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The second order cumulant method offers a promising pathway to predicting optical properties in condensed
phase systems. It allows for the computation of linear absorption spectra from excitation energy fluctuations
sampled along molecular dynamics (MD) trajectories, fully accounting for vibronic effects, direct solute-solvent
interactions, and environmental polarization effects. However, the second order cumulant approximation
only guarantees accurate lineshapes for energy gap fluctuations obeying Gaussian statistics. A third order
correction has been derived recently, but often yields unphysical spectra or divergent lineshapes for moderately
non-Gaussian fluctuations, due to the neglect of higher order terms in the cumulant expansion. In this work,
we develop a corrected cumulant approach, where the collective effect of neglected higher order contributions
is approximately accounted for through a dampening factor applied to the third order cumulant term. We
show that this dampening factor can be expressed as a function of the skewness and kurtosis of the energy gap
fluctuations and can be parameterized from a large set of randomly sampled model Hamiltonians for which
exact spectral lineshapes are known. The approach is shown to systematically remove unphysical contributions
in the form of negative absorbances from cumulant spectra in both model Hamiltonians and condensed phase
systems sampled from MD, and dramatically improves over the second order cumulant method in describing
systems exhibiting Duschinsky mode mixing effects. We successfully apply the approach to the coumarin-153
dye in toluene, obtaining an excellent agreement with experiment.

I. INTRODUCTION

First-principles predictions of linear optical spectra
of molecules in the condensed phase remains a chal-
lenging problem in computational chemistry.1–6 The
linear absorption and fluorescence lineshapes of chro-
mophores often have vibronic contributions, making an
explicit quantum mechanical treatment of the nuclei nec-
essary. Additionally, the condensed phase environment
can strongly influence optical spectra, both through en-
vironmental polarization effects and direct chromophore-
environment interactions, such as hydrogen bonding in
protic solvents.6–11 Slow, generally anharmonic, collec-
tive chromophore-environment motion also poses a chal-
lenge and is often of importance in complex biological
systems.3,12,13 Robust computational approaches capa-
ble of capturing these effects from first principles are de-
sirable, as experimental condensed phase optical spectra
are often highly congested, making it challenging to es-
tablish structure-property relationships from experimen-
tal data alone. Additionally, accurately modeling lin-
ear spectroscopy often forms the first step in trying to
interpret more complicated non-linear experiments used
to probe excited state relaxation dynamics in complex
systems.8,14–27

A commonly used framework to model optical spectra
of molecules is the Franck-Condon (FC) approach.28–37

It relies on approximating the ground- and excited state
potential energy surfaces (PESs) as harmonic around
their respective minima. Nuclear wavefunctions are then
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harmonic oscillator wavefunctions of vibrational modes
and the intensity of vibronic peaks is directly related
to ground- and excited state wavefunction overlaps fol-
lowing Fermi’s golden rule.35 The methodology accounts
for changes in curvature between the ground- and ex-
cited state PES, as well as Duschinsky38 mode-mixing ef-
fects. The underlying harmonic nuclear Hamiltonian (re-
ferred to as a Generalized Brownian Oscillator Model or
GBOM,39 see Appendix A 1) can be directly parameter-
ized from ground- and excited state geometry optimiza-
tions and frequency calculations implemented in many
electronic structure methods. Additionally, the exact op-
tical spectrum for the GBOM Hamiltonian can be com-
puted analytically.36,37 The method performs very well
in predicting linear spectra for small, rigid molecules in
non-polar solvents, where the harmonic approximation
is expected to hold. However, the approach can strug-
gle in semi-flexible molecules undergoing anharmonic
motion,40–45 and cannot account for strong solute-solvent
interactions, as the condensed phase environment is gen-
erally represented collectively through polarizable contin-
uum models (PCMs).46–48 To compare directly to exper-
iments, solvent broadening effects have to be accounted
for through approximate broadening parameters,49,50 or
by invoking timescale separation arguments.4,5,51 These
shortcomings limit the applicability of the FC approach
in large semi-flexible molecules and systems where the
chromophore and the condensed phase environment un-
dergo slow, coupled motion.

An alternative approach to constructing linear spec-
tra in the condensed phase is the cumulant method,52–54

where the linear response function is directly con-
structed from the fluctuations of the excitation energy
sampled along ground-state molecular dynamics (MD)
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simulations in thermal equilibrium.3,4,10,39,55,56 Direct
solute-solvent interactions, anharmonic effects, collec-
tive chromophore-environment motion and environmen-
tal polarization effects10 are all accounted for in the
MD sampling, making it a highly promising, albeit com-
putationally expensive, approach in biological systems
and pigment-protein complexes.6,16–19,21–26,57 Addition-
ally, the computational cost of sampling energy gap
fluctuations can be significantly reduced using machine
learning (ML) techniques.58,59 However, in practical cal-
culations, the cumulant expansion is generally truncated
at second order, corresponding to mapping energy gap
fluctuations onto a bath of linearly coupled harmonic
oscillators (Brownian Oscillator Model or BOM). This
truncation is only exact for systems where energy-gap
fluctuations follow Gaussian statistics, and already leads
to errors in the harmonic GBOM Hamiltonian including
changes in PES curvature and Duschinsky mode mix-
ing effects,39,60 that are captured exactly by the FC
approach.36,37

The inclusion of higher order cumulants is vital in
computing the correct lineshapes many systems,39,60,61

and we have recently demonstrated that a third or-
der correction term can be constructed directly from
MD, yielding improvements of spectral shapes in sys-
tems with small non-Gaussian contributions to the en-
ergy gap fluctuations. However, the approach has the sig-
nificant shortcoming of being numerically unstable, yield-
ing unphysical spectra with negative absorbances and di-
vergent lineshapes for moderate to strong non-Gaussian
fluctuations.39,61 These divergences can be traced to the
discarding of higher order terms in the cumulant expan-
sion and have been observed previously in 1D anharmonic
model potentials.61 Since it is in general difficult to de-
termine a priori whether the inclusion of a third order
cumulant correction will improve the spectral lineshape
or cause unphysical spectral contributions, the benefit of
extending the cumulant method beyond second order in
realistic condensed phase systems is questionable.

In this work, we formulate and rigorously test an al-
ternative approach to go beyond the second order cu-
mulant expansion. The method relies on applying a
dampening factor to the third order cumulant correc-
tion that approximately accounts for the effect of ne-
glected higher order cumulants in cancelling divergences
in the third order lineshape. We demonstrate that the
dampening factor Φ is a function of the non-Gaussian
nature of the energy gap fluctuations quantified via the
skewness and kurtosis of the distribution. This function
Φ can be directly parameterized using the exactly solv-
able model system of the GBOM Hamiltonian. We show
that the approach rigorously removes unphysical features
from linear absorption spectra in both harmonic and an-
harmonic model systems, as well as realistic condensed
phase systems sampled from MD. Additionally, the ap-
proach yields an excellent agreement with the FC method
for the GBOM Hamiltonian including Duschinsky mode
mixing and changes in PES curvature, thus opening up

the possibility of accounting for these effects from first
principles in simulations of molecules embedded in con-
densed phase environments.

II. THEORY

In this work, we focus on the linear response of a
two-state electronic system coupled to nuclear motion.
Within the Born-Oppenheimer approximation62 we can
write:

|Ψ⟩ ∈ {|e⟩ ⊗ |νe⟩, |g⟩ ⊗ |νg⟩} (1)

Ĥ = |e⟩Ĥe⟨e|+ |g⟩Ĥg⟨g|. (2)

Here, Ĥg and Ĥe denote nuclear Hamiltonians on the
ground- and excited state potential energy surface (PES)
respectively, |e⟩ and |g⟩ are pure electronic states, and
νe and νg are nuclear wavefunctions. Under this form,
the linear response function can be expressed as a trace
over nuclear degrees of freedom in the condensed-phase
system52

χ(1)(t) = Tr[ρgV̂ge(t)V̂eg(0)], (3)

where ρg is the ground-state equilibrium density matrix

of nuclear degrees of freedom and V̂eg = V̂ †
ge is the tran-

sition dipole operator between electronic states |e⟩ and
|g⟩. If an exact expression for Eqn. 3 can be obtained for
a system of interest, the linear absorption spectrum can
be constructed through its Fourier transform:52

σ(ω) = αωRe[F(χ(1)(t))]. (4)

Here, α is a constant factor necessary when comparing
directly to experimental results,36 but that will be set to
1 for the remainder of this work without loss of general-
ity. Proposing approximate forms for Eqn. 3 that retain
accuracy while remaining tractable in complex condensed
phase systems is of key importance to the simulation of
linear absorption spectra.39

A. Spectral Decomposition and Franck-Condon Response

Operating under the Condon approximation,63,64 such
that the electronic transition dipole operator is taken to
be independent of nuclear degrees of freedom, and assum-
ing the vibrational eigenstates of the ground and excited
state nuclear Hamiltonians are known, Eqn. 3 can be re-
cast into a spectral decomposition:28,35

χ
(1)
spectral(t) = |Veg|2

∑
i,j

P(i)|⟨νej |νgi ⟩|2exp[−i(ωji)t], (5)

where,

P(i) = e−Eg
i β/

∑
j

e−Eg
jβ , (6)

ωji = Ee
j − Eg

i . (7)
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Here, Ee
i and Eg

i denote the eigenvalues corresponding

to the ith eigenstate of the nuclear Hamiltonians Ĥe and
Ĥg respectively, P(i) is the Boltzmann population of the
ith energy level on the ground state PES in thermal equi-
librium and ωji is the energy required to transition from
state i on the ground state PES to state j on the excited
state PES. For model systems where the eigenstates of
the nuclear Hamiltonians can be computed exactly, the
spectral decomposition yields the exact linear response
function under the Condon approximation. This form
provides a crucial benchmark within the scope of this
work as a means to quantify the performance of approx-
imate cumulant-based schemes (see Sec. II B). However,
the sum-over-states formalism in Eqn. 5 has a number of
drawbacks, especially when modeling realistic molecular
systems in the condensed phase.

First, Eqn. 5 requires the exact nuclear wavefunctions{
νej
}
, {νgi } to be known and the wavefunction overlap〈

νej |νgi
〉
to be easily evaluated for all i,j. In practice,

this means that the full PESs of the molecule in the
condensed phase have to be approximated through a
model Hamiltonian. The most popular choice, invoked
in the Franck-Condon (FC) method,28–37 is to approxi-
mate the PESs as harmonic around their respective min-
ima. Second, evaluating Eqn. 5 directly, for example
by parameterizing a GBOM (see Appendix A 1), means
that the condensed phase environment can often only
be accounted for approximately in the resulting spec-
trum, either through collective representations of the
solvent environment through a PCM, or by invoking a
timescale separation between solute and solvent degrees
of freedom.5,49,65,66

These shortcomings render a direct evaluation of the
spectral decomposition expression potentially impracti-
cal in condensed phase systems, especially for systems
with strong solute-solvent interactions and chromophores
with low frequency anharmonic modes ill described by a
harmonic model PES.10,40,67

B. Cumulant Response

An alternative formulation that avoids some of the is-
sues of a direct evaluation of Eqn. 5 is the cumulant ex-
pansion. Beginning with Eqn. 3 and working under the
Condon approximation, we define the energy gap fluctu-
ation operator

δÛ(q̂; t) = (Ĥe − Ĥg)− ωav
eg , (8)

with ωav
eg denoting the thermal average of the energy gap

between the two PESs in thermal equilibrium

ωav
eg = Tr[ρgÛ], (9)

and Û = Ĥe − Ĥg is the energy gap operator. The exact
response (Eqn. 3) can then be recast in form of a time-

ordered exponential of δU(q̂, t):

χ(1)(t) = |Veg|2e−iωav
egtTr

[
ρg exp+

(
−i

∫ t

0

dτ δU(q̂; τ)

)]
.

(10)

One can then leverage the ansatz that the infinite series
expansion of time-ordered integrals may be treated as a
moment-generating function and expressed in respective
cumulants.52,53 The response function of the system can
then be expressed as:

χ(1)(t) = |Veg|2e−iωav
egtexp

[
−

∞∑
i=2

gi(t)

]
(11)

such that gi(t) denotes the ith order cumulant of the
energy gap fluctuation operator and

∑∞
i=2 gi(t) ≡ g(t)

is known as the lineshape function. Being of substantial
importance of this work, the general form of the second
and third order cumulant contributions to the lineshape
function are presented here:

g2(t) =

∫ t

0

dt1

∫ t1

0

dt2 C
(2)
qm(t1 − t2), (12)

where C
(2)
qm(τ) = Tr[ρgδÛ(τ)δÛ(0)] is the quantum au-

tocorrelation function of the energy gap fluctuation op-
erator. The third order cumulant contribution to the
lineshape takes the general form:

g3(t) = −i

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 C
(3)
qm(t2 − t3, t1 − t3)

(13)

and C
(3)
qm(τ ′, τ) = Tr[ρgδÛ(τ)δÛ(τ ′)δÛ(0)] represents the

two-time quantum correlation function. Analogous ex-
pression can be obtained for higher-order cumulants.61

1. Construction of Cumulants

A key distinction must be drawn between how the
cumulants may be obtained in the context of realis-
tic condensed-phase systems versus model Hamiltoni-
ans. For chromophores embedded in complex environ-
ments, the quantum correlation functions required to
construct the cumulant expansion are generally inac-
cessible. Instead, cumulants are constructed through
classical MD simulations in conjunction with calcula-
tions of the vertical excitation energy along the gen-
erated trajectory.3,56,68,69 From these vertical energies,
classical correlation functions can be computed, and the
approximate quantum correlation functions can be re-
constructed with the help of quantum correction factors
(QCFs).57,70–75 For the one- and two-time correlation
functions necessary to construct the second and third
order cumulant, the QCFs used in this work take the
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following form in the frequency domain:39,57,72,75

C(2)
qm(ω) ≈ βω

1− e−βω
C

(2)
cl (ω) (14)

C(3)
qm(ω, ω

′) ≈ ω̄ω′ωβ2C
(3)
cl (ω, ω′)

2(ω′e−βω̄ − ω̄e−βω′ + ω)
, (15)

with ω̄ = ω + ω′. Substituting the Fourier represen-
tation of Eqns. 14 and 15 into Eqn. 12 and Eqn. 13,
approximate expressions for g2(t) and g3(t) may be ob-
tained that can be computed directly from energy gap
fluctuations sampled along MD trajectories. To the best
of our knowledge, there are no generally applicable cor-
rection factor analogs for higher order correlation func-
tions. Thus the MD-type construction of the cumulant
response is limited to the third order, and the implica-
tion of such truncation of the cumulant expansion will be
explored in detail in this work.

In contrast, for simplified model Hamiltonians, it is of-
ten possible to construct exact closed-form expressions of
the second, third, and higher order cumulants.39,60,61 Ad-
ditionally, higher order cumulants for model systems can
be constructed numerically.61 These model systems can
provide powerful insights into the types of errors made in
evaluating low-order cumulant expansions using QCFs.
In this work, we focus on the GBOM Hamiltonian39 (see
Sec. A 1), for which analytical expressions for g2(t) and
g3(t) based on quantum and classical correlation func-
tions and QCFs, as well as the exact result correspond-
ing to the infinite order cumulant expansion36,37 can be
computed analytically (see SI Sec. I and Ref. 39).

2. Truncation of the Cumulant Expansion

For general molecular Hamiltonians, all orders of cu-
mulants contribute to the spectral lineshape and a trun-
cation at any finite order introduces errors. However, in
the limit that the energy gap fluctuations obey Gaussian
statistics, all cumulants beyond g2(t) vanish,39,60 such
that exact response is recovered at the second order cu-
mulant approximation. This behavior is observed for a
system where all modes coupled to the electronic transi-
tion are harmonic and equal in ground and excited state
curvature, resulting in an energy gap operator that is
linear with respect to nuclear coordinates (See SI Sec I).
Such a simplified model system is known as the Brownian
oscillator model (BOM).

A departure from Gaussian statistics is quickly met in
the realistic case of mismatched ground- and excited state
frequencies in harmonic vibrational modes (as present in
the GBOM Hamiltonian), as well as in the presence of
any anharmonicity.61 It can be shown analytically (see
SI Secs. I and II) or numerically (SI Sec. III), that the
introduction of higher order cumulants leads to an im-
proved agreement with the exact response function in
the short timescale limit, but that higher order terms
become increasingly more volatile and divergent in the

long timescale limit. In principle, a complete summation
of the cumulant expansion to infinite order would lead
to a cancellation of divergent terms and well-behaved re-
sponse functions for all timescales. However, a truncation
at finite order can yield unphysical lineshapes, as can be
demonstrated even in the case of the harmonic GBOM
Hamiltonian (SI Sec. II and Ref. 39), and only the sec-
ond order cumulant approximation is guaranteed to yield
linear response functions that do not diverge as t → ∞
for arbitrary Hamiltonians.39

This divergent behavior makes the benefit of evalu-
ating higher order cumulants in realistic systems, such
as by introducing a third order correction that can be
computed in condensed phase systems from MD, ques-
tionable. In previous work, we have demonstrated nu-
merically that monitoring the deviations of the energy
gap fluctuations from Gaussian statistics, by calculat-
ing the skewness µ(3) of the distribution, can serve as
an indicator of the importance of higher order cumulant
contributions.39 It was found that for skewness values
beyond 0.3, the third order cumulant correction becomes
numerically unstable and unreliable due to the neglect-
ing of higher order terms;39 In these cases the numerically
stable, albeit inaccurate, second order cumulant approx-
imation should be used instead.

In this work, we instead introduce and justify the
novel hypothesis that while the exact nature of neglected
higher order cumulants in the expansion cannot be known
in arbitrary systems, some information of their net ef-
fect on the lineshape can be inferred. By quantifying
the degree of non-Gaussian behavior in the energy gap
fluctuations, through metrics such as skewness µ(3) and
excess kurtosis µ(4), one may approximately reintegrate
the effects of the neglected cumulants in cancelling di-
vergences of the lineshape. Specifically, we propose that
an improved, and most importantly more stable, approx-
imation to the exact lineshape compared to a pure third
order cumulant expansion can be obtained through

χ
(1)
cumul,Φ(t) = |Veg|2e−iωav

egt

×exp [−g2(t)− Φg3(t)] . (16)

Here, Φ is a dampening factor approximately describing
the effect of all neglected higher order cumulants such
that 0 ≤ Φ ≤ 1. Φ ≡ Φ

(
µ(3), µ(4)

)
is taken to be an

explicit function of the skewness µ(3) and excess kurtosis
µ(4) quantifying the non-Gaussian nature of the energy
gap fluctuations. The functional form of Eqn. 16 is fur-
ther justified in Sec. II C.

The skewness and excess kurtosis of the energy gap
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fluctuations can be defined in the following way:

µ(1) =

∫
dω′ω′σens(ω

′) (17)

µ(2) =

∫
dω′(ω′ − µ(1))

2σens(ω
′) (18)

µ(3) = µ
− 3

2

(2)

∫
dω′(ω′ − µ(1))

3σens(ω
′) (19)

µ(4) = µ−2
(2)

∫
dω′(ω′ − µ(1))

4σens(ω
′)− 3 (20)

where µ(1) and µ(2) are the mean and the variance, and

σens(ω) = σens(ω)/

∫
dω′σens(ω

′) (21)

is the normalized classical ensemble spectrum39 of the
absorption lineshape. The classical ensemble spectrum
is obtained by discarding the quantum nature of the nu-
clei, as well as any vibronic effects, and directly encodes
the statistics of the energy gap fluctuations. It can be ex-
pressed within a classical phase-space representation:39

χens(t) = |Veg|2
∫

dq

∫
dp

e−Hg(p,q)β

Z
e−iU(q)t. (22)

Eqn. 22 can be directly evaluated by sampling vertical
excitation energies along a classical MD trajectory,7,76–79

and can therefore be straightforwardly applied to any
condensed phase system.

C. The dampening factor Φ in a harmonic model system

To illustrate the points made in Sec. II B 2, we demon-
strate the effect of truncating the cumulant expansion at
low order on a simple 2-mode harmonic model system
described by the GBOM Hamiltonian (see Appendix A 1
and Appendix A 5 a for model parameters). For this
Hamiltonian, the second order cumulant expansion is no
longer exact, as the ground- and excited state PESs can
have different curvatures and individual modes can be
coupled. The resulting spectra for a specific model pa-
rameterization can be found in Fig. 1.

In the chosen parameterization, energy gap fluctua-
tions are moderately non-Gaussian (with µ(3) = 0.33 and
µ(4) = 0.22). The second order cumulant approximation
fails to reproduce the correct vibronic progression, both
underestimating the separation between vibronic peaks
and predicting wrong intensities. When adding the third
order correction to the lineshape, both peak intensities
and positions are much improved, but at the cost of spu-
rious unphysical spectral regions of negative absorbance.
This spurious behavior of the truncated third order cu-
mulant expansion is commonly observed for sufficiently
non-Gaussian fluctuations.39,61 We note that, while de-
viating significantly from the exact lineshape, the sec-
ond order cumulant approximation is guaranteed to yield
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FIG. 1. A) Exact, second-order and third-order cumulant
spectra for a 2-mode GBOM. A Gaussian broadening repre-
senting solvent effects has been added to all lineshapes B)
Real part of the second and third order cumulant approxi-
mation to the lineshape function g(t) in comparison with the
exact lineshape function (shown in black).

a positive-definite and thus physically meaningful ab-
sorption spectrum for arbitrary non-Gaussian energy gap
fluctuations (see SI Sec. II).

The performance of the truncated cumulant expan-
sion can be rationalized when considering the lineshape
function g(t) determining the spectrum (see Fig. 1 B)).
The third order cumulant approximation yields a short
timescale correction towards the exact lineshape func-
tion, causing an improvement in the placement and in-
tensity of vibronic progressions in third-order spectra of
mildly non-Gaussian systems (See SI Sec. II A). However,
this short time correction causes a divergence in the real
part of the lineshape function proportional to t as t → ∞,
with additional divergent terms present in the imaginary
part (See SI Sec. II and Ref. 39). By inspection of Eqn. 5,
it may be noted that an exact lineshape function should
not exhibit this divergence. Characteristics of the di-
vergent terms, such as the fact that the real part of the
lineshape function can become negative in the short time-
scale (see Fig. 1 B)) can be seen as the origin of spuri-
ous negative spectral features in the resulting absorption
spectrum. Thus, this spurious asymptotic behavior is a
clear target for seeking methodological improvements to
the computation of cumulant-based spectra. If the goal is
to produce the most accurate, physically applicable spec-
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trum possible, the inclusion of a correction that causes
unphysical negative absorbances is undesirable, even if it
leads to observed improvements in position and intensity
of vibronic features. Therefore, it becomes of high inter-
est to develop a methodology that retains the corrections
afforded by the third order cumulant approach while re-
liably safeguarding against any unphysical spectral fea-
tures. Ultimately, any technique developed must also be
freely applicable to MD-type simulations of molecules in
the condensed phase in order to be useful in realistic sys-
tems.

We propose that a low order cumulant expansion can
be significantly improved by introducing a dampening
factor Φ to the third order contribution g3(t), as outlined
in Eqn. 16. To demonstrate this concept, we again turn
to the harmonic model system in Fig. 1. We first define
a goodness-of-fit metric for the cumulant spectrum with
respect to the exact spectrum:

κ =
1

n

n∑
i

|σcumul(ωi)− σexact(ωi)| (23)

The metric κ is simply taken as the unsigned difference
between the cumulant and the exact spectrum, averaged
over n numerical grid points along the frequency axis.
We evaluate σcumul using Eqn. 16, where the parameter
Φ is systematically varied from 0 (corresponding to a pure
second order cumulant spectrum) to 1 (corresponding to
an undampened cumulant expansion truncated at third
order). A plot of the resulting κ(Φ) can be found in
Fig. 2 A).

We find that κ(Φ) is a convex function, and thus by
selecting the prefactor value corresponding to the mini-
mum of κ(Φ), one may optimize the performance of the
third order cumulant approximation with respect to the
exact spectrum. Selecting the optimal dampening fac-
tor Φ when constructing the third order cumulant line-
shape following Eqn. 16 results in a spectral lineshape
in very close agreement to the exact spectrum, both
in the intensity and positioning of vibronic peaks (see
Fig. 2 B and SI Sec. V). Additionally, the unphysical neg-
ative absorbance is removed from the spectrum. While
Fig. 2 shows results for a specific parameterization of the
GBOM Hamiltonian, we find that similar results can be
obtained over a wide parameter range, suggesting that
the functional form of a dampened cumulant response
proposed in Eqn. 16 is widely applicable.

D. The dampening factor Φ in general systems

The results in Fig. 2 are obtained for a harmonic model
system. In this work, we argue that 1) the general func-
tional form of Eqn. 16 provides a pathway of improv-
ing cumulant lineshapes even in realistic systems with
more complex (generally anharmonic) potential energy
surfaces as encountered in condensed phase systems sam-
pled with MD; and that 2) the optimal dampening factor
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FIG. 2. A) κ(Φ) for an arbitrary GBOM. The optimal pref-
actor located at the minimum of κ(Φ) (Φ = 0.68) is used to
generate an optimized spectrum in B).

Φ can be expressed as a function of the non-Gaussian fea-
tures of the underlying energy gap fluctuations, such that
Φ ≡ Φ

(
µ(3), µ(4)

)
.

The above points can be justified by the following ob-
servations. First, as demonstrated in Fig. 1, the third
order cumulant correction does improve the lineshape
function in the short timescale limit, but introduces os-
cillations with amplitudes growing linearly in time, lead-
ing to an overestimation of oscillatory terms at longer
timescales (see SI Secs. II, III and V). Therefore, a net
effect of higher order cumulant terms must be a damp-
ening of the linear divergence observed in the third or-
der cumulant correction. This finding can be confirmed
by evaluating higher order cumulants for model systems
numerically (see SI Sec. III). Second, the timescale of di-
vergences in the third order cumulant contribution, and
thus the importance of higher order cumulant terms, is
directly related to the degree of non-Gaussian behavior in
the underlying energy gap fluctuations. Thus, we expect
Φ to be a function of µ(3) and µ(4).

To obtain a functional form of Φ(µ(3), µ(4)) we ap-
ply an iterative approach as outlined in the schematic of
Fig. 3. A large set of GBOM Hamiltonians is constructed
through the random sampling of parameters across a
broad, yet realistic, domain relevant to molecular systems
(see SI Sec. VI). For a given GBOM, the ideal value for
the dampening factor Φ is determined by varying Φ be-
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FIG. 3. Schematic for generating predictive prefactor plot. A large number of GBOMs is sampled to produce a predictive grid
of Φ as a function of µ(3) and µ(4) that may then be applied to molecular dynamics (MD) simulations in realistic condensed
phase systems.

tween 0 and 1, and finding the minimum of the resulting
convex function κ(Φ), as outlined in Fig. 2. Addition-
ally, the degree of non-Gaussian behavior in the energy
gap fluctuations is evaluated by determining skew and
excess kurtosis via Eqn. 22, thus obtaining a single point
of the function Φ(µ(3), µ(4)) in statistical space. Repeat-
ing this process across a large number of unique GBOMs
with randomly sampled parameters, we then construct
a continuous function Φ(µ(3), µ(4)) by fitting an analytic
function to the sampled data. This allows us to pre-
dict the ideal dampening factor Φ for arbitrary systems
from the measures µ(3) and µ(4) of the underlying non-
Gaussian energy gap fluctuations alone, with the aim of
improving the lineshape in realistic systems sampled from
MD. Thus regardless of the model system or realistic
condensed phase molecule that generated an energy gap
fluctuation distribution, the degree of dampening which
would occur from the inclusion of higher order cumulants
is now being inferred from quantifiable properties of the
underlying distribution. In Sec. IV, we rigorously test the
performance of the Φ(µ(3), µ(4)) derived from the GBOM
sampling on a range of model systems and real molecules
in the condensed phase.

III. COMPUTATIONAL DETAILS

A. Stochastic sampling of GBOMs

To construct a plot of Φ
(
µ(3), µ(4)

)
as outlined in

Sec. IID, ≈ 125, 000 individual GBOM parameteriza-
tions (see Appendix A 1) were sampled. The number of
modes in the GBOMs was varied systematically from 2
to 50. The ground and excited state frequencies and shift
vectors were sampled from uniform distributions over a
physically realistic range of molecular vibrations. The
n-mode Duschinsky rotation matrix relating ground- to
excited state normal modes was constructed by filling the
off-diagonal elements of each row with randomly gener-
ated values such that their sum equals a predetermined
value; this value being sampled from a uniform distri-
bution as well. The coupling matrix was subsequently
made unitary through a Gram-Schmidt orthonormaliza-
tion of column vectors. Full details of the distributions of
model parameters and how they relate to realistic molec-
ular systems can be found in SI Sec. VI A.

For all systems sampled, a fixed solvent response was
coupled to each GBOM to obtain realistically broadened
spectral lineshapes (see Appendix A 3). It is emphasized
that the solvent parameters need not be varied to ex-
plore the statistical nature of the prefactor, as the sol-
vent modes are assumed to follow Gaussian statistics and
are thus described exactly by the second order cumu-
lant approximation. Since in the cumulant approach,
no distinction has to be made between whether fluc-
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tuations arise from solvent or chromophore degrees of
freedom, a stronger or weaker coupling to solvent envi-
ronment can be interpreted as adding or removing non-
interacting Gaussian modes from the underlying “chro-
mophore” GBOM. Therefore, the effect of stronger sol-
vent coupling through the addition of more Gaussian fluc-
tuations is directly incorporated in the GBOM sampling
scheme.

After sampling 125,000 GBOMs, evaluating µ(3) and
µ(4) and computing the ideal prefactor Φ for each GBOM
using the metric κ(Φ), resulting data of Φ(µ(3), µ(4))
was then averaged across cells of ∆µ(3) × ∆µ(4), with
∆µ(3) = 0.026 and ∆µ(4) = 0.030. A cubic bivariate
spline was fit through the resulting data to create a con-
tinuous function for Φ (see SI Sec. VI B), that can then
be used to predict the appropriate correction factor for
arbitrary systems. Only cells of ∆µ(3) ×∆µ(4) sampled
with at least three distinct GBOMs were considered in
the spline fit. We emphasize that predicted prefactor val-
ues outside of the contour of Fig. 4 are extrapolated from
the collected model system data using the spline fitting.
While prefactors obtained in this fashion are likely reli-
able in regions close to the sampled bounds, the third or-
der cumulant correction should be discarded entirely for
systems exhibiting extreme values of |µ(3)| or |µ(4)|, as
even the corrected third order cumulant approach likely
becomes unreliable due to the missing higher order cu-
mulant contributions. We will explore how well the pa-
rameter space explicitly sampled by the 125,000 GBOMs
corresponds to skewness and kurtosis values in realistic
condensed phase systems in Sec. IVC.

For all GBOMs sampled, the second and third or-
der cumulant lineshapes were evaluated using the an-
alytical expressions for the exact quantum correlation
functions, that are generally inaccessible in realistic con-
densed phase systems. This was done so that the prefac-
tor Φ(µ(3), µ(4)) was independent of errors introduced in
the lineshape through constructing cumulants from clas-
sical correlation functions using QCFs. We have per-
formed tests (see SI Sec. V A) to confirm that the errors
introduced through QCFs are generally small in compar-
ison to the errors introduced by a low-order truncation of
the cumulant expansion. Thus the Φ(µ(3), µ(4)) derived
for exact quantum correlation functions in the GBOM
Hamiltonian is expected to perform well for condensed
phase systems sampled in MD, where lineshape functions
have to be evaluated from classical correlation functions
using QCFs.

B. MD sampling of condensed phase systems

To assess the performance of the proposed approach
on realistic systems, we consider a number of molecules
where the classical energy gap fluctuations are sampled
directly from MD (see SI Sec. VII). A specific focus is
the coumarin-153 dye in toluene.

To sample the fluctuations of the coumarin dye, mixed

quantum mechanical/molecular mechanical (QM/MM)
dynamics80 of the molecule in a 30 Å solvent sphere in
open boundary conditions were performed, with the QM
region confined to the chromophore. QM/MM dynam-
ics were run using the interface between Amber81 and
TeraChem,7,82 and the force field parameters for the
Toluene solvent was generated using AmberTools. The
QM region was treated using density-funtional theory
(DFT) at the CAM-B3LYP83/6-31+G*84 level of theory.
A timestep of 0.5 fs was used throughout and the system
was kept at 300 K using a Langevin thermostat with a
collision frequency of 1 ps−1. A 50 ps pure MM equi-
libration was carried out, before switching to QM/MM
dynamics for 22 ps. The first 2 ps of the QM/MM trajec-
tory were discarded to allow for additional equilibration
upon switching the chromophore Hamiltonian from an
MM to a QM representation.

Along the QM/MM trajectory, vertical excitation ener-
gies were computed in 2 fs intervals using time-dependent
density-functional theory (TDDFT) as implemented in
the TeraChem code,85 with the same basis set and func-
tional as for the ground state dynamics. A total of 10,000
individual vertical excitation energies were then used to

compute classical correlation functions C
(2)
cl , C

(3)
cl , as well

as measures of the non-Gaussian nature of energy gap
fluctuations µ(3) and µ(4).

IV. RESULTS AND DISCUSSION

A. The dampening factor Φ
(
µ(3), µ(4)

)
constructed from

randomly sampled GBOMs

The spline fit of Φ
(
µ(3), µ(4)

)
resulting from sampling

≈125,000 GBOMs can be found in Fig. 4, whereas the
raw data prior to fitting the spline can be found in SI
Sec. VI. Close to the Gaussian limit (µ(3) = 0, µ(4) = 0),
the third order contribution should only provide a small
correction to the second order cumulant response func-
tion, as all higher order cumulants strictly vanish for
Gaussian fluctuations. As such, we expect that the
largest prefactor values of Φ

(
µ(3), µ(4)

)
≈ 1 should re-

side close to the Gaussian limit, as is indeed observed.
In this region, the undampened third order cumulant ap-
proximation provides the best approximation to the exact
spectrum.

Additionally, we observe that neither the statistical
region sampled by the GBOMs, nor the spline fit to
Φ(µ(3), µ(4)) are symmetric around the origin of µ(3) =
0, µ(4) = 0. Thus, the volatility of the third order cumu-
lant approximation does not depend solely on the magni-
tude of non-Gaussian behavior (|µ(3)|, |µ(4)|), and specif-
ically the sign of skewness of the energy gap fluctuations
imparts a substantial effect on the value of the dampen-
ing factor Φ. This finding can be rationalized by examin-
ing the relative performance of the undampened (Φ=0)
third order cumulant approximation against the second
order cumulant approximation. We define the relative
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FIG. 4. Spline-fit mapping of Φ(µ(3), µ(4)). Regions within
the contour are being interpolated with a cubic bivariate
spline fit to the GBOM sampling. Outside of the contour,
prefactor values are extrapolated.

metric κrel = (κ3−κ2)/κ2, where κ2 and κ3 correspond to
the metric of Eqn. 23 evaluated for the second order and
undampened third order cumulant approximation respec-
tively. A plot of κrel across the range of sampled GBOMs
can be found in Fig. 5. As can be seen, systems with en-
ergy gap fluctuation statistics presenting with a negative
skew always yield a third order cumulant spectrum that
outperforms the second order cumulant approximation.
It may be demonstrated analytically (see SI Sec. II. A)
for a system with uncoupled GBOM modes (correspond-
ing to the Duschinsky rotation matrix being equal to the
identity matrix, [J] = [I]), that a negative skew is indica-
tive of a relaxation in vibrational frequency upon excita-
tion (ωe < ωg). This causes a divergence proportional to
t2 in the real part of the third order cumulant lineshape
function, leading to a dampening of the overall response
function and a physical linear absorption spectrum. Con-
versely, as ωe > ωg a positive skew occurs in the simple
model system. As ωe/ωg becomes increasingly large, the
lineshape function diverges proportionally to −t2, caus-
ing an unphysical divergent response function. Addition-
ally, oscillatory divergences with linearly growing ampli-
tudes appear more dominantly in the short timescale rele-
vant to linear optical response and these terms can cause
unphysical features in the resulting spectral lineshape.
Interestingly, our calculations indicate that an analogous
statement holds for GBOMs with couplings between in-
dividual modes as described by the Duschinsky rotation:
A negative skew is indicative of a stable third order cu-
mulant approximation that improves over the second or-
der cumulant lineshape. For positive skewness values,
truncating a cumulant expansion at third order almost
universally leads to a deterioration of the spectrum in
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FIG. 5. κrel of the third order cumulant spectra versus the
second order spectra across the range of GBOMs sampled.

comparison to the second order approximation.
Evaluation of the performance of the prefactor-

optimized third order cumulant approach versus the sec-
ond order cumulant approach with an analogous relative
metric κrel (see Fig. 6 A) reveals a substantial expan-
sion in statistical space where the third order cumulant
approximation may be applied to good effect. Specifi-
cally, introducing the dampening factor Φ significantly
improves the performance for systems with a positive
skewness value in the energy gap fluctuations. As is
demonstrated in Sec. IVC, this expansion of the third
order cumulant method to positive skew, low kurtosis
energy gap fluctuations is key for obtaining reliable cor-
rections to the lineshape in real molecular systems in the
condensed phase sampled with MD.
We also note that there is a low skewness, high kurtosis

region where the optimized third order cumulant method
under-preforms the second order cumulant approxima-
tion. This behavior may be rationalized in the follow-
ing way: Within this region, one observes both numeri-
cally unstable GBOM parameterizations and GBOMs for
which the unaltered third order cumulant and second or-
der cumulant are in close agreement. With respect to the
first effect, we observe nonphysical artifacts in this region
not only for the third order cumulant approximation, but
also with FC and ensemble computational methods which
are generally assumed to be stable. This suggests that
this region likely corresponds to model parameterizations
that lie outside the domain of realistic molecular sys-
tems. This observation is reinforced by the fact that none
of the real molecular systems sampled with MD investi-
gated in this study (see SI Sec. VII and Sec. IVC) reside
within this domain of statistical space. In fact, with all
molecules studied for this work we find that their energy
gap fluctuations reside in regions where the optimized
third order cumulant approximation is predicted to out-
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FIG. 6. A) κrel of the optimized third order cumulant against the unaltered third order cumulant. B) κrel of the optimized
third order cumulant versus the second order cumulant.

preform the second order cumulant approximation.

In Fig. 6 B), we focus on the relative performance be-
tween the dampened and the undampened third order
cumulant approximation. We note that in the negative
skew region, the dampened third order cumulant approx-
imation is indistinguishable from the pure third order
cumulant approximation in average performance, again
indicating that the pure third order cumulant approxi-
mation systematically improves the lineshape in this re-
gion. In the positive yet small skew limit, it is generally
observed that physically reasonable GBOMs only have a
very small third order correction, resulting in very little
effect in the overall response function by conditioning the
cumulant expansion through the ideal dampening factor
Φ. In the larger valued positive skew region, we observe
a strong and consistent improvement of the dampened
third order cumulant approximation over the pure third
order cumulant approximation, with Φ becoming small
for large skewness values. We find these results consis-
tent with the principles that led us to propose the func-
tional form of Eqn. 16: As we reach regions with a more
strong departure from Gaussian behavior, the size of the
third order cumulant contribution must increase. In par-
allel, the (unaccounted for) higher order cumulant con-
tributions must increase in size as well, requiring a larger
degree of dampening.

B. Application to Model Systems

1. The GBOM

Once the function Φ(µ(3), µ(4)) has been parameterized
by fitting a bivariate spline to the sampled data points
of ≈125,000 GBOMs, the prefactor conditioning of the
third order cumulant approximation can now be applied
in a predictive manner. To do so, we apply the prefactor
method to a set of GBOMs where, rather than selecting
the ideal dampening factor from minimizing the metric
κ(Φ), we evaluate Φ directly from the statistical proper-
ties of the energy gap fluctuations, namely the skew µ(3)

and excess kurtosis µ(4), without the need to refer to the
exact analytical solution of the spectral lineshape. Three
example GBOMs can be found in Fig. 7 (information on
model parameters is provided in Appendix A 5 b). As
can be seen, the fitted spline function for Φ(µ(3), µ(4))
yields an appropriate dampening factor for all GBOM
parameterizations in different areas of statistical space.
In all cases, the dampened third order cumulant line-
shape is much improved over the pure third order cu-
mulant lineshape, removing strong divergences and un-
physical negative absorbances in the case of Fig. 7 A)
and C). The dampened lineshape also provides a signif-
icant improvement over the second order cumulant ap-
proximation, both in terms of the position and intensity
of vibronic peaks. While Fig. 7 shows three representa-
tive GBOM parameterizations, we observe a similar per-
formance over a wide range of model parameterizations
studied.
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FIG. 7. Three different GBOM Hamiltonian parameterizations sampled across statistical space. A) A 15-mode GBOM (µ(3) =
0.26, µ(4) = 0.15). B) An 8-mode GBOM (µ(3) = 0.11, µ(4) = 0.04). C) A 16-mode GBOM (µ(3) = 0.25, µ(4) = 0.4).

The fact that the correction factor can be applied with
good accuracy to the same class of models it was pa-
rameterized for is not entirely surprising, but serves at a
good empirical demonstration that Φ can be truly rep-
resented as a function of the non-Gaussian features of
the energy gap fluctuations, rather than explicit param-
eters of the underlying Hamiltonian. In the context of
GBOMs, this implies that the optimal prefactor within a
region of non-Gaussian fluctuations obtained from a set
of randomly sampled GBOMs can still be effectively ap-
plied to a GBOM that may strongly vary in underlying
parameters, as long as it shares similar energy gap fluc-
tuation statistics. What remains to be demonstrated is
that a dampening factor Φ(µ(3), µ(4)) derived for a sim-
ple set of harmonic model can be applied to more general
(anharmonic) systems. However, the good performance
of the dampening factor shown in Fig. 7 is highly promis-
ing, as it suggests that failures of the cumulant approach
in correctly capturing Duschinsky mode mixing effects
and changes in PES curvature upon excitation can be ef-
fectively cured even in complex condensed phase systems,
where the FC method cannot be applied.

2. The Morse oscillator

To test the validity of the prefactor mapping on molec-
ular systems which contain strongly anharmonic modes,
we construct model systems under the scheme outlined in
Appendix A 2, where the chromophore is approximated
through a set of harmonic modes described as a GBOM
and a single anharmonic mode described as a Morse os-
cillator. The results of pure and dampened cumulant
approximations are once again assessed against the ex-
act spectrum. The results for a specific model parame-
terization can be found in Fig. 8, with the exact model
parameters specified in Appendix A 5 c.

As found in our previous work, both second and third
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FIG. 8. Exact, second, third and prefactor optimized spectra
for a model system containing a single Morse oscillator and a
9 mode GBOM (µ(3) = 0.08, µ(4) = 0.034).

order cumulant expansions struggle to replicate higher
order vibronic progressions in the Morse spectrum.39

However, we find that the predicted prefactor Φ removes
nonphysical characteristics of the third order spectrum
entirely. While the degree of improvement for this an-
harmonic model is not appreciable in comparison to the
harmonic systems studied in Fig. 7, conditioning through
the dampening factor Φ remains an effective way to safe-
guard against unphysical spectral lineshapes.

Furthermore, the ability to apply a prefactor parame-
terized for harmonic systems to a system which now con-
tains anharmonic PESs supports the hypothesis that the
dampening factor is indeed independent of the underlying
Hamiltonian of the physical system, and instead depends
on the non-Gaussian features of the energy gap fluctu-
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ations alone. This suggests that the fitted dampening
factor Φ(µ(3), µ(4)) can be applied to complex condensed
phase systems with energy gap fluctuations sampled di-
rectly from MD simulations.

C. Molecular Systems sampled from MD

The ultimate objective of the optimization approach
developed within this work is to apply the inference
gained in model systems to the simulated absorption
spectra of realistic molecular systems in the condensed
phase, where the exact spectrum can no longer be com-
puted. For these complex systems, the aim of evaluating
the parameterized dampening factor Φ(µ(3), µ(4)) is to
both improve the computed lineshapes and reduce com-
putational cost.

MD-type calculations required to sample energy gap
fluctuations in the condensed phase to construct cumu-
lant spectra are computationally expensive4,55,58 com-
pared to calculations on simple model systems (generally
requiring the computation of tens of thousands vertical
excitation energies along the trajectories). Additionally,
computing reliable third order cumulant corrections re-
quires significantly more data than second order cumu-
lant spectra, as two-time correlation functions of the en-
ergy gap have to be converged.57 Thus, there is merit in
being able to predict the overall stability of the third or-
der cumulant approximation based on statistics of energy
gap fluctuations alone, which can be computed cheaply
from preliminary data sets. If the skew and excess kur-
tosis of energy gap fluctuations of a molecule fall into
a region of low confidence in Fig. 4, it can be concluded
that expending the extra computational cost to construct
third order cumulant corrections is unlikely to yield im-
proved spectra. In other systems, specifically those with
moderate positive skew in the energy gap fluctuations, we
expect a prefactor-conditioned MD-based third order cu-
mulant approach to yield improved lineshapes, both by
removing unphysical negative spectral features and by
improving the underlying vibronic fine-structure of the
transition.

To examine the usefulness of the dampening factor
Φ(µ(3), µ(4)) in realistic systems, we first demonstrate
that typical condensed phase systems sampled from MD
fall into the statistical range of non-Gaussian energy
gap fluctuations sampled by the randomly parameter-
ized GBOMs used in this work. Such an analysis is pro-
vided for nine selected molecules in SI Sec. VII. Both
isolated molecules in vacuum and chromophores in con-
densed phase environments are included in the data set.
For all nine molecules, it is found that the non-Gaussian
features of the energy fluctuations, µ(3) and µ(4), fall into
the region sampled by the GBOMs. Additionally, they
all fall into a region where the optimized third order cu-
mulant approximation is predicted to outperform the sec-
ond order cumulant approximation, thus indicating that
the dampening factor Φ can likely be used to improve

spectral lineshapes in these realistic systems. Here, we
focus on a single selected system in more detail, namely
coumarin-135 in toluene, due to the fact that vibronic
peaks are well resolved in the lineshape, and an experi-
mental spectrum is readily available.86

We emphasize that to produce what one may define as
a sufficiently accurate spectrum for a molecule in the con-
densed phase using the MD-based cumulant method in-
volves additional challenges when compared to the study
of simple model systems where the exact spectrum can be
readily computed. Vibronic lineshapes are often found to
differ considerably depending on the level of theory used
for modeling the ground- and excited state potential en-
ergy surfaces with TDDFT.87,88 Thus, any discrepancies
with respect to the experimental spectrum cannot be eas-
ily ascribed to errors introduced in the low order cumu-
lant expansion alone. For this reason, we more broadly
focus on observed changes in the vibronic fine structure
under the different cumulant approximations, rather than
direct a quantitative comparison to the experimental line-
shape.

1. Coumarin-153

Experimental86 and simulated MD-based cumulant
spectra for coumarin-153 can be found in Fig. 9. We
note that available experimental spectrum in Ref. 86 uses
hexane as the non-polar solvent, rather than toluene as
used in our calculations. Due to the fact that both are
non-polar solvents with similar dielectric constants, we
expect the spectra in the two solvents to match each
other closely. Additionally, we note that the weakly
interacting nature of the solvent means that this sys-
tem is likely well-described by more commonly used
and computationally affordable Franck-Condon type ap-
proaches. While strongly interacting solvents provide
a more suitable application for the cumulant method,
as direct solute-solvent interactions and slow collective
chromophore-environment motions cannot be straight-
forwardly included in the Franck-Condon method, the
well-defined vibronic finestructure of coumarin-153 in
weakly interacting solvents allows for a more detailed
analysis of the performance of the corrected cumulant
approach and is therefore presented here as a test case.
The results in Fig. 9 indicate that the pure third order

cumulant spectrum for this mildly non-Gaussian system
already exhibits negative contributions to the spectral
lineshape. For the underlying non-Gaussian statistics of
the energy gap, a prefactor of Φ = 0.43 is predicted for
this system. When applying the dampening factor to the
spectral lineshape we indeed successfully remove the un-
physical negative absorbance from the onset of the spec-
trum at 2.8 eV.
Focusing on the spectral shape, we note that the pure

third order cumulant approach predicts a much more pro-
nounced vibronic fine structure than the second order cu-
mulant approach. Additionally, while in the second order
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FIG. 9. Experimental,86 second order, third order and opti-
mized third order spectrum of Coumarin-153 in toluene (for
simulated spectra) and hexane (experimental spectrum). The
optimal prefactor was determined to be Φ = 0.43 based on a
skew of 0.22 and an excess kurtosis of 0.05.

cumulant approximation and in the experimental spec-
trum, the second vibronic peak has the highest intensity,
the third order cumulant approach erroneously predicts
the first vibronic peak to be more bright. The dampened
third order cumulant method produces a spectrum with a
more resolved vibronic fine-structure and improved peak
separation compared to the second order cumulant ap-
proach, but still predicts a high intensity for the second
vibronic peak. In general, the dampened spectrum is in
good agreement with the experimental spectrum, with
only a minor overestimation of the first vibronic peak.
The origin of remaining discrepancy with the experimen-
tal spectrum is unclear, but can potentially be ascribed
to inaccuracies in the (TD)DFT description of the system
Hamiltonian, rather than the truncation of the cumulant
expansion.

We take the fact that the prefactor Φ(µ(3), µ(4)) suc-
cessfully removes non-physical features from the third or-
der cumulant spectrum in a realistic condensed phase sys-
tem as an additional proof of the wide applicability of the
dampened cumulant response developed in this work (see
Eqn. 16). No details of the underlying system Hamilto-
nian are needed to obtain the ideal dampening factor
Φ, and only non-Gaussian features of the energy gap
fluctuations determine this quantity. We have demon-
strated that constructing Φ(µ(3), µ(4)) from a stochastic
sampling of simple, exactly solvable model systems pro-
vides a recipe for improving cumulant spectra truncated
at low order in complex condensed phase systems.

V. CONCLUSION

In this work, we have outlined an approach to account
for third order corrections to the linear absorption spec-
trum computed in the widely-used cumulant framework.
The approach takes into account the effect of moderately
non-Gaussian energy gap fluctuations without exhibit-
ing unphysical divergences and regions of negative ab-
sorbance in the resulting spectra. The method promises
to yield more accurate and robust linear spectra in model
systems and chromophores embedded in complex con-
densed phase environments alike.
The key insight in this work consists of introducing

a dampening factor Φ(µ(3), µ(4)) that is applied to the
bare third order cumulant correction, where Φ is taken
to be an explicit function of the skew and excess kurtosis,
measures of the non-Gaussian nature of the energy gap
fluctuations. We have rationalized the functional form of
this correction factor by noting that the third order cu-
mulant term improves the spectral lineshape in the short
timescale, but exhibits divergences at longer timescales.
These divergences would be cancelled by higher order
cumulant contributions that have to be neglected in any
practical application to condensed phase systems. Thus
the factor Φ approximately accounts for the collective
dampening contribution to the lineshape of higher order
cumulants.
We have shown that the functional form of Φ(µ(3), µ(4))

can be parameterized by stochastically sampling model
parameters of the GBOM, a harmonic model Hamilto-
nian that is widely applied to the prediction optical spec-
tra of semi-rigid molecules. By constructing Φ for a
model system where the exact spectrum cam be com-
puted analytically, we were able to parameterize an ideal
dampening factor as a function of the non-Gaussian fluc-
tuations only, rather than the parameters of the under-
lying system Hamiltonian. With this predictive plot in
place, we were able to find optimal dampening factors
Φ in MD-type simulations of molecular systems in the
condensed phase.
We have demonstrated that the parameterized damp-

ening factor rigorously removes unphysical and divergent
lineshapes in the third order cumulant approximation,
both for model systems and for condensed phase systems
sampled with MD. In the GBOM Hamiltonian, we have
also shown that the approach improves the agreement
with the exact spectrum, both compared to the second
order and the pure third order cumulant approach, for
a wide range of model system parameterizations. For
the realistic condensed phase system of coumarin-135 in
toluene, our method yields a final spectrum in excellent
agreement with experiment. The results presented indi-
cate that the approach outlined in this work provides an
efficient, computationally affordable pathway for correct-
ing the main shortcomings of the second order cumulant
approach in condensed phase systems, namely the inabil-
ity to account for non-Gaussian fluctuations introduced
by anharmonic effects, Duschinsky mode mixing effects
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and changes in the PES curvature upon excitation. Since
our parameterization of Φ only relies on the skewness
and kurtosis of the underlying energy gap fluctuations,
we expect the method to be widely applicable to con-
densed phase systems sampled with MD. The dampened
third order cumulant approach developed in this work
has been implemented in the open-source software pack-
age MolSpeckPy developed within our group.89

Appendix A: Model systems

In this work, we turn to two exactly solvable model
systems. The Generalized Brownian Oscillator Model
(GBOM) is a harmonic system that will be used
to infer the functional form of the dampening factor
Φ
(
µ(3), µ(4)

)
, whereas the 1D Morse oscillator is invoked

to explore the effectiveness of the dampening factor in
systems that go beyond the harmonic approximation.

1. Generalized Brownian oscillator model (GBOM)

The GBOM is a convenient, numerically robust model
in which the second order cumulant approximation is no
longer exact, but in which the exact second and third or-
der cumulants can be evaluated analytically (see SI Sec.
II and Refs. 39 and 60). Furthermore, the exact response
function (Eqn. 5) can be computed analytically,36,37 en-
abling us to examine in detail the errors introduced by
truncating the cumulant expansion at some finite order.

For an n-mode GBOM, we define the following ground-
and excited state nuclear Hamiltonians:

Ĥg(q̂, p̂) =
1

2

n∑
i

[
p̂2i + ω2

g,iq̂
2
i

]
(A1)

Ĥe(r̂, π̂) =
1

2

n∑
i

[
π̂2
i + ω2

e,ir̂
2
i

]
+∆, (A2)

where {ωg,i} and {ωe,i} are the set of ground- and excited
state vibrational frequencies, ∆ is the adiabatic energy
gap between the two electronic surfaces and {q̂i} and {r̂i}
are ground and excited state normal mode coordinates
respectively. The coordinates are related to each other
by a linear transformation in terms of a shift-vector (k)
between the ground and excited state minima, and the
mode-mixing Duschinsky rotation matrix (J):38

q̂i =
∑
m

Jimr̂m − ki. (A3)

Both the Duschinsky mode mixing and the mismatch
between the ground- and excited state normal mode fre-
quencies cause non-Gaussian energy gap fluctuations in
this model Hamiltonian.39

2. Morse oscillator model

A main shortcoming of the GBOM as applied to realis-
tic systems is that it does not exhibit any anharmonicity
in the potential energy surface. To probe the influence
of anharmonic effects on computed lineshapes, we turn
to the 1D Morse oscillator with the system Hamiltonian
taking the following form:

Ĥg(q̂, p̂) =
p̂2

2
+ Dg[1− e−αg q̂]2 (A4)

Ĥe(q̂, p̂) =
p̂2

2
+ De[1− e−αe(q̂−k)]2 +∆. (A5)

Here, D is the well depth of the potential, k is the dis-
placement between the ground and excited potential min-
ima, and αg and αe are the anharmonicity parameters for
the ground- and excited state. Analytical expressions for
the Morse oscillator wavefunctions exist,90 such that the
exact response function for this Hamiltonian can be con-
structed directly through Eqn. 5. Additionally, cumu-
lants based on the exact quantum correlation function
can also be constructed numerically.39

The exact analytical expressions for the Morse oscil-
lator wavefunctions are numerically unstable, meaning
that the parameters this model have to be chosen some-
what carefully to guarantee well-defined results. As such,
it less apt for the high-throughput screening of parame-
ter space desired in this study. Instead, we construct a
few selected Morse oscillator parameterizations inspired
by realistic molecular systems to test whether the conclu-
sions obtained for the GBOM Hamiltonian can be carried
over to the anharmonic case. In these model calcula-
tions, we combine the Morse oscillator with a GBOM to
model a chromophore with a few harmonic and a single
anharmonic mode. The anharmonic mode is taken to be
decoupled from the harmonic ones, such that the total
response function can be written as:

χ(t) = χMorse(t)χGBOM(t), (A6)

where each response contribution may be computed
through FC, ensemble and cumulant-type approxima-
tions.

3. Solvent model

In model systems with a finite number of modes, sol-
vent effects must be reintroduced to produce realistically
broadened spectra. Here, solvent effects are accounted
for through a continuous set of low frequency Brownian
oscillator modes described by a spectral density of the
Debye form:

Jenv(ω) = 2λenvωc
ω

ω2
c + ω2

, (A7)

where λenv is the solvent reorganization energy quanti-
fying the strength of the solvent coupling and ωc is a
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cutoff frequency determining the relaxation timescale of
the bath.39 Assuming the solvent modes are fully separa-
ble from the modes describing the chromophore degrees
of freedom, solvent-driven broadening effects on the line-
shape can subsequently be described through a separable
second order cumulant contribution:

χenv(t) = e−genv
2 [Jenv(ω)](t) (A8)

χtot(t) = χchromophore(t)χenv(t) (A9)

In this work, the solvent model parameters ωc = 22 cm−1

and λenv = 0.0009 Ha are used throughout, representing
weak solute-solvent interactions typically found in non-
polar solvents in realistic systems.

4. The infinite order lineshape function for a GBOM
Hamiltonian

In practice, the exact response function Eqn. 5 for a
GBOM Hamiltonian is not resloved directly through a
sum over states method. Instead, a path integral ap-
proach beginning with Fermi’s golden rule for linear re-
sponse is applied to analytically evaluate Eqn. 5 in the
time-domain.37 The newly obtained form of Eqn. 5 al-
lows one to find g∞(t); the exact lineshape function for
a GBOM Hamiltonian:

g∞(t) = −ln
(√

det(R)
)
− i(λ0 + ξ)t

−ikTCk+
i

2
ETD−1E.

(A10)

Where k is the shift-vector in Eqn. A3. The definition of
λ0 and ξ for the GBOM can be found in SI Sec. I A. To
compute the matrices R, C, D and E, we follow the ap-
proach outlined by de Souza and coworkers37 and define
the following auxiliary matrices a,a,A,b,b,B,P:

ajk = δjkωg,j(sin(ωg,j(−t− iβ))−1 (A11)

ajk = δjkωe,j(sin(ωe,j(t))
−1 (A12)

A = a+ JTaJ (A13)

bjk = δjkωg,j(tan(ωg,j(−t− iβ))−1 (A14)

bjk = δjkωe,j(tan(ωe,j(t))
−1 (A15)

B = b+ JTbJ (A16)

Pjk = δjk2sinh

(
ωg,jβ

2

)
. (A17)

The matrices of Eqn. A10 can then be defined as:

R = aa
[
B(B−AB−1A)

]−1
P2 (A18)

C = b− a (A19)

E =

[
kTCJ

kTCJ

]
(A20)

D =

[
B −A
−A B

]
(A21)

Here, J is again the Duschinsky rotation matrix corre-
sponding to the ground- and excited state normal mode
coordinate transformation (Eqn. A3).

5. Parameters of Model Systems

a. Parameters of Figs. 1 and 2

The same two-mode GBOM was presented in Figs. 1
and 2. The following parameters were selected:

ωg = [0.0045, 0.0045]

ωe = [0.0053, 0.0055]

k = [7, 8]

θ = 0.25

J(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

Here, frequencies are in Hartree atomic units and ele-
ments of the shift vector k are in units of

√
ωg,i

−1.

b. Parameters of Fig. 7

The GBOMs presented in Fig. 7 contain nontrivial ro-
tation matrices which are large enough to be cumbersome
to report here. The frequencies, shift vectors and rotation
matrices of the examples presented within Fig. 7 may be
found in the Zenodo repository listed in the Data Avail-
ability section. We note that these particular files need
to be executed in a default version of the Spectroscopy
Python Code developed in our group.89

c. Parameters of Fig. 8

For Fig. 8, the parameters of the GBOM coupled to
the Morse potential mode are as follows:

ωg = [0.0045, 0.0045, 0.005, 0.006,

0.0057, 0.005, 0.0042, 0.004, 0.003] (A22)

ωe = [0.0045, 0.0045, 0.005, 0.0058,

0.0057, 0.0051, 0.0042, 0.004, 0.003] (A23)

k = [5, 4, 10, 6, 8, 0, 5, 6, 0]

θ = 0

J(θ) = [I].

Here, all units follow the conventions of Appendix A 5 a.
The 1D Morse oscillator added to this GBOM has the
following parameters:

Dg = 0.48

De = 0.2

αg = 0.7

αe = 0.9

k = 0.2,
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where well depths (Dg,e) are in units of Hartree energy,

anharmonic factors (αg,e) are in units of a−1
0 and the

displacement (k) is in units of a0, where a0 is the Bohr
radius.

II. SUPPLEMENTARY MATERIAL

See the supplementary material for the analytic ex-
pressions of the second and third order cumulants of a
GBOM Hamiltonian, an analysis of their asymptotic be-
havior and an inspection of higher order cumulants for
a number of model systems. Stochastic sampling tech-
niques used to construct the prefactor plot and an anal-
ysis of the statistical properties of simulated molecular
systems are provided as well.
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simulations of vibrationally-resolved absorption spectra of flu-
orophores with machine-learning-based inhomogeneous broaden-
ing,” J. Chem. Theory Comput. 19, 2304–2315 (2023).
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