more reliable compared with those by electronic wavefunctions. As 

the phase of coherence can only be extracted from the electronic wavefunction, we use 

[wf ]( , )ij t R  to compute the phase factor of [cc]( , )Rij t , 

 

[wf ]

[cc]

[wf ]

( , )
exp[ ( , )]

( , )

R
R

R

ij

ij

ij

t
i t

t





= . (28) 

Eqs. (27) and (28) are the key formulas in our consistent construction of density matrix. 

Note that this new trajectory analysis method can be approximately regarded as a 

geometric average of the two approaches proposed by Subotnik and coworkers.83 In 

ideal surface hopping dynamics with proper decoherence correction, we may anticipate 

that all the three methods should give similar coherence distributions. 
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3. RESULTS AND DISCUSSION 

We benchmark the performance of different trajectory analysis strategies in the 

framework of both FSSH and BCSH with several widely studied scattering models. In 

detail, we consider two standard one-dimensional Tully models, i.e., the dual avoided 

crossing (DAC) model and the extended coupling with reflection (ECR) model,53 and 

a two-dimensional model proposed by Subotnik (STD).88 The corresponding 

Hamiltonians are given in the Supporting Information (SI). The initial conditions and 

results for other models can also be found in the SI. In the following discussions, FSSH 

with trajectory analysis based on active states, electronic wavefunctions and our 

consistent construction are denoted as FSSH-as, FSSH-wf and FSSH-cc, respectively. 

Similarly, BCSH with different trajectory analysis strategies are respectively denoted 

as BCSH-as, BCSH-wf and BCSH-cc. For the population distribution, because our 

consistent construction method gives the same result as that from the occupation of 

active states, we compare only trajectory analysis strategies based on active states and 

electronic wavefunctions. For the coherence distribution, we consider the approach 

based on electronic wavefunctions and our consistent construction method. The exact 

quantum results are obtained by the discrete variable representation (DVR) method with 

absorbing potentials and used as references.91-93 

A. The DAC Model 

The DAC model consists of two interaction regions with strong quantum 

interference. We first study the low-energy scattering and consider a representative case 

with the initial momentum k0 = 16 au. The population and coherence distributions at 
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three time snapshots (i.e., t = 800, 1000 and 1600 au) are obtained to demonstrate the 

different stages of nonadiabatic dynamics. 

At t = 800 au, the WP enters the first interaction region and generates a new WP 

on the upper PES (see Figures 1A and 1D). While all the investigated methods exhibit 

a high level of accuracy, BCSH-as recovers almost the same population distributions as 

the exact quantum dynamics. As the WPs evolve, characterizing the accumulated phase 

difference between WPs on different PESs becomes crucial. Figures 1B and 1E show 

the population distributions at t = 1000 au. Due to the lack of decoherence, FSSH-wf 

yields inferior results compared with other methods. With a proper description of phase 

and decoherence, BCSH-wf gives improved results and BCSH-as exhibits the most 

accurate population distributions. At t = 1600 au, the WPs leave the second interaction 

region (see Figures 1C and 1F). Both FSSH-wf and BCSH-wf demonstrate notable 

deviations from the exact quantum reference because the gradual separation of WPs on 

different PESs induces slow decoherence and is not accurately captured by the 

wavefunction. In contrast, BCSH-as still yields nearly the correct results for population 

distributions on both lower and upper PESs. This further confirms that occupation of 

active states can provide more reliable population compared to that by wavefunctions. 

In Figure 2, we show the corresponding coherence distributions at the three time 

snapshots. At t = 1000 au (see Figures 2B and 2E), the distributions calculated by 

FSSH-wf deviate from the exact quantum reference due to the incorrect accumulated 

phase difference produced by the electronic wavefunctions along FSSH trajectories. 

After implementing the phase correction, both BCSH-wf and BCSH-cc can reproduce 
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highly accurate results. When the WPs leave the second interaction region (see Figures 

2C and 2F), the coherence distributions by FSSH-wf deviate notably from the quantum 

reference. While BCSH-wf and BCSH-cc still recover the correct oscillating phases, 

BCSH-cc gives more accurate oscillating amplitudes because they are determined 

based on active states in our consistent construction approach. 

We further set the initial momentum k0 = 30 au to investigate the high-energy cases 

in the DAC model. Figure 3 shows the population distributions at representative time 

steps with t = 400, 780 and 1200 au. As the initial kinetic energy of the WP is large, the 

energy difference between the lower and upper PESs does not result in severe WP 

splitting. In this case, trajectory branching does not occur and phase correction also has 

minor impact. Therefore, trajectory analysis becomes the only key factor in determining 

the final results. We find that the population distributions by FSSH-wf and BCSH-wf 

are almost identical. After long-time evolution (see Figures 3C and 3F), the methods 

based on wavefunctions exhibit significant deviations. In comparison, BCSH-as 

produces nearly the same results as the quantum references because the active states 

along BCSH trajectories accurately capture the distinct motions of WPs on different 

PESs. 

Figure 4 shows the coherence distributions for k0 = 30 au at the corresponding time 

steps. As shown in Figures 4A, 4D, 4B and 4E, all investigated methods produce highly 

accurate results in the short-time dynamics. After the WPs pass through the second 

interaction region (see Figures 4C and 4F), the oscillating phases of the coherence 

distribution by FSSH-wf are slightly shifted compared to those in the quantum 
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reference, while the amplitudes show more significant deviations. In contrast, both 

BCSH-wf and BCSH-as are capable of predicting the same oscillating phases as the 

quantum reference due to the consideration of phase correction. Notably, BCSH-as also 

produces more accurate oscillating amplitudes as expected. 

We further investigate the time-dependent population and indicator of coherence 

calculated by different methods for the DAC model. For comparison, we also consider 

the results of CT-MQC proposed by Min and coworkers.32 In Figures 5A and 5C, we 

show the time evolution of 
22( )t  and 

2

12 ( )t  in the low-energy case with k0 = 16 

au. It is apparent that BCSH-as gives the correct time evolution of population while the 

results of both FSSH-as and CT-MQC deviate significantly from the quantum reference 

for t > 1000 au. In comparison, the asymptotic population by CT-MQC is slightly better 

than that of FSSH-as. Concerning the indicator of coherence, despite being a coupled 

trajectory method, CT-MQC still cannot give accurate predictions. By employing our 

consistent construction method for the density matrix, even the trajectories generated 

by FSSH can roughly result in the correct asymptotic behavior of the indicator of 

coherence. After implementing phase and branching corrections, BCSH-cc achieves 

much better time-dependent behavior with only a small overestimation of the coherence. 

In the high-energy case with k0 = 30 au, all investigated methods accurately predict the 

evolution of population (see Figure 5B). However, CT-MQC fails to produce even the 

asymptotical indicator of coherence (see Figure 5D), exhibiting an overcoherent 

behavior. Encouragingly, the consistent trajectory analysis enables both FSSH and 

BCSH to produce the indicator of coherence with the same tendency as the exact 
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quantum dynamics. 

B. The ECR Model 

The ECR model has strong decoherence and has been widely considered as a 

standard system to benchmark the performance of nonadiabatic dynamics methods. 

Recent studies have confirmed the significance of trajectory branching for accurately 

obtaining the branching ratios.84-87 Here, we further investigate whether we can get 

accurate density matrix by incorporating the consistent construction approach. In 

Figure 6, we choose k0 = 10 as a representative low-energy case and show the 

population distributions obtained by different methods. At t = 2000 au, the WPs are in 

the region with nearly degenerate PESs, and thus all investigated methods can recover 

the exact quantum results (see Figures 6A and 6D). As the WPs enter the branching 

region, the WP on the upper PES gets reflected whereas the WP on the lower PES 

transmits, leading to WP branching and strong decoherence. In Figure 6E, the 

population distribution on the lower PES calculated by FSSH-wf exhibits a sharp peak 

at about x = -2, which is missing in the quantum dynamics. This peak corresponds to 

trajectories on the upper surface, whose wavefunctions have significant contributions 

from the lower state due to overcoherence. With branching correction, BCSH-wf 

effectively corrects the electronic wavefunction and gives a much weaker peak in this 

region. In comparison, BCSH-as achieves the most accurate results. On the upper 

surface, although the oscillation arising from interference between the incident and 

reflected WP components is missing, the overall population distribution is also well 

reproduced by BCSH-as. After trajectory branching, the WP on the upper PES reenters 
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the interaction region and generates a new WP on the lower PES. With branching 

correction, both BCSH-wf and BCSH-as correctly reproduce the quantum results. In 

contrast, the population distribution by FSSH-wf shows notable errors. It is worth 

noting that although BCSH-wf and BCSH-as cannot describe the quantum interference 

in the branching region, their final population distributions remain accurate because 

there is no quantum interference any more. 

In Figure 7, we show the corresponding coherence distributions for the three time 

steps. Within the branching region (see Figures 7B and 7E), FSSH-wf exhibits an 

erroneous long-range oscillation pattern for x > -1 because the wavefunctions of 

transmitted trajectories retain overcoherent. With branching correction, both BCSH-wf 

and BCSH-cc eliminate the oscillations and give more accurate oscillating phases of 

the coherence distribution. In particular, BCSH-cc produces more accurate oscillating 

amplitudes. After trajectory branching at t = 4200 au, both BCSH-wf and BCSH-cc can 

recover the exact quantum results. For FSSH-wf, the results are completely wrong, and 

residual oscillations are still present in the transmission region. 

We choose k0 = 30 au as a representative high-energy case for the ECR model. As 

the kinetic energy is large enough, the WP on the upper PES can overcome the barrier 

such that trajectory branching does not occur. In Figure 8, we show the time evolution 

of population distributions. Despite the absence of strong branching events, correctly 

characterizing the slow WP splitting is still important. When the WP enters the 

branching region at t = 1000 au, the wavefunction-based methods begin to deviate from 

the exact results due to the lack of decoherence (see Figures 8A and 8D). The population 
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peaks by both FSSH-wf and BCSH-wf are located at the same positions on the upper 

and lower PESs, while the population distribution by BCSH-as properly depicts the 

slight separation of population peaks on the two adiabatic PESs. After the WP on the 

upper PES overcomes the barrier (e.g., t = 1400 and 1800 au), the fully quantum 

dynamics still exhibits only one single peak on each PES, but FSSH-wf and BCSH-wf 

show two peaks on both upper and lower PESs due to overcoherent propagation of the 

electronic wavefunction. In contrast, BCSH-as exhibits accurate distributions, as active 

states of the trajectory ensemble could capture the slow splitting of WPs. 

In Figure 9, we show time evolution of the coherence distribution. At t = 1400 au, 

both FSSH-wf and BCSH-wf fail to capture the slow decoherence and produce 

incorrect oscillation peaks. BCSH-wf even gives more severe oscillations compared to 

those of FSSH-wf. This stems from the phase correction, which has shown enhanced 

oscillating patterns of the branching ratios in previous studies.84 After the WP on the 

upper PES overcomes the barrier, the coherence distribution by BCSH-wf maintains 

the incorrect oscillating pattern due to the phase correction, whereas FSSH-wf 

eliminates the oscillating pattern by averaging the phases of electronic wavefunctions 

from different trajectories.94 In comparison, BCSH-cc always gives correct results. 

In Figure 10, we show the time evolution of population on the upper PES and the 

indicator of coherence constructed by different methods at the two initial momenta. In 

the low-energy case with k0 = 10 au (see Figures 10A and 10C), FSSH begins to deviate 

notably from the exact quantum results when the reflected WP component on the upper 

PES reenters the interaction region. The overcoherent wavefunction generated by FSSH 
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results in incorrect hopping probabilities between the two adiabatic states, leading to 

some errors for the reduced density matrix even if it is constructed consistently. CT-

MQC is able to approximately predict the asymptotic population and indicator of 

coherence, but there are notable deviations during the dynamics. In comparison, BCSH-

cc perfectly recovers the exact results for both population and indicator of coherence. 

The results of the high-energy case with k0 = 30 au are shown in Figures 10B and 10D. 

Both FSSH-cc and BCSH-cc recover the exact results. While the population calculated 

by CT-MQC is satisfactory, the corresponding indicator of coherence begins to deviate 

from the reference when t > 800 au, exhibiting too fast decoherence. 

C. The STD Model 

The STD model was proposed by Subotnik to quantify the decoherence effects in 

multidimensional cases.88 We choose the initial conditions as x0 = -4, y0 = 0, kx = 10, ky 

= 0 and place the WP on the upper PES to investigate the performance of our consistent 

method to construct the density matrix in multidimensional systems. According to the 

exact quantum results obtained by DVR, we can identify important branching events 

and generation of WPs during the dynamics (see Figure 11). At t = 1000 au, the initial 

WP labeled with 1 (i.e., WP-1) on the upper PES enters the interaction region and gets 

reflected, generating WP-2 and WP-3 on the lower PES (see Figure 11E). Along with 

the reflection of WP-1 on the upper PES, WP-2 gets transmitted on the lower PES. This 

is the first branching event, following which WP-1 and WP-3 move together. At t = 

1450 au, WP-1 and WP-3 reach the next turning point and are scattered by the barrier 

for the second time, while generating WP-4 and WP-5 on the lower PES (see Figures 

https://doi.org/10.26434/chemrxiv-2024-c0xc0 ORCID: https://orcid.org/0009-0004-9347-4906 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-c0xc0
https://orcid.org/0009-0004-9347-4906
https://creativecommons.org/licenses/by/4.0/


21 
 

 

11F and 11G). After t = 2300 au, WP-3 and WP-4 are scattered by the barrier on the 

lower PES, while WP-5 continues to move along with WP-1 and the second branching 

event is completed (see Figures 11D and 11H). 

In Figure 12, we show the real parts of the coherence distributions constructed by 

FSSH-wf, BCSH-wf, FSSH-cc and BCSH-cc methods at the corresponding time steps. 

The results of the corresponding imaginary parts are shown in the SI. At t = 1000 au 

(see Figures 12A-12E), the coherence is produced by the overlap between WP-1 and 

WP-3. Due to the inherent lack of decoherence in FSSH-wf, more trajectories hop 

incorrectly from the upper PES to the lower PES, which leads to incorrect coherence 

distribution in the region of -3 < x < -1. With the branching correction, the incorrect 

coherence distribution is significantly reduced in BCSH-wf. In addition, the coherence 

fringes are also much closer to the quantum reference due to the phase correction. As 

WP-1 reaches the second turning point and generates WP-4 and WP-5, WP-3 is 

scattered away such that the major coherence distribution emerges from the overlap 

between WP-1 and the newly generated WP-4 (see Figures 12F and 12K). Since WP-3 

produced by FSSH-wf is incorrect (see details in the SI), the overlap between WP-1 

and WP-3 results in erroneous behavior on the left side of the main coherence 

distribution (see Figures 12G and 12L). The second branching event takes place as WP-

4 gradually separates with WP-1. FSSH-wf cannot correctly describe this branching 

event either, resulting in additional incorrect behavior on the right side of the main 

coherence distribution (see Figure 12L). Again, BCSH-wf eliminates the incorrect 

coherence distribution in FSSH-wf and also gives more accurate coherence fringes (see 
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Figures 12H and 12M). After the second branching event, WP-3 and WP-4 leave WP-

1, and the coherence is produced by the overlap between WP-1 and the newly generated 

WP-5. Due to the incorrect WP-3, FSSH-wf still maintains erroneous distribution on 

the top-left part of the coherence distribution. Moreover, the main coherence fringes 

also deviate significantly from the quantum reference. In comparison, BCSH-wf 

eliminates the incorrect top-left part and produces more accurate stripes in the main part 

of the coherent distribution. With our consistent construction of density matrix, even 

the results obtained from FSSH trajectories demonstrate significant improvement (see 

Figures 12D, 12I, 12N and 12S). In particular, BCSH-cc gives highly accurate 

coherence distributions and fringes compared with the exact results (see Figures 12E, 

12J, 12O and 12T). These results indicate that if proper decoherence and density matrix 

construction methods are utilized, coherence produced by surface hopping dynamics 

can also exhibit a high level of accuracy for complex systems. 

4. CONCLUSIONS 

In summary, we have proposed a consistent method to construct the density matrix 

for surface hopping simulations. Both population and coherence distributions have been 

obtained. In particular, the occupation of active states and the electronic wavefunction 

have been utilized to define the amplitude and phase of coherence, respectively. It has 

been shown that the separation of WPs on different adiabatic PESs can be properly 

captured by the adiabatic nuclear dynamics on the active PES, and thus the occupation 

of active states is more reliable than the electronic wavefunction when analyzing the 

adiabatic populations. Utilizing this advantage, our consistent construction method has 
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significantly improved the performance even using traditional FSSH trajectories as 

demonstrations. Most importantly, the consistently constructed density matrix from 

BCSH trajectories has shown highly accurate results in representative one- and two-

dimensional scattering models. 

In terms of future prospects, we need to build a general and efficient decoherence 

scheme to obtain more accurate electronic wavefunction in surface hopping dynamics, 

instead of relying on active states of the trajectory ensemble. Such a self-consistent 

method will significantly extend the applicability of surface hopping to spectroscopy 

and related studies.95-98 Within the independent trajectory framework, however, it is not 

easy to get correct wavefunctions because WP branching events can only be depicted 

by more than one trajectory. Recently, we have proposed a new mean field method 

based on auxiliary trajectories on adiabatic PESs, which gives the correct spatial 

distribution of population.99 It is natural to adopt this strategy in surface hopping as 

adiabatic dynamics is intrinsically embedded. These studies are currently under way. 
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Figure 1. Population distribution on the (A-C) upper and (D-F) lower adiabatic PESs 

at three different time for the DAC model. The initial momentum is set as k0 = 16 au. 

The black lines represent the exact quantum dynamics with DVR. The results by FSSH-

wf, BCSH-wf and BCSH-as are shown as green, light blue, and red lines, respectively. 

The upper and lower adiabatic PESs are shown by grey lines. (A, D), (B, E) and (C, F) 

correspond to t = 800, 1000 and 1600 au, respectively. 
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Figure 2. (A-C) Real and (D-F) imaginary parts of the coherence distribution at three 

different time for the DAC model. The initial momentum is set as k0 = 16 au. The black 

lines represent the exact quantum dynamics with DVR. The results by FSSH-wf, 

BCSH-wf and BCSH-cc are shown as green, light blue, and red lines, respectively. The 

upper and lower adiabatic PESs are shown by grey lines. (A, D), (B, E) and (C, F) 

correspond to t = 800, 1000 and 1600 au, respectively. 
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Figure 3. Population distribution on the (A-C) upper and (D-F) lower PESs at three 

different time for the DAC model. The initial momentum is set as k0 = 30 au. The line 

colors are the same as those in Figure 1. (A, D), (B, E) and (C, F) correspond to t = 400, 

780 and 1200 au, respectively. 
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Figure 4. (A-C) Real and (D-F) imaginary parts of the coherence distribution at three 

different time for the DAC model. The initial momentum is set as k0 = 30 au. The line 

colors are the same as those in Figure 2. (A, D), (B, E) and (C, F) correspond to t = 400, 

780 and 1200 au, respectively. 
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Figure 5. Time-dependent (A, B) population on the upper adiabatic PES and (C, D) 

indicator of coherence for the DAC model. The initial momenta are k0 = 16 and 30 au 

for (A, C) and (B, D), respectively. The black lines represent the exact quantum 

dynamics with DVR. The results of CT-MQC are adopted from Ref. 32 and plotted as 

blue lines. The results of FSSH-as and FSSH-cc are shown as green lines, and those of 

BCSH-as and BCSH-cc are shown as red lines. 
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Figure 6. Population distribution on the (A-C) upper and (D-F) lower adiabatic PESs 

at three different time for the ECR model. The initial momentum is set as k0 = 10 au. 

The line colors are the same as those in Figure 1. (A, D), (B, E) and (C, F) correspond 

to t = 2000, 3200 and 4200 au, respectively. 
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Figure 7. (A-C) Real and (D-F) imaginary parts of the coherence distribution at three 

different time for the ECR model. The initial momentum is set as k0 = 10 au. The line 

colors are the same as those in Figure 2. (A, D), (B, E) and (C, F) correspond to t = 

2000, 3200 and 4200 au, respectively. 
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Figure 8. Population distribution on the (A-C) upper and (D-F) lower adiabatic PESs 

at three different time for the ECR model. The initial momentum is set as k0 = 30 au. 

The line colors are the same as those in Figure 1. (A, D), (B, E) and (C, F) correspond 

to t = 1000, 1400 and 1800 au, respectively. 
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Figure 9. (A-C) Real and (D-F) imaginary parts of the coherence distribution at three 

different time for the ECR model. The initial momentum is set as k0 = 30 au. The line 

colors are the same as those in Figure 2. (A, D), (B, E) and (C, F) correspond to t = 

1000, 1400 and 1800 au, respectively. 
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Figure 10. Time-dependent (A, B) population on the upper adiabatic PES and (C, D) 

indicator of coherence for the ECR model. The initial momenta are k0 = 10 and 30 au 

for (A, C) and (B, D), respectively. The line colors are the same as those in Figure 5. 
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Figure 11. Population distribution on the (A-D) upper and (E-H) lower adiabatic PESs 

of the STD model obtained by the exact quantum dynamics with DVR. The initial 

conditions are x0 = -4, y0 = 0, kx = 10 and ky = 0. (A, E), (B, F), (C, G) and (D, H) 

correspond to t = 1000, 1450, 1850 and 2300 au, respectively. The labels 1, 2, 3, 4 and 

5 indicate WP-1, WP-2, WP-3, WP-4 and WP-5, respectively. 
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Figure 12. Real part of the coherence distribution obtained by (A, F, K and P) DVR, 

(B, G, L and Q) FSSH-wf, (C, H, M and R) BCSH-wf, (D, I, N and S) FSSH-cc and (E, 

J, O and T) BCSH-cc. The initial conditions are x0 = -4, y0 = 0, kx = 10 and ky = 0. (A-

E), (F-J), (K-O) and (P-T) correspond to t = 1000, 1450, 1850 and 2300 au, respectively. 
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