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 Abstract: In this study, we harness the distinct reactivity of sulfenylnitrenes, which insert a single 

nitrogen atom to transform readily available pyrroles, indoles, and imidazoles into synthetically 

challenging pyrimidines, quinazolines, and triazines, respectively. Our additive-free method for skeletal 

editing employs easily accessible, 

benchtop-stable sulfenylnitrene precursors 

as a source of a single nitrogen atom. This 

chemical approach is compatible with free 

pyrroles, indoles, and imidazoles with diverse functional groups, including oxidation-sensitive 

functionalities like phenol and thioether. Additionally, this approach facilitates the selective incorporation 

of a single nitrogen atom into various natural products, amino acids, and pharmaceuticals. Furthermore, 

we have conducted mechanistic studies and explored regioselectivity outcomes through DFT calculations. 
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Introduction 

Since the inception of scaffold hopping, a term coined by Schneider and colleagues in 1999,1 

several methods have been developed to alter the biological and pharmacological properties of molecules 

through seemingly simple modifications to their molecular structures.2 Among them, skeletal editing has 

taken center stage as it modifies the molecular frameworks by adding or removing atoms.3 In the late-

stage functionalization of scaffolds, notable progress has been achieved through the editing of carbon, 

nitrogen, or oxygen atoms within a skeleton.3-4 This process enhances the chemical diversity in existing 

libraries, allowing exploration of the vast uncharted regions of chemical space in drug discovery.5 

The inclusion of nitrogen atoms in organic compounds holds pivotal significance in medicinal 

chemistry and drug development.6 For example, pyrroles, indoles, and imidazoles are prevalent in 

nitrogen-containing heterocycles, and direct incorporation of a single nitrogen atom into these structures 

offers a straightforward route to synthetically challenging heterocycles (quinazoline, pyrimidine, or 

triazine) without altering the substitution pattern. Therefore, incorporation of a single nitrogen atom could 

revolutionize late-stage diversification by adding the key pharmacophores in drug discovery libraries.2a  

The strategy of N-atom insertion into an aromatic compound goes back to 1964 when ammonium 

chloride was used as a source of a single nitrogen atom in the presence of oxidizing agents7 (Figure 1a). 

Despite significant advances in direct N-atom addition,8 most methods rely on nitrene intermediates that 

requires harsh reaction conditions for their generation, involving heavy metals8g or excessive use of potent 

oxidizing agents8f, 9 constraining their synthetic applicability. Additionally, some methods require the 

protection of free nitrogen in substrates like indoles, necessitating a separate pre-functionalization step.8i 

Moreover, direct insertion of nitrogen atoms into pyrroles and imidazoles remains underexplored, with 

only a limited number of reports.8j, 10  

Motivated by the potential of nitrenes bearing a leaving group to incorporate a single nitrogen 

atom, we aimed to uncover a mild protocol that does not depend on oxidizing agents. Our investigation 

led us to sulfenylnitrenes, which possess a thio-functionality, known for its leaving group capabilities.11 
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Interestingly, despite their discovery in 1967,12 these nitrenes have not been extensively explored.8e, 13 

Following a comprehensive literature survey, we identified precursors (SNP-1 and SNP-2) capable of 

generating sulfenylnitrenes over a broad temperature range (Figure 1b). These thermal precursors have 

been significantly underutilized, except for a few reports of aziridination. 13b, c 

 

Figure 1: Nitrene strategies for single N-atom insertion. 

Building upon the literature precedents, we hypothesize that the aziridine intermediate, featuring 

an inbuilt thio-moiety as a leaving group, will facilitate the ring expansion and enable the selective 

incorporation of a single nitrogen atom. Additionally, the S–N bond length in sulfenylnitrene is 

approximately 1.51 Å, indicating the double bond character between sulfur and nitrogen.13b This implies 

that the reactivity of sulfenylnitrenes can be easily tuned for a variety of synthetic transformations.  

To insert a single nitrogen atom into pyrroles, indoles, and imidazoles, we envision utilizing 

benchtop stable precursors of sulfenylnitrenes, SNP-1 and SNP-2, which allow the generation of these 

nitrenes under additive-free conditions over a broad temperature range (80–150 ºC) as described in the 

Figure 1b. 
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Our optimization studies commence by employing a symmetric 2,5-diphenyl pyrrole 1a as our 

model substrate (Figure 2a), using two equivalents of SNP-1. Acetonitrile was selected as a solvent with 

SNP-1 as described in the literature for the aziridination.13b To our delight, the reaction resulted in the 

formation of the corresponding pyrimidine 2a in 77% yield (entry 1). Changing the reaction solvent to 

dichloromethane or toluene did not lead to a significant improvement in reaction yields (entries 2, 3). To 

increase the reaction yield further, we screened chlorobenzene as a solvent, which was utilized by 

Atkinson and coworkers for aziridination with SNP-2b.13e Gratifyingly, the reaction led to a nearly 

quantitative formation of the corresponding pyrimidine 2a (99%) (entry 4). We also employed industrially 

preferred solvents, including esters and alcohols. To our delight, the reaction worked in both types of 

solvents with moderate yields (entries 5–8). Finally, we also screened 1 and 1.5 equivalents of SNP-1 

precursors. However, a slightly lower yield was obtained along with the unreacted pyrrole (entries 9, 10). 

Moving forward, we investigated the reactivity of various SNP-2 precursors in the N-addition 

reaction with pyrrole 1a (Figure 2b). Three distinct nitrene precursors were synthesized and reacted with 

pyrrole 1a. SNP-2a demonstrated a moderate yield (75%) at 100°C13c when chlorobenzene was used as 

the reaction solvent (entry 1). In contrast, both SNP-2b and SNP-2c exhibited comparable reactivity with 

pyrrole 1a, yielding the desired pyrimidine 2a in nearly quantitative yield, with chlorobenzene as the 

solvent (entries 2, 3). Notably, the decomposition temperature of SNP-2b and SNP-2c were determined 

to be 120°C and 150°C respectively. Other aromatic solvents such as toluene and xylene provided a 

slightly lower yield (entries 4, 5). However, the industrially preferred solvents (esters and alcohols), 

provided a moderate yield of the desired pyrimidine 2a (entries 5, 6, 7). 

We selected SNP-2b as the optimal nitrene precursor due to the generation of naphthalene as a 

byproduct, facilitating the purification process as it can be easily removed from the reaction mixture under 

reduced pressure. Additionally, SNP-2b can be easily synthesized at a large scale (~10–20g) in three 

simple steps (see the SI page S6 for additional details).  
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Figure 2: Optimization of the N-addition reaction. Reactions were carried out on a 0.1−0.3 mmol scale 

in a sealed vial. aYield was determined by 1H-NMR using 1,3,5-trimethoxybenzene as an internal 

standard. b1 equiv. of SNP-1 was used. c1.5 equiv. of SNP-1 was used. 

With these optimized conditions, we investigated the scope and regioselectivity of pyrroles 

(Figure 3). Notably, the N-addition exhibited a preference for electron-donating substituents over 

electron-withdrawing ones. For instance, a pyrrole featuring an aryl group at the 3-position and various 

electron-withdrawing substituents at the 4-position consistently produced the corresponding pyrimidine 

in good to excellent yields favoring N-addition to the aryl side (2b–2f). We were pleased to observe that 

a highly oxidation-sensitive thioether functional group smoothly underwent the expansion reaction with 

a satisfactory yield (2g). Next, various 3-substituted pyrroles were subjected to the reaction conditions, 

and the N-addition predominantly occurred from the most substituted pyrrole side. Interestingly, phenyl 

ring bearing electron -donating and -withdrawing groups at the 3-position of pyrrole did not affect the 

regioselectivity outcome (Figure 3, 2h–2l). As anticipated, 3-naphthyl-pyrrole also produced the 

corresponding pyrimidine in high yield (90%) with 1:5 regioselectivity (2m). Notably, the di- and tri-

substituted pyrroles provided a single regio-isomer, favoring the most substituted side (2n, 2o). Pyrrole 

featuring an 8-membered carbocycle also furnished the corresponding pyrimidine in a high yield (2p). 
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Pyrroles having electron-withdrawing esters provided a lower regioselectivity favoring the electron-rich 

side (2q, 2r).  

 

Figure 3: Scope and selectivity of pyrroles. Conditions: 1 (1 equiv.), SNP-2b (2 equiv.), chlorobenzene 

(0.1 M), 120 °C, 2 h. Reactions were carried out on 0.1−0.3 mmol scale. Yield was determined by 1H-

NMR using 1,3,5-trimethoxybenzene as an internal standard.  
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synthetically useful yield of 72%, with only one regio-isomer obtained (2v’). Finally, fludioxonil, a 

fungicide used for seed treatment,17 underwent a successful transformation to the corresponding 

pyrimidine (2w). 

 

Figure 4: Application to complex pyrroles. Conditions: pyrrole (1 equiv.), SNP-2b (2 equiv.), 

chlorobenzene (0.1 M), 120 °C, 2 h. Reactions were carried out on 0.1−0.3 mmol scale. Yield was 

determined by 1H-NMR using 1,3,5-trimethoxybenzene as an internal standard.  

 

Having showcased the synthetic capabilities of this approach, we aimed to understand the 

regioselectivity of nitrogen insertion into asymmetric pyrroles. 3-phenylpyrrole was chosen as a substrate 

for computational studies. To validate our mechanistic hypothesis (see the SI page S39 for details), density 

functional theory (DFT) calculations as implemented in the software package QChem18 were performed 

using the B3LYP functional at the 6-31G(d) level of theory in vacuo, shown in Figure 5.  
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Figure 5: Computational Calculations: Free energy profile for reaction of 3-Phenylpyrrole with 

sulfenylnitrene. Energies are in kcal/mol; atomic colors: C = gray, O = red, N = blue, S = yellow, H = 

light gray. 
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more facile for this transformation to occur in two steps. The height of this single transition state barrier 

explains the observed regioselectivity of this process. Again, from a qualitative perspective, it is 

reasonable to assume that a dipolar process would favor the substituted side of the pyrrole due to 

stabilization from the aromatic ring. 

Furthermore, we harnessed the potential of sulfenylnitrene to add a single N-atom to the indole, 

an important motif in numerous bioactive molecules20 (Figure 6). Contrary to the literature reports, where 

indole N-protection was necessary for the N-addition, our methodology did not require any protection.8i  

 

Figure 6: Application to indoles, Conditions: 3 (1 equiv.), SNP-2b (2 equiv.), chlorobenzene (0.1 M), 

120 °C, 2 h. Isolated yields, 0.1−0.3 mmol scale. Yield was determined by 1H-NMR using 1,3,5-

trimethoxybenzene as an internal standard.  
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hypothesis described in the SI (page S39). Subsequently, we employed the method on naturally occurring 

amino acids and their metabolites. Phthalimide-protected tryptamine and tryptophan were converted into 

the respective quinazoline products (4l, 4m), providing access to previously underexplored unnatural 

amino acids and their derivatives.21  

We further demonstrate the potential of this method for synthesizing medicinally relevant 

compounds, such as an anti-cancer agent erlotinib and gefitinib.22 To access their analogues, a substituted 

indole bearing a thioether functionality 3o was transformed into quinazoline 4o (Figure 7a). 

 

Figure 7: Access to pharmaceutical drug analogues and complex pyrroloindoline. Conditions: 3n or 3o 

or 5 (1 equiv.), SNP-2b (2 equiv.), chlorobenzene (0.1 M), 120 °C, 2 h. Isolated yields, 0.1−0.3 mmol 

scale. Yield was determined by 1H-NMR using 1,3,5-trimethoxybenzene as an internal standard. 
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Following the successful implementation of N-insertion into pyrroles and indoles, we also 

extended its application to imidazoles (Figure 8). We were pleased to observe that various aryl-substituted 

imidazoles smoothly converted into the corresponding 1,3,5-triazenes with high yields (8a–8e). Notably, 

lophine, a chemiluminescent molecule known for its prolonged luminescence,26 readily underwent 

expansion with a yield of 91% (8f). Finally, the phthalimide-protected naturally occurring amino acid L-

histidine (7g) was successfully transformed into the corresponding triazine core structure (8g). 

 

Figure 8: Application to imidazoles. Conditions: 7 (1 equiv.), SNP-2 (2 equiv.), chlorobenzene (0.1 M), 

120 °C, 2 h. Isolated yields, 0.1−0.3 mmol scale. Yield was determined by 1H-NMR using 1,3,5-

trimethoxybenzene as an internal standard. 

CONCLUSION 

In summary, we have demonstrated the utilization of sulfenylnitrenes for the selective insertion of 

a single nitrogen atom into the skeleton of pyrroles, indoles, and imidazoles. DFT calculations provide 

insights into pyrrole regioselectivity, where the reaction proceeds via an aziridine intermediate favoring 

the electron-rich side to provide the major regio-isomer. This methodology tolerates a variety of functional 

groups, including oxidation-sensitive phenols and thioethers, which were previously found incompatible 

with known N-addition methods. The synthetic utility of this approach has been demonstrated through the 

late-stage functionalization of natural products, amino acids, and pharmaceuticals. These unique 

sulfenylnitrenes hold great promise for scaffold hopping, and their applications to various transformations 

are currently under investigations in our laboratory. 
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