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Abstract

In constructing finite models of enzyme active sites for use in quantum-chemical calculations, atoms
at the periphery of the model system are often constrained to prevent structural collapse during
geometry relaxation. A simple fixed-atom or “coordinate lock” approach is commonly employed
but leads to undesirable artifacts including the appearance of small imaginary frequencies. These
preclude the evaluation of finite-temperature free energy corrections, limiting thermochemical cal-
culations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by
replacing the fixed-atom constraints with harmonic confining potentials, and here we compare that
approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply
omitted. While that approach does eliminate imaginary frequencies, it tends to underestimate both
the zero-point energy and the vibrational entropy, in addition to the artificial rigidity already intro-
duced by fixed-atom constraints. Harmonic confining potentials eliminate imaginary frequencies and
provide a flexible means to construct models that can be used in unconstrained geometry relaxations.

1 Introduction

Efforts to unravel the principles of enzymatic catal-
ysis have important practical implications. For in-
stance, comprehensive insights into enzyme reaction
mechanisms are invaluable in the strategic develop-
ment of pharmaceuticals.1 This involves developing in-
hibitors that imitate the structure of either the inter-
mediate stages or the transition states of enzymatic
reactions.2 Biocatalysis has furthermore been revolution-
ized by enzyme engineering techniques,3,4 and mechanis-
tic information plays a crucial role in guiding that pro-
cess. While classical molecular dynamics (MD) simula-
tions play a central role in identifying binding sites and
key enzyme–substrate interactions, and can inform site-
directed mutagenesis studies designed to optimize enzy-
matic efficiency,5 MD force fields cannot provide mech-
anistic information for enzyme-catalyzed reactions, for
which a quantum-chemical approach is required.

The most common way to apply electronic struc-
ture theory to study enzymatic reactions is to use a
hybrid quantum mechanics/molecular mechanics (QM/
MM) formalism, coupled to all-atom MD simulations.6–9

Setup of QM/MM calculations requires considerable
care,9–11 and an underappreciated aspect is just how
slowly thermochemical predictions converge with respect
to the size of the QM region, typically requiring hundreds
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of QM atoms.12–24 Some progress has been made toward
automated selection of QM model regions.22–26

An alternative to QM/MM-MD simulations to study
mechanistic aspects of enzyme catalysis is to use limited
“cluster” models of the active site.27–31 This approach ne-
glects any atomistic description of the larger protein en-
vironment, and is thus unable to describe chemical trans-
formations that are driven by conformational changes of
the protein, but for a limited set of problems the QM-
cluster approach has an important advantage of simplic-
ity. By eliminating the need for MD sampling (requiring
a QM energy and gradient evaluation every 1–2 fs), the
cluster approach becomes amenable to higher-level elec-
tronic structure calculations.32,33

That said, QM-cluster modeling faces its own chal-
lenges insofar as one must carefully select a model to
mimic the active-site structure. Starting from a protein
crystal structure, QM geometry relaxation is required in
order to obtain bond lengths and bond angles that are
consistent with the chosen level of electronic structure
theory, but unconstrained relaxation in the absence of
an extended protein scaffold typically results in a struc-
tural collapse. To avoid this, the Cα carbons at the pe-
riphery of the model system (where the crystal structure
is truncated) are typically fixed in space, in what has
been called a “coordinate-lock” approach.28 We refer to
these as fixed-atom constraints,34 and their use may en-
gender artificial rigidity in small model systems. In prin-
ciple, this problem ought to become less severe in larger
model systems, yet larger models are susceptible to the
emergence of multiple minima.35,36 This obviates some
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of the advantage of using an optimized geometry of a fi-
nite model system in lieu of MD simulations that might
sample all the low-lying minima.

Use of fixed-atom constraints invariably results in a
large number of imaginary vibrational frequencies upon
structure relaxation.28 These have been noted in numer-
ous publications,37–60 yet a satisfactory explanation has
never been provided. The present work demonstrates
unequivocally that imaginary frequencies arise from a
discrepancy between the curvature of the potential en-
ergy surface and the Hessian that is diagonalized to ob-
tain harmonic frequencies. Their magnitude is typically
small, being variously reported (for the modes exhibit-
ing negative curvature) as |ν| ∼ 10 cm−1,37,38 |ν| .
20 cm−1,39–42 |ν| . 30 cm−1,43–46 |ν| . 40 cm−1,47–52

|ν| ≤ 50 cm−1,55–58 |ν| ≤ 60 cm−1,53 or |ν| <
100 cm−1.59

When the imaginary frequencies are small, a case can
be made to obtain zero-point energy (ZPE) corrections
to reaction enthalpies and barrier heights simply by ig-
noring them, including only the real-valued frequencies
in the ZPE calculation. This may be a workable strat-
egy to obtain T = 0 K thermochemistry and kinetics,
but the harmonic partition function affording the finite-
temperature vibrational entropy diverges in the presence
of imaginary frequencies. Its numerical value is also
sensitive to low-frequency modes; for example, a single
30 cm−1 frequency contributes 1.7 kcal/mol to ∆G◦298.61

Alternatives to the harmonic approximation have been
suggested as better approximations for the entropy asso-
ciated with low-frequency motion, yet these alternatives
still require harmonic frequencies as inputs.62 In the con-
text of quantum-chemical cluster modeling of enzymatic
reactions, it has been argued that entropic effects are gen-
erally small (meaning ∆H◦ ≈ ∆G◦),28 yet this assump-
tion cannot be systematically tested so long as cluster
models are beset by imaginary frequencies.

To eliminate imaginary frequencies, one approach is
to set to zero each matrix element of the Hessian that
is associated with a fixed atom. This method sidesteps
imaginary frequencies but does so by reducing the num-
ber of nonzero eigenvalues of the Hessian, to a total of

Nvib = 3(Natoms −Nfix)− 6 (1)

for a system with Natoms atoms in which Nfix of them
are subject to fixed-atom constraints. As a result of this
reduction in dimensionality, such a calculation cannot
be expected to afford an accurate estimate of the vibra-
tional entropy. In a previous study,34 we demonstrated
that the use of soft harmonic confining potentials for an-
chor atoms achieves the same objective as immobilizing
those atoms but without producing imaginary frequen-
cies in the first place. As such, no “zeroing-out” of the
Hessian is required, and unconstrained geometry opti-
mization algorithms can be used. In the present study,
we compare the harmonic-confiner method to the afore-
mentioned technique of zeroing out the Hessian matrix
elements associated with fixed atoms. We assess the im-

pact of either approach on the shape of potential energy
surfaces for a variety of peptide and protein model sys-
tems.

2 Computational Methods

Fixed anchor-atom constraints can be implemented
simply be setting to zero those components of the gradi-
ent vector (g) that are associated with the anchor atoms,

gi =

{
0, if xi is constrained

dE/dxi otherwise
. (2)

Note that g is computed in Cartesian coordinates before
being transformed to any other coordinate system that
might be used for geometry optimization. When vibra-
tional frequency calculations are performed on a geome-
try that has been optimized using fixed-atom constraints,
the result is often numerous (up to 3Nfix) imaginary fre-
quencies, due to an inconsistent treatment of the gradient
and the Hessian, if no adjustments are made to the latter.
In our previous work,34 fixed-atom vibrational frequency
calculations were performed in that way. However, prob-
lems with imaginary frequencies can be mitigated some-
what by means of a makeshift approach based on a Hes-
sian matrix (H) whose elements are

Hij =

{
0, if xi and xj are unconstrained

d2E/dxidxj otherwise
.

(3)
This zeroed-out Hessian technique (as we will call it
herein) typically avoids imaginary frequencies, but in a
sense only hides the problem by removing the contribu-
tions of the constrained atoms to the normal mode anal-
ysis. The number of meaningful frequencies is reduced to
Nvib in eq. 1

As an alternative to the coordinate-lock or fixed-atom
approach, the use of harmonic confining potentials en-
ables each restrained atom to oscillate around its anchor
position, more accurately describing its vibrational mo-
tion in relation to the rest of the protein backbone. In
this harmonic-confiner model,34 an additional classical
energy term is introduced, namely

Vconf(r1, r2, . . .) =
1

2

Nfix∑
i=1

ki‖ri − r0
i ‖2 (4)

where ri indicates the Cartesian coordinates of the ith
restrained atom, whose anchor position is r0

i . The same
force constant is used for each restrained atom, and its
value (k = 450 N/m) reflects a typical C–C single bond.63

In the present work, all restrained atoms are Cα carbons
of the peptide backbone. Analytic derivatives of Vconf are
incorporated into the gradient and Hessian calculations,
and no gradient or Hessian elements are set to zero or
otherwise manipulated within this approach.
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Fig. 1: (a) Tetrapeptide ABAB, optimized in the presence of
constraints φ = 180◦ = ψ, and (b) its central dipeptide BA.
Side chains are denoted with generic labels RA and RB for
residues A and B. Green asterisks in (b) mark the locations
of anchor atoms.

Electronic structure calculations were performed at the
B3LYP+D3(BJ)/6-31G(d,p) level, where D3 indicates
Grimme’s empirical dispersion correction,64 evaluated
using the Becke-Johnson (BJ) damping function.65,66

The SG-1 quadrature grid is used for the exchange-
correlation integration.67 The self-consistent field (SCF)
convergence criterion was set to 10−8 Ha, with integral
and shell-pair drop tolerances set to 10−11 a.u.. All cal-
culations were performed using the Q-Chem program,68

in which we have implemented both harmonic confining
potentials and the zeroed-out Hessian approach. (Both
methods are available starting from Q-Chem v. 6.0.) For
some calculations, the conductor-like polarizable contin-
uum model (C-PCM) was used to incorporate dielectric
boundary conditions.69–71 For these calculations, the so-
lute cavity was constructed from atomic spheres with
radii 1.2 times larger than those in the modified Bondi
set.71–73 This cavity was discretized using the switch-
ing/Gaussian algorithm,71,74,75 with 110 Lebedev grid
points for each hydrogen and 194 Lebedev points for
other atomic spheres. Note that low-dielectric bound-
ary conditions (with ε = 2–4) can be critically important
for converging SCF on large protein models with ionic
side chains.76,77

3 Results and Discussion

A. Constrained Dipeptides. To investigate how
constraints impact vibrational frequencies and vibra-
tional ZPE in proteins, a data set of ten tetrapeptides was
prepared, each having the sequence ABAB for distinct
amino acids A and B with charge-neutral side chains.
Geometry optimizations were performed using vacuum
boundary conditions (ε = 1), with dihedral ψ and φ
angles constrained at 180◦, which maintains a virtually
flat backbone structure. Next, the central BA dipep-

tide was extracted from the optimized geometry as in-
dicated in Fig. 1, for use in subsequent restrained-atom
optimization and vibrational frequency calculations. For
those calculations, we defined four anchor atoms: two
Cα atoms at the points of separation from the tetrapep-
tide, as well as two Cβ atoms on side chains RA and
RB ; see Fig. 1b. Restrained-atom optimizations and har-
monic frequency calculations were performed on these
ten dipeptide models using either harmonic confining po-
tentials or, alternatively, fixed-atom constraints. In the
latter case we will compare frequencies obtained from
an unmodified Hessian versus those computed from the
zeroed-out Hessian that is defined in eq. 3.

Table 1 summarizes the results of relaxed-constrained
vibrational frequency calculations, including the total
ZPE and also the number of imaginary frequencies ob-
tained, nim. In two cases, a single imaginary frequency
remains when harmonic confining potentials are used,
typically associated with the methyl group on residue B
and which is an artifact of the dihedral constraints that
are used in these dipeptide examples; these constraints
will be lifted for the realistic enzyme models that are con-
sidered below. With fixed-atom constraints and an un-
modified Hessian, 10 of 12 examples exhibit nim = 1 or 2,
suggesting that most of these originate from the use of an-
chor atoms rather than the dihedral constraints. When
the zeroed-out Hessian is used at the same fixed-atom
relaxed geometry, however, the number of imaginary fre-
quencies proliferates. Defining

n0
im = nim − 3Nfix , (5)

which reduces the count by the 3Nfix imaginary frequen-
cies that we expect from fixing Nfix atoms in space, we
find that n0

im = 0 or 1 for the zeroed-out Hessian tech-
nique. This suggests that one should expect 3Nfix imag-
inary frequencies, in a fixed-atom calculation with Nfix

anchor atoms, when the corresponding matrix elements
of H are set to zero.

ZPE corrections in Table 1, which are computed using
only the real-valued frequencies, are consistently lower
for the zeroed-out Hessian than they are for the unmod-
ified Hessian with fixed-atom constraints, by 8 kcal/mol
on average. This is a direct result of the larger value
of nim for the zeroed-out Hessian and suggests that this
approach likely underestimates the true ZPE. Using har-
monic constraints, the ZPE is larger than it is for either
fixed-atom calculation. The difference is greatest for the
largest dipeptide considered, and in Fig. S1 we demon-
strate that the difference scales approximately linearly
with the number of anchor atoms, using several of the
model systems that are considered below.

These dipeptide calculations emphasize shortcomings
of the conventional fixed-atom method for vibrational
frequency analysis. Although not explored in the
present work, one might expect similar issues to arise
in normal mode analysis based on fixed-atom con-
straints, as used for vibrational spectroscopy simulations
of metalloenzymes.78–80 The focus here is on calcula-
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Table 1: Results of Relaxed-Constrained Vibrational Frequency Calculations on
Dipeptides.

Peptide

Fixed-Atom Harmonic Confiner

unmodified Hessian zeroed-out Hessian
ZPEa nim

ZPEa nim ZPEa nim n0
im

Ala–Arg 225.0 1 218.0 12 0 231.8 0

Asn–Asp 180.7 2 174.0 12 0 188.2 0

Cys–Glu 180.6 2 172.8 13 1 187.6 0

Gly–Gln 169.9 2 163.8 12 0 177.4 0

His–Ile 239.5 1 231.5 12 0 246.3 1

Leu–Lis 271.4 2 263.1 12 0 278.3 0

Met–Phe 240.6 1 232.8 12 0 248.0 1

Pro–Ser 179.4 0 170.3 13 1 185.6 0

Thr–Trp 243.6 0 234.9 12 0 250.5 0

Tyr–Val 242.6 1 234.7 12 0 245.9 0

aZPE in kcal/mol, using only the real-valued frequencies. computed at the B3LYP+D3/
6-31G(d,p) level.

tions of reaction barriers (to elucidate mechanistic infor-
mation), and subsequent examples will explore realistic
quantum-chemical cluster models of enzyme active sites
from this point of view.

B. Structure Relaxation in an Enzyme Model.
We next consider a realistic enzyme model and inves-
tigate the effect of harmonic restraining potentials on
the shape of the potential surface, for a one-dimensional
scan along a flexible torsion angle. These calculations
employ a cluster model of the active site of threonyl-
tRNA synthetase (ThrRS), in which p-biphenylalanine
is found with the biphenyl moiety in a coplanar confor-
mation (PDB: 4S03).81 The charge-neutral cluster model
is taken from Ref. 82 and which is shown in Fig. 2,
highlighting the biphenyl moiety. We constructed a one-
dimensional scan around the indicated dihedral angle (θ)
between phenyl rings of the biphenyl moiety, relaxing
other degrees of freedom at each fixed value of θ. These
one-dimensional scans are plotted in Fig. 3 using either
vacuum boundary conditions (ε = 1) or else dielectric
boundary conditions with ε = 4, and carried out using
either fixed-atom constraints or harmonic confining po-
tentials for the anchor atoms.

A previous computational study of the same ThrRS
model,82 using B3LYP+D3/6-31G(d′) and C-PCM with
ε = 4, reported a minimum-energy biphenyl angle θ =
−2.5◦. Using fixed-atom constraints, and scanning in 5◦

increments, we obtain a minimum at θ = −5.0◦ using
either ε = 1 or ε = 4 (see Fig. 3). Our procedure dif-
fers in minor details from that in Ref. 82, with a slightly
different basis set [6-31G(d,p)] and a somewhat differ-
ent solute cavity construction, but we regard our results
as being entirely consistent with the previously reported
minimum-energy structure. It is worth noting that nei-
ther of these basis sets is likely to afford a converged

θ

Fig. 2: Active-site model of ThrRS containing 275 atoms,
from Ref. 82. The biphenyl unit is indicated in red and the
green arrow indicates the torsion angle θ that is explored here.
Anchor atoms are indicated by gold dots though not all of
them are visible here.

energy profile,83 but our purpose here is to make contact
with previous studies that employ fixed-atom constraints.

In the present work, fixed-atom constraints result in
nearly identical torsional potentials regardless of whether
ε = 1 or ε = 4; see the overlay of the two potentials that
is provided in Fig. S2. This system is relatively con-
strained, with 31 anchor atoms in a 275-atom model sys-
tem, and clear differences in the dihedral potential arise
when the fixed atoms are replaced with harmonic confin-
ing potentials. The latter alleviate the artificial rigidity
introduced by the fixed atoms, leading to a softening of
the potential. The differences are more pronounced for
ε = 4, but even in the case of vacuum boundaries one can
observe this lowering of the potential for θ & 10◦. The
minimum-energy structure is not affected because energy
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(a) ε = 1 (vacuum) (b) ε = 4 (C-PCM)
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Fig. 3: Relaxed torsional scans of ThrRS around the biphenyl dihedral angle θ that is depicted in Fig. 2, using (a) vacuum
boundary conditions or (b) dielectric boundary conditions with ε = 4. All calculations are performed at the B3LYP+D3/
6-31G(d,p) level.

changes within about 5◦ of the minimum-energy torsion
angle are no larger than ∼ 0.1 kcal/mol for the calcula-
tions using harmonic confining potentials, but for larger
values of θ there is significant energy lowering under di-
electric (ε = 4) boundary conditions This suggests that
the additional geometric relaxation that is possible when
fixed-atom constraints are lifted leads to modest changes
in the electronic structure that further polarize the en-
vironment. This may be an indication that larger model
systems are required to converge thermochemical quanti-
ties when more flexible models with harmonic restraints
are employed.

With that in mind, we note that it is often sug-
gested that the the influence of dielectric bound-
ary conditions wanes as the size of the QM-cluster
model increases,35,43,48 especially for models with &
150 atoms.48 In our own work using sizable enzyme
models,34,77 including some with ionic side chains,77 we
observe that enthalpy changes and barrier heights com-
puted using ε = 2 or ε = 4 are virtually indistinguish-
able from results obtained using much larger dielectric
constants. However, results for ε = 2 are distinguishable
from those obtained using vacuum boundary conditions
(ε = 1). That said, ThrRS proves to be something of
a counterexample, in which the added flexibility of har-
monic restraints combines with the dielectric boundaries
to afford a qualitatively different energy profile. These re-
sults caution against drawing blanket conclusions on the
basis of fixed-atom structure relaxations, as such models
may be overly constrained.

C. Reaction Energy Profiles for Enzyme Models.
We next examine several active-site models for an en-
zymatic reaction in which l-aspartate α-decarboxylase
(AspDC) catalyzes conversion of l-aspartate to β-
alanine. This is an essential process in biosynthe-

Fig. 4: Transition-state structure for model II of AspDC
(from Ref. 50), leading to CO2 release. Anchor atoms are
indicated by connections to cartoon springs.

sis of vitamin B5 that produces a precursor to 4′-
phosphopantetheine and coenzyme A in bacteria.84 Pre-
vious modeling by others explored the decarboxylation
of l-aspartate using various cluster models of AspDC,50

focusing on the C–C bond-breaking step leading to liber-
ation of CO2. One of these active-site models is depicted
in Fig. 4, derived from the crystal structure of AspDC
taken from H. pylori in association with iso-asparagine
(PDB: 1UHE).85 Here, we examine how various anchor-
atom constraints impact the predicted barrier heights,
ZPE, and vibrational entropy as the model size increases.

Four different model systems, designated I–IV and con-
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Table 2: Barrier height (∆‡E) and Reaction Energy (∆rxnE) for Models of AspDC
Decarboxylation.a

Model Natoms Nfix
∆‡E (kcal/mol) ∆rxnE (kcal/mol)

Fixed-Atom Harmonic Fixed-Atom Harmonic
unmodifiedb zeroed-outb Confiner unmodifiedb zeroed-outb Confiner

I 76 5 13.4 (−2.7) 13.6 (−2.6) 9.4 (−2.4) 8.5 (−3.1) 8.7 (−2.9) 5.4 (−2.5)
II 95 7 9.6 (−2.5) 9.3 (−2.4) 8.9 (−2.2) −0.0 (−2.2) 0.2 (−1.9) 1.8 (−2.7)
III 135 9 8.3 (−2.5) 8.4 (−2.4) 8.2 (−1.5) −0.2 (−1.2) 0.3 (−1.2) 3.3 (−1.3)
IV 189 14 14.2 (−4.0) 14.4 (−3.9) 10.2 (−1.7) 3.5 (−0.9) 3.4 (−1.1) 3.3 (−1.0)

aB3LYP+D3/6-311+G(2df,2p)//B3LYP+D3/6-31G(d,p) level with the ZPE correction included. (This
correction is also indicated in parenthesis.) bDescribes how the Hessian is treated.

taining 76–189 atoms, were taken from Ref. 50. The
largest of these (model IV, which is called model IV.2
in Ref. 50) consists of 15 amino acid residues, some
of which are truncated, and a crystallographic water
molecule. The total number of anchor atoms ranges from
Nfix = 5–14 as listed in Table 2. These model structures
were relaxed at the B3LYP+D3/6-31G(d,p) level, using
Becke–Johnson damping for the D3 correction.66 Only
minor changes are observed relative to the structures pro-
vided in Ref. 50. These are documented for model I in
Fig. S3 and consist primarily of some movement of a 4-
methylphenol ring, which is a truncated model of tyrosine
and which turns slightly about the fixed anchor atom in
our optimizations.

Energetics are reported here at the B3LYP+D3/
6-311+G(2df,2p)//B3LYP/6-31G(d,p) level, where the
basis set used for the single-point energy calculations
afford error statistics comparable to much larger ba-
sis sets, in benchmark tests.83 In Ref. 50, energet-
ics were reported at the B3LYP/6-311+G(2d,2p)//
B3LYP/6-31G(d,p) level but we consider that the use of
dispersion-corrected B3LYP is important for conforma-
tional energies, thermochemistry, and barrier heights.86

In Ref. 50, vibrational frequency calculations were omit-
ted for model IV but they are reported here.

Table 2 presents computed values for the forward bar-
rier height

∆‡E = ETS − Ereactants (6)

and for the reaction energy

∆rxnE = Eproducts − Ereactants (7)

for models I–IV, using both fixed-atom and harmonic
restraints. All values include ZPE corrections, which are
also listed separately in Table 2. In the case of fixed-
atom constraints, results are compared for two different
Hessians, one that is unmodified and one in which the
fixed-atom contributions are deleted, as in eq. 3. Small
imaginary frequencies are observed with the unmodified
Hessian, which are absent when eq. 3 is used instead,
although neither ∆‡E nor ∆rxnE is significantly affected
by the presence or absence of these imaginary frequencies.
The use of harmonic restraints affords structures that are
strictly free of imaginary frequencies save for the over-
the-barrier mode at the transition state.

Although models I–III appear to be approaching con-
verged values for both ∆‡E and ∆rxnE, using either har-
monic or fixed-atom restraints, results for model IV are
rather different when fixed-atom constraints are used.
In our calculations, the ZPE-corrected barrier height
increases from 8 kcal/mol (model III) to 14 kcal/mol
(model IV), such that ∆‡E(IV) is closer to ∆‡E(I), af-
ter having decreased in the order ∆‡E(I) > ∆‡E(II) >
∆‡E(III). (This is consistent with a sizable jump in the
energetics between model III and model IV.2 that is re-
ported in Ref. 50, from 9 kcal/mol to 13 kcal/mol un-
der vacuum boundary conditions.) Although the same
trend is observed when harmonic confining potentials are
used, the magnitude of the effect is significantly sup-
pressed. Similar trends are observed for ∆rxnE. Re-
sults for model II thus appear to be converged to within
< 2 kcal/mol of those for model IV, when harmonic con-
fining potentials are employed. The same cannot be said
when fixed-atom constraints are used.

Dielectric boundary conditions are omitted in these
calculations. In Ref. 50, boundary conditions with ε = 4
increase ∆‡E for model IV by 4.0 kcal/mol and increase
∆rxnE by 5.6 kcal/mol. These corrections are similar
for the smaller models, e.g., 3.9 kcal/mol (∆‡E) and
2.7 kcal/mol (∆rxnE) in the case of model III, and are
only reduced below 1 kcal/mol for a larger model V
with 220 atoms.50 In that case, values for both ∆‡E and
∆rxnE do converge (within 1 kcal/mol) for model V us-
ing fixed-atom constraints, but the present work suggests
that convergence is more rapid when harmonic confining
potentials are used instead.

Harmonic restraints also lead to more rapid conver-
gence of the ZPE correction, which is converged even for
model III. This is a useful observation because DFT ana-
lytic frequency calculations incur a cubic-scaling mem-
ory bottleneck for solution of the coupled-perturbed
equations.87–89 With harmonic restraints, it may be pos-
sible to use smaller models to estimate the thermal vi-
brational contribution to ∆rxnG.

Reaction-profile diagrams for all four models are
shown in Fig. 5, with vibrational free energy corrections
(−T∆Svib) computed at T = 298.15 K. Entropic and
ZPE effects both generally stabilize the transition state
and the product state relative to the reactant state, and
they do so to a much greater degree than the 0.1 kcal/mol
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Fig. 5: Energy profiles for AspDC-catalyzed decarboxylation, computed at the B3LYP+D3/6-311+G(2df,2p)//B3LYP+D3/
6-31G(d,p) level using model systems of increasing size, I–IV. All energies are relative to the reactant state (R). Some of the
transition state (TS) and product state (P) energies, computed with the same corrections, are connected by dashed lines as
guides for the eye.

correction (at T = 298 K) that was estimated in Ref. 50
based on a “model 0” containing just 27 atoms, which
is likely to be over-constrained. A larger model size
does not always equate to a larger vibrational correc-
tion, however, as one might have anticipated based on
dimensionality or flexibility arguments. With harmonic
restraints, the largest corrections are found for the prod-
uct state in model I, although this is not true in the
case of fixed-atom constraints. Numerical values for the
entropy and ZPE corrections are provided in Table 3,
and one can see that the fixed-atom values sometimes
oscillate with model size, and may differ in sign as com-
pared to fully harmonic values. The latter are consis-
tent in sign and appear to converge as the model size
increases. Furthermore, for this particular system there
is really no justification to argue that ZPE is more im-
portant than finite-temperature contributions to the free
energy at T = 298 K.

As model size increases from I to III, the fixed-atom
models go from having the highest product energy to
having the lowest, although results for model IV are sim-

Table 3: Vibrational Entropy and ZPE Correc-
tions (in kcal/mol) for Models of AspDC.a

Model
−T∆Svib ZPE

fixed harmonic fixed harmonic

I ∆‡E 1.67 1.07 −2.56 −2.41
II ∆‡E 2.42 0.04 −2.39 −2.23
III ∆‡E 1.35 0.75 −2.40 −1.51
IV ∆‡E 6.92 −0.73 −3.85 −1.74
I ∆rxnE 5.75 3.14 −2.89 −2.46
II ∆rxnE 5.64 3.00 −1.93 −2.68
III ∆rxnE 2.82 1.14 −1.19 −1.31
IV ∆rxnE 2.92 −1.33 −1.07 −1.08

aB3LYP+D3/6-31G(d,p)

ilar in this respect. For the fixed-atom models, differ-
ence between transition state and product energies be-
come more pronounced in models II and III as compared
to model I but then contract significantly in model IV.
In all cases the difference between transition state and
products is smaller when harmonic confining potentials
were used. This suggests that the harmonic restraints ef-
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fectively mitigate rigidity, and imparting physical mean-
ing to the anchor atoms, particularly when dealing with
smaller models.

4 Conclusions

Quantum-chemical cluster models of enzyme active
sites have emerged as a valuable and practical approach
for understanding enzymatic reaction mechanisms. How-
ever, the requisite trimming of the active-site model can
exert a significant influence on the resulting energetics,
as can the details of how the model is constrained for
geometry optimization and vibrational frequency calcu-
lations. Fixed-atom constraints are popular but their
use is marred by the emergence of numerous imaginary
vibrational frequencies. These can be eliminated via ad
hoc deletion of Hessian matrix elements associated with
the fixed (anchor) atoms, yet the rigidity that is intro-
duced by this approach may afford barrier heights and
reaction energies that differ significantly from those ob-
tained when soft harmonic confining potentials replace
the fixed-atom constraints. The latter approach elimi-
nates imaginary frequencies while offering a convenient
means to account for both ZPE and finite-temperature
vibrational entropy.

The present work demonstrates that the crude ap-
proach of simply deleting Hessian matrix elements can
be an effective way to eliminate imaginary vibrational
frequencies in the presence of fixed-atom constraints, yet
this simple approach is not without limitations. It tends
to underestimate the ZPE, which can hinder the predic-
tion of reaction thermochemistry and kinetics, conver-
gence with respect to model size is sometimes erratic,
and finally the fixed-atom technique introduces artifi-
cial rigidity that is evident in steeper torsional poten-
tials for conformational changes within the active site.
In contrast, the use of harmonic confining potentials is
equally simple yet preserves the number of vibrational
modes, resulting in a more realistic representation of
vibrational contributions to thermochemistry and bar-
rier heights. Application of harmonic restraints to an
enzyme-catalyzed decarboxylation reaction, using vari-
ous active-site models containing 76–189 atoms and ne-
cessitating numerous anchor atoms, reveals that conver-
gence with respect to model size is generally better than
what is observed using fixed-atom restraints. The sim-
plicity of the harmonic approach suggests that this should
be the default paradigm for quantum-chemical cluster
modeling of enzyme active sites.
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