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ABSTRACT: The use of gem-difluorinated cyclopropanes 
(gem-DFCPs) as fluoroallyl surrogates under transition-
metal catalysis has drawn considerable attention recently 
but such reactions are restricted to producing achiral or ra-
cemic mono-fluoroalkenes. Herein, we report the first enan-
tioselective allylation of indoles with gem-DFCPs under rho-
dium catalysis. This reaction shows exceptional branched 
regioselectivity towards rhodium catalysis with gem-DFCPs, 
which provides an efficient route to enantioenriched fluoro-
allylated indoles with wide substrate scope and good func-
tional group tolerance.  

Organofluorine compounds occupy a significant place in 
pharmaceutical chemistry1 and material science2, as evi-
denced by the ubiquity of fluorine-containing molecules in 
marketed pharmaceuticals and functional materials. Among 
the various fluorinated motifs, the mono-fluoroalkenes 
have consistently attracted attention from the synthetic 
community.3 The pursuit of synthetic methods to access 
structurally diverse mono-fluoroalkenes stems from their 
potential as amide or enol mimics in the modification of bi-
oactive molecules,4 as well as their capacity to serve as mo-
lecular platform for further functionalization.5   

Recently, gem-Difluorinated cyclopropanes (gem-
DFCPs)6  have garnered great attention in organic synthesis 
due to their powerful ability to transform into other fluo-
rine-containing molecules, particularly mono-fluoroal-
kenes through transition-metal catalyzed allylic substitu-
tion reactions ( Scheme 1a).7 The pioneering work reported 
by Fu’s group demonstrated that the Pd-catalyzed cross-
coupling of gem-DFCPs with various nucleophiles to form 
linear-selective β-mono-fluoroalkenes.8 Subsequently, the 
reaction scope has been extensively extended to access β-
mono-fluoroalkenes integrated with the formation of C−C, 
C−N, C−S and C−P bonds.9-11 Importantly, Lv and Li devel-
oped an elegant strategy to switch the regioselectivity from 
linear to branched in Pd/NHC-catalyzed cross-coupling of 
gem-DFCPs via inner-sphere 3,3’-reductive elimination pro-
cess (Scheme 1b).12 The employment of π-conjugated ambi-
dent nucleophiles (including hydrazones,12,13a ketones,13b 
and allylboronates13c,13d)  has been the key to the success, 
delivering a series of racemic α-mono-fluoroalkene com-
pounds. Very recently, an exceptional example is reported 
by the use of 3,3-dimethylallyl Bpin as an unusual hydride 

source, in which a branched-selective hydrodefluorination 
of gem-DFCPs was achieved to afford terminal α-mono-
fluoroalkenes by Pd/NHC catalysis via an unusual 3,4’-hy-
dride transfer mechanism.14 Despite these significant 
achievements that have been made in the synthesis of race-
mic or achiral mono-fluoroalkenes, a strategy for the collec-
tion of enantioenriched α-mono-fluoroalkenes using gem-
DFCPs as fluoroallyl surrogates has not been yet realized. 

Scheme 1.  Regioselective Ring-Opening Allylation Reactions of 
gem-DFCPs 

 

The development of such enantioselective reaction faces a 
significant challenge, which is that nucleophiles, other than 
ambident nucleophiles, often favor linear-selectivity be-
cause of the preferential nucleophilic attack at the less hin-
dered carbon atom of the allyl-metal intermediate.7-14 
Therefore, overcoming the innate reactivity would poten-
tially lead to the development of asymmetric allylic coupling 
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for constructing enantioenriched α-mono-fluoroalkenes. 
Our group has been continuously interested in the explora-
tion of divergent reactivity of gem-DFCPs especially with 
rhodium catalysis.10,15 However, the products were gener-
ally restricted to linear-selectivity from the allyl-Rh inter-
mediate.10 Herein, we disclosed the first Rh-catalyzed 
branched-regioselective and enantioselective allylic cou-
pling between gem-DFCPs and indoles (Scheme 1c).16 It was 
found that a catalytic system consisting of a cationic Rh 
complex and a bulky bidentate ligand ensures high effi-
ciency, excellent branched-regioselectivity and enantiose-
lectivity, thus providing an efficient and general approach 
to enantioenriched α-mono-fluoroalkenes. 

Table 1. Optimization of Reaction Conditionsa 

  

entry variations yield (%)b b/l c ee (%) 

1 none 93 (92d) 38:1 93 

2 w/oAgOTf 0 - - 

3 AgPF6 53 25:1 89 

4 AgBF4 56 25:1 69 

5 L2 86 11:1 31 

6 L3 72 4:1 13 

7 L4 66 11:1 29 

8 L5 15 26:1 91 

9 L6 0 - - 

10 PhCl 91 31:1 91 

11 DCE 91 29:1 85 

12e THF, L2 36 1:1.3 29 

  
aReactions were performed on 0.1 mmol scale. bYield was deter-

mined by 19F NMR using PhCF3 as the internal standard. cThe b/l refers 
to the ratio of branched to linear (3a:3a’), which was determined by 19F 
NMR of the crude products. dReaction was performed on 0.2 mmol scale 
and it was the isolated yield. eAgPF6 was used instead of AgBF4. 

We first explored the branched allylation reaction by us-
ing (2,2-difluorocyclopropyl)benzene (1a) and 2-methylin-
dole (2a)  as the model substrates under rhodium catalysis. 
After extensive condition screening, we successfully ob-
tained the desired branched fluoroallylation product 3a in 
93% yield with 93% ee and excellent branched-regioselec-

tivity (b/l = 3a:3a’ = 38:1) (please see Supporting Infor-
mation for details on how to determine the regioselectivity). 
The optimized reaction conditions feature with 2 mol% 
[Rh(C2H4)2Cl]2 as the pre-catalyst, 4 mol% R-DTBM-BINAP 
(L1) as the bulky ligand and 5 mol% AgOTf as the halide 
scavenger in DCM at 50 oC for 12 h (entry 1). Control exper-
iment shows that the presence of silver salt was essential 
for this reaction (entry 2). It was proved that AgOTf was 
much better for the reaction than AgPF6 and AgBF4, not only 
on the yields but also the enantio- and regioselectivity (en-
tries 3 and 4). Replacing L1 with other types of bidentate 
phosphine ligands, including R-BINAP (L2), R-xyl-BINAP 
(L3), R-tol-BINAP (L4), R-DTBM-Segphos (L5), resulted in 
decreased yields and selectivities of the product 3a (entries 
5-8). No target product 3a was observed in the presence of 
monodentate ligand (L6), which indicates that the use of a 
bidentate ligand was crucial in this transformation (entry 9). 
As for the solvent effect, 1,2-dichloroethane and chloroben-
zene were less effective than DCM in this transformation 
(entries 10 and 11). When using tetrahydrofuran as the sol-
vent, AgPF6 as the silver salt, and L2 as the ligand, the linear 
product 3a’ becomes the major one with a ratio of b/l = 
1:1.3, suggesting the regioselectivity of the allylation reac-
tion could be determined by the reaction conditions (entry 
12). 

Having established the optimized conditions, we investi-
gated the scope and limitations of this rhodium catalyzed 
asymmetric allylation reaction. Firstly, we examined the 
scope of gem-difluorinated cyclopropanes with 2-methylin-
dole 2a. The reaction of model substrate 1a and 2a pro-
vided the desired product 3a in 92% yield with 93% ee. The 
substrates bearing an electron-donating group (R = -Me,  -
pyrrole, -cyclopropyl, -OPh, -OAc, -OMe) of the phenyl ring 
provided the corresponding products in moderate to good 
yields and enantioselectivities (3b-3g, 3q) in 12 h. The sub-
strates with an electron-withdrawing group (R = -Br, -Cl, -F, 
-Ph, -Naphthalene, -pyrrole) of the phenyl ring providing 
products with moderate to good yields and excellent enan-
tioselectivity (3g-3o), in which the absolute configuration 
of 3h was unambiguously confirmed by X-ray crystallog-
raphy. The reaction is slightly sensitive to the substituent at 
the ortho-position,as the enantioselective yield was de-
creased when the steric group (R = -OMe) in that position 
(3p). gem-Difluorinated cyclopropanes with benzothio-
phene substituent deliver the product in high yield and ee 
(3r). 

After that, the reactivity of indole was then evaluated. As 
shown in Scheme 2B, a wide array of substituted indole 
were studied in moderate to good yields with excellent re-
gioselectivity and enantioselectivity. A variety of electron-
donating (3u-3ab) and electron-withdrawing groups (3w-
3aa) were found to be all tolerated, providing the corre-
sponding products in moderate to good yields and excellent 
enantioselectivity. Substituting the ethyl or phenyl groups 
on indole at the position 2 afforded the branched product in 
high yield with high ee (3ab, 3ac). The steric hindrance may 
result in a decrease in the enantioselectivity of the reaction. 
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Scheme 2. Substrate Scope of Indole Fluoroallylationa,b 

 
aGeneral conditions: 1a 0.2 mmol, 2a 0.1 mmol, 2 mol% [Rh(C2H4)2Cl]2, 4 mol% L1, 5 mol% AgOTf, 50 oC, 1 mL DCM, 12 h. bIsolated 
yields are presented. The regioselectivity was over 20>1 if not noted. c3 mol% [Rh(C2H4)2Cl]2, 6 mol% L1. d4 mol% S-SEGPHOS, 40 
oC. e4 mol% R-BINAP, 40 oC.
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Motivated by the broad functional group tolerance 
demonstrated above, we explored the applicability in more 
complex settings. Under standard conditions, the use of or-
dinary indole resulted in low conversion of the substrates. 
However, replacing the ligand with a conventional ligand L2 
significantly enhances both enantioselectivity and reactiv-
ity (3ad). With N-Me-indole, the enantioselectivity was 
slightly enhanced with moderate regioselectivity, in which 
the branched selectivity was still the major reaction path-
way, and the yield was moderate with S-SEGPHOS (3ae). 
When a methyl group is introduced at the 3-position, the re-
action performs well with moderate regioselectivity by R-
BINAP (3af). In cases where dimethyl substitution is em-
ployed, it has been observed that the indole substituted 
with methyl groups at the 1 and 3 positions demonstrates 
exceptional performance in enantiomeric excess and mod-
erate yield albeit with a slight decrease in branched selec-
tivity (3ag).  It is worth noting that 3-methyl-substituted in-
doles (3af, 3ag) undergo allylation at position 2 instead of 
dearomatization.9g Conversely, indole substituted with 1,3-
dimethyl groups slightly decreased reactivity with excellent 
enantiomeric excess (3ah). 

Scheme 3. Scale-up Synthesis and Transformation 

 

To demonstrate the synthetic functionality of the 
fluoroallylated indoles, we performed the scale up experi-
ments, furnishing the expected product 3a in 87% isolated 
yield with 91% ee and 3ah 88% isolated yield with 90% ee 
(Scheme 3a). We further conducted synthesis experiments 
to show the synthetic utility of this method (Scheme 3b). In 
the nickel-catalyzed cross-coupling of 3ah with the Gri-
gnard reagent, the allylic product 4 was produced. Predict-
ably, the configuration of 4 was retained during the fluorine 
transformation in the Kumada coupling (Scheme 3b).  

In control experiment (Scheme 4a), we recycled the re-
maining 1g when 2a was consumed in the standard reac-
tion, the HPLC analysis showed that the recycled S-1g (the 
absolute configuration of the recovered 1g was confirmed 
by comparing with the reported data10d) up to 99% ee, cou-

pled with an isolated yield of 90%. Upon employing the re-
cycled S-1g as substrate under the standard reaction condi-
tions, no subsequent reaction was observed. These results 
conclude the involvement of a kinetic resolution pathway. 
Furthermore, given the high branched selectivity of indoles 
as the nucleophiles, we explored other aromatic heterocy-
cles. We found that substituting sulfur or oxygen for the het-
eroatom resulted in an exclusive linear selectivity (Scheme 
4b). These observations underscore the privileged nucleo-
philicity of indoles in controlling the regioselectivity.  

Scheme 4. Control Experiments 

 

In conclusion, we have developed an efficient access to 
a highly branched and enantioselective allylic substitution 
of indoles with gem-difluorinated cyclopropanes using rho-
dium catalysis. This reaction is the first example with high 
enantioselectivity and high branched-regioselectivity in the 
ring opening of DFCPs, exhibiting a broad substrate scope 
with a wide array of substituted indoles to afford C2 and C3 
allylated products. The scale-up experiments and applica-
tion demonstrated the potential of this method in synthetic 
application. Further study on the understanding of the 
origin of the branched regioselectivity is currently under-
way in our laboratory. 
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