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Abstract: Designing organic fluorescent molecules with tailored optical properties is challenging
in decades, while the new avenue was opened by the statistical models. Inverse design has
garnered considerable interest in organic materials science but concentrates on arbitrary design
or theoretical properties. Here, we introduce a strategy that enables direct optimization of
specific experimental properties in the inverse design process, utilizing a variational
autoencoder (VAE) with a latent vector-based prediction model. Omitting the Kullback-Leibler
divergence and separate training strategy successfully improved the generator's robustness and
molecular diversity. We confirm the latent vectors obtained from VAE are powerful inputs for
downstream prediction models of experimental properties, fluorescence energy and quantum
yield. Our approach for the optimized search of organic fluorescent materials, substantiated by
gradient space derived from latent vector and validated by newly synthesized and
uncharacterized molecules, shows potential for broader applications in diverse organic material
design.
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The design of small-molecule organic fluorophores has become a central focus in biological
research and material science due to the advent of fluorescence-based applications.1–4 Despite
this interest, the controlled synthesis of fluorophores remains challenging because of the
intricate relationship between structure and properties.5–7 Traditional first-principles calculations
offer a partial solution; however, they often fail to balance computational speed with accuracy
and can only work on limited properties.8–10 Recent advances in machine learning (ML) have
provided alternative pathways for predicting optical properties of organic materials (Fig 1A).11–17
For instance, the ChemFluor dataset served as the basis for Ju et al.'s ML model for
photophysical property prediction.11 Similarly, Joung et al. utilized a deep learning framework to
predict a range of optical properties.12

The success of statistical models raises the possibility of inverse design and the targeted
search for optimized compounds (Fig S1).18–21 The challenge of inverse design with predictive
models for organic materials comes from the reliance on molecular descriptors, which translate
molecular structures into machine-readable formats.22,23 This translation is unidirectional,
preventing the reconstruction of molecular architectures from descriptors alone, thus limiting the
scope for reverse engineering. Graph neural networks show promise in predictive modeling but
their exploitation for reverse engineering has been limited.24,25 Additionally, the discrete nature
of these variables (such as molecular fingerprints) complicates the computation of gradients
during optimization, posing a barrier to the seamless application of conventional optimization
techniques.26,27 In response to these challenges, various generator architectures have garnered
substantial interest.28–30 Early work by Aspuru-Guzik et al. on a SMILES-based variational
autoencoder (VAE) opened avenues for optimized compound searches, albeit limited to small
molecules.31,32 Moreover, generator has been explored in ML-assisted material design as well
but concentrate either on arbitrary design or theoretical properties.33,34

Here, we questioned if the search for optimized compounds with specific experimental
properties in materials science can also be achieved through an integrated generator-predictor
framework (Fig 1B). This approach, however, presents several challenges that impede large-
scale exploration. Primarily, the combination of generation and prediction tools has
predominantly focused on properties derived from quantum chemical computations due to the
limited scarcity of experimental datasets.35,36 The limited size of experimental datasets will
compromise the generator's efficacy. Additionally, this integration typically necessitates co-
training of the decoder and predictor.32 Lastly, predicting experimental properties—such as
fluorescence wavelengths, quantum yields in organic fluorophores, power conversion
efficiencies (PCEs) in organic photovoltaics (OPVs), and charge carrier mobility in organic field-
effect transistors (OFETs)—proves substantially more difficult than computational attributes due
to the multifaceted influences in real-world experimental conditions.
To answer these questions, we developed a workflow leveraging RB-Boost VAE and a

predictor to directly optimize organic fluorophores on a high dimensional space fitted from
experimental energies (Fig 1C). We train the generator and predictor separately, and thus make
the data fusion in the generator become possible. Utilizing the latent vectors from this RB-Boost
VAE, we constructed a prediction model for the photophysical properties, including
photoluminescence quantum yield (PLQY) and emission energy within error of quantum
mechanical precision (~0.12 eV). Then, we visualize the high-dimensional space to confirm the
possibility of target molecular optimization. Experimental validation with newly synthesized
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molecules sampled from optimal regions of high-dimensional space successfully confirms the
feasibility of our generator and predictor. Applying our method in a fluorophore skeleton, we
synthesized a new compound with bright blue emission, showcasing our strategy's potential for
material discovery. Our workflow proves the feasibility of inverse design achieved through target
optimization and signals a transformative approach to diverse organic material design.

To construct a VAE with improved molecular diversity, we used SELF-referencing
Embedded Strings (SELFIES), a much more robust molecular string representation compared
to SMILES, which can be easily standardized and transferred into a one-hot format (Fig 1D).37
We first validate performance on the QM9 dataset using a simple VAE model, which produces a
reconstruction rate of 98.5% (Fig 1E and Table S1). However, when we move to a dataset with
larger fluorescent molecules, ChemFluor30 (a sub-dataset of ChemFluor with the molecules
smaller than 30 heavy atoms), the performance is largely reduced. Meanwhile, the small size of
this dataset (~2,000 molecules) also motivated us to improve its broader molecular diversity. To
overcome these challenges, we first modify the loss function of the VAE by excluding the
Kullback-Leibler divergence inspired by traditional autoencoder, named as RB VAE (ReBuild
VAE) (Method S1.1.2). Although KL divergence typically contributes to the regularization of the
model, its exclusion allows the model to prioritize minimizing reconstruction loss and increase
the reconstruction rate, which is critical for the direct optimization process. Additionally, we
rationalized that integrating diverse molecular scaffolds during the training process can broaden
the scope of information sampling within the latent layer. Therefore, we employed data fusion to
compensate for the dataset's limitations by incorporating additional molecules that align with
established protocols (Method S1.1.3). Complementarily, we performed targeted augmentation
via PubChem, enriching our dataset with structurally analogous molecules (named as RB-Boost
VAE). This dual strategy not only expanded our dataset but also introduced a wider array of
molecular characteristics. The efficacy of these enhancements was confirmed by an improved
reconstruction rate, which saw an increase from 59% to 64% when benchmarked against the
original model.

We then evaluated between the enhanced RB-Boost VAE and the original model by
perturbing a subset of latent vectors to generate molecules (Fig 1F and Fig S2). The RB-Boost
VAE demonstrated superior performance, generating an average of 6.3 times more total distinct
molecules with a broader chemical feature set, indicative of a more complex chemical space
encapsulated during model training (Fig S2A). This contrasted with the original VAE, which
tends to generate more similar structures. Moreover, the RB-Boost VAE facilitated the
generation of transitional molecular structures through interpolation between two selected latent
vectors (Fig 1G and Fig S3). Despite some resulting in non-viable molecules, the majority of
these intermediate structures were coherent and synthesizable, emphasizing the strength of our
strategy in refining the VAE architecture to generate a wide range of diverse molecules.

With the establishment of the generator, we move to the prediction model. To adapt our
VAE for chemical prediction, we train our predictor separately based on the learned latent space.
This approach diverges from the conventional joint training approach which often restricts
chemical diversity.32 Our investigation prioritizes emission energies—key optical properties for
organic emitters. We adopt Gradient Boosting Regression Trees (GBRT), lauded for its
predictive precision in our prior research (Table S2). The model results in a mean absolute error
(MAE) of 0.128 eV using latent vectors as the input, surpassing TD-DFT accuracy (~0.15 to
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0.20 eV) and are sufficient for utilizing in virtual screening (Fig 1H and Table S3).38–42 A similar
MAE of 0.124 eV was obtained from one-hot SELFIES as input indicated the high fidelity of the
latent vector generated from SELFIES. Utilizing t-SNE visualizations, we observe the cluster of
various structures such as Rhodamine and BODIPY derivatives (Fig 1I). Meanwhile, the
analogous distributions between latent vectors and SELFIES proves that they are high fidelity
predictors, while the distinct from ECFP4 suggest their uniqueness (Fig S4).

Furthermore, we assess PLQY predictions within latent space. Considering the distribution
of PLQY and real-world situations, we apply 0.25 as a threshold to classify the bright and dark
molecules (Fig 1J). Our classifier discerns between bright and dark materials with an accuracy
of 0.81, rendering it suitable for practical predictive applications (Fig 1K).

Based on the demonstrated performance of our generator and predictor, we have utilized
vector group tuning to visualize the high-dimensional space in a 3D plot, facilitating precise
structural adjustment and exploration (Method S1.1.5). We applied this approach with
molecules shown in the center of Fig 2A, where the manipulation of latent vectors yielded
diverse molecules with predicted emission energies ranging from 1.9 eV to 2.3 eV. To validate
the reliability of the predicted fluorescence energy in the generated high-dimensional space, we
employed Semiempirical Tight Binding, GFN2-xTB, a semiempirical quantum mechanical
methods to estimate the HOMO-LUMO gap of molecules with similar skeleton generated in this
high-dimensional space (Fig S5).43 Molecules with similar skeleton are selected here for the
computational validation since we want to minimize the structure diversity that increase the
complexity and difference between computational and experimental properties. The correlation
further supports the validity of our approach (Fig 2B). Although it needs to be recognized that (1)
semiempirical methods is not accurate; (2) calculated H-L gap only reflect the electronic
structure in ground state while emission is highly related to excited state, we rational that
molecules with similar skeleton should at least have similar trend between H-L gap and
fluorescence wavelength. This localized optimization highlights our approach's potential in fine-
tuning molecular structures and properties, confirming its utility in precision design.

To further corroborate our strategy's efficacy, we synthesized and analyzed novel
molecules. Initially, derivatives of benzoxazole and imidazopyridine (1-3) were subjected to the
RB-Boost VAE with successful reproduction of 1 and 2, whereas 3 underwent a transformation
to 5-methyl-1H-pyrrolo[1,2-a]imidazole 4 (Fig 2C). Later, to evaluate the performance of the
predictor, we characterized their fluorescence spectra in CH2Cl2 (Fig 2D). Although the absolute
error is around 0.20 eV, the model accurately reflected the emission trend for 1 and 2, which
possess a similar biaryl backbone. Following this initial validation of the generator and predictor,
we investigated the utility of our strategy in optimized compound searches and molecular fine-
tuning. Due to the complexity introduced by the high-dimensional latent space, we centered our
exploration on the nearby molecules of imidazopyridine derivative 5 (Fig 2E and Fig S6-10). We
choose molecule 6 with an extended π-system, for its plausible structure and predicted red-
shifted emission compare with 5（3.05 eV to 2.77 eV). Considering synthetic feasibility and our

laboratory's compound library, we synthesized 7 based on the backbone of 6. The

photophysical characterization of 7 revealed its bright blue emission with a CIE coordinate (0.16,
0.09), indicating its potential as a blue OLED emitter (Fig 2F).44
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In summary, we've successfully demonstrated the feasibility of optimized organic materials
search based on experimental properties through a novel combination of VAE and a predictor.
We confirmed the practicality of our method in searching for optimized compounds by (1) the
evaluation of the predictor performance (2) visualization of the latent space with predicted
emission energy validated by semiempirical quantum mechanical methods. Furthermore,
synthesized molecules support the feasibility of our generator and predictor. Using a fluorophore
skeleton as an example, we designed and synthesized 7 and confirmed bright blue emission,
further demonstrating the possibility of our strategy in materials discovery. This streamlined
workflow not only enables fine-tuning of molecular properties for optimized compounds but also
heralds a new era of material design, with promising applications in the development of OLEDs,
and extending potential to OPVs and OFETs.
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Figure1. RB-Boost VAE and Predictor.
(A) The schematic for direct design.
(B) The schematic for inverse design by searching for targeted molecules.
(C) Diagram for different molecular representation.
(D) Overview of the methodology for optimized materials search developed in this study.
(E) Evaluation of VAE model accuracy across various datasets. RB VAE refers to the model
excluding the Kullback-Leibler divergence, while RB-Boost VAE incorporates data fusion into
the RB VAE framework.
(F) RB-Boost VAE enhances diversity in molecular generation. Only typical molecules
generated by disturbing a randomly selected and consistent subset of vectors are shown here.
(G) Capability of RB-Boost VAE in generating viable molecules from latent vector interpolations.
(H) The predictor based on GBRT with latent vector (left) or SELFIES (right) well reproduces the
emission energy in the test set.
(I) T-distributed stochastic neighbor embedding (t-SNE) of latent vectors. Colors indicate the
emission energies.
(J) The distribution of PLQY in the dataset. 0.25 is set as the threshold for bright and dark
molecules.
(K) The prediction performance of PLQY with latent vector as input.

Figure2. High-Dimensional Latent Space Analysis and Synthesis Validation.
(A) Visualization and analysis of the continuous high-dimensional space, indicating potential for
optimization.
(B) Correlation between the HOMO-LUMO gap calculated by GFN2-xtb and the predicted
emission energy of molecules with similar backbone obtained in high-dimensional space.
(C) External validation of RB-Boost VAE using uncharacterized synthesized molecules.
(D) Comparison of experimental fluorescence spectra with predicted emission energies for
uncharacterized molecules, illustrating prediction accuracy.
(E) Fine-tuning on the fluorophore skeleton (imidazopyridine) by exploring nearby molecules
and controlling synthesis complexity.
(F) The fluorescence spectrum of molecule 7.
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