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Abstract—The combination of parametric quantum circuits
and density matrix coding can significantly reduce the number
of parameters in artificial neural networks. The reduction in
the number of model parameters helps to improve the commu-
nication efficiency when training deep learning models under
federated learning architectures. In this study, we showcase
the enhanced communication efficiency achieved in federated
learning by utilizing quantum neural networks in the context
of the molecular inverse synthesis task within reinforcement
learning. Specifically, we consider the federated learning task on
the reinforcement learning-based retrosynthesis. we adopted the
USPTO-50k chemical reaction dataset. the MLP and quantum
neural network are used as the agent of the reinforcement
learning algorithm, respectively. Enhancements in communica-
tion efficiency stem from the capacity of encoded quantum states
within quantum neural networks to effectively represent data.
All instances are additionally situated within the framework of
ligand molecules associated with Tau proteins.

Index Terms—federated learning, quantum machine learning,
reinforcement learning, retrosynthesis

I. INTRODUCTION

The increasing maturity of quantum computers has ushered
in an era of novel computational tools. [1] The profound
impact of quantum computing on drug design has garnered
widespread attention. Among these quantum algorithms, we
find UCCSD, which relies on the quantum phase estimation
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algorithms, quantum optimization solvers, and quantum ma-
chine learning techniques. [2] The fusion of quantum data
advantages with deep learning tasks is poised to assume a
pivotal role both presently and in the future. [3] Meanwhile,
the application of deep learning in the field of biomedicine
hinges upon the availability of high-quality datasets and the
imperative of safeguarding data privacy. [4] Enter federated
learning, a crucial approach in today’s deep learning landscape
for addressing data privacy concerns. Notably, this framework
is also adaptable for quantum machine learning applications.
[5]

In the realm of federated learning, the process of training
deep learning models locally necessitates communication and
updates with servers or other clients, adhering to algorithms
like FedAvg. [6] As the data’s feature encoding complexity
grows, there is a consequential surge in the neural network’s
parameter count. This, in turn, amplifies the communication
overhead associated with training deep learning models within
federated learning frameworks. For federated learning to re-
main practical, it becomes imperative to discover means of
substantially reducing model parameters while employing the
same data preprocessing techniques, all without compromising
model performance significantly. [7]-[9]

In this context, it’s worth highlighting that quantum neural
networks have the potential, under specific conditions, to yield
such outcomes. An illustrative case in point is the realm of re-
inforcement learning applied to molecular inverse synthesis, as
mentioned earlier. [10] Within the chemical industry, the plan-
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ning of chemical reaction pathways assumes paramount sig-
nificance, particularly in the production of organic molecules.
One notable approach, exemplified by Aspuru-Guzik et al.,
leverages reinforcement learning algorithms in tandem with
chemical reaction templates. [11] In their work, the authors
employed Multi-Layer Perceptrons (MLP) and molecular fin-
gerprinting to craft an intelligent framework for decision-
making regarding chemical reaction types. By subsequently
converting the internal structure of this intelligent framework
into parametric quantum circuits, a remarkable reduction in
the number of parameters becomes evident. [12]-[14]

To explore the potential utility of quantum neural networks
in the context of drug design, we delve into our work centered
on small molecule targeted drug design for Tau proteins.
[15] Our approach involves utilizing the open-source binding
energy prediction model, deepDTA, to identify molecules with
the highest affinity for Tau from the USPTO-50k chemical
reaction database. [16] Subsequently, we employ a reinforce-
ment learning/quantum reinforcement learning inverse syn-
thesis strategy to dissect the synthetic pathways leading to
the desired molecules. Throughout this process, we illustrate
how quantum neural networks contribute to heightened com-
munication efficiency when training reinforcement learning
inverse synthesis algorithms within the framework of federated
learning.

II. METHODS
A. Quantum Neural Networks

The quantum neural network represents a fusion of neu-
ral network algorithms and quantum computing techniques.
Neural network algorithms form the foundation, with imple-
mentations typically relying on PyTorch. Similarly, software
frameworks for quantum computing, such as Qiskit, are pre-
dominantly Python-based. [17] In our work, we focus on
parameterized quantum circuits, primarily employing quantum
computing simulators. These parameterized quantum circuits
serve as the building blocks for our neural networks, re-
placing traditional MLP (Multi-Layer Perceptron) networks
responsible for decision-making in reinforcement learning
algorithms.The optimization of our quantum neural network
is accomplished through the Adam optimizer, featuring a
loss function rooted in the LI-parameter implementation of
measured and true values. The initial learning rate is set at
0.001.

The structure of the parameterized quantum circuit with N-
bits is outlined as follows:

a Pauli-X gates with a phase rotating gate(phase parameter-
1), Pauli-Y gates with a phase rotating gate (phase
parameter-2), and Pauli-Y gates with a phase rotating gate
(phase parameter-3) collectively compose the XYZ layer
structure.

b Pauli-Y gates with a phase rotating gate(phase parameter-
4), Pauli-Z gates with a phase rotating gate (phase
parameter-5), Pauli-Y gates with a phase rotating gate
(phase parameter-6), constituting the YZY layer structure.

¢ Pauli-Z gates with a phase rotating gate (phase parameter
-7), Pauli-Y gates with a phase rotating gate (phase
parameter -8), and Pauli-X gates with a phase rotating
gate (phase parameter -9), constituting the ZYX layer
structure.

d Pauli-X gates with a phase rotating gate (phase parameter
-10), Pauli-Z gates with a phase rotating gate(phase
parameter -11), Pauli-X gates with a phase rotating gate
(phase parameter -12), constituting the XZX layer struc-
ture

e Pauli-Y gates with a phase rotating gate (phase parameter
-13), Pauli-Z gates with a phase rotating gate (phase
parameter -14), and Pauli-Y gates with a phase rotating
gate (phase parameter -15), constituting the YZY layer
structure.

f Adding the ring gates of Control-NOT between a and b,
b and c, ¢ and d, d and e without phase parameter.

B. Reinforcement Learning for Inverse Synthesis Design

Our analysis of chemical reaction inverse synthesis is based
on the USPTO-50k open-source dataset. The algorithm for
specifying chemical reaction pathways is derived from the
reinforcement learning model detailed in Aspuru-Guzik et al.’s
work. Our implementation of reinforcement learning relies on
tools such as PyTorch and RDKit. [18], [19] Additionally, we
introduce quantum reinforcement learning by substituting the
Multi-Layer Perceptron (MLP) in the original algorithm with
a quantum neural network. The algorithm unfolds as follows:
Data Preprocessing

o The chemical reaction data undergo an initial preprocess-
ing step. They are organized into a chemical synthesis
file, comprising product information, reaction categories,
and synthetic details. The file adheres to the following
data structure:{productl:{category1:[reactantl, reactantl,
reactantl...], category2:[reactantl, reactantl, reactantl...]

o We utilize the RDKit chemoinformatics tool to generate
a Morgan fingerprint for each molecule. Furthermore,
we label attributes indicating whether each molecule is
a target product and its purchase availability.

o The data structure of Tree is employed to manage the
reverse search process of chemical reactions. In this
structure, the root node corresponds to the initial level
labeled as 1, and the highest level of the tree is capped
at 10, representing the maximum reaction steps. The root
node holds the “target product” molecule, while branch
nodes store intermediates, leaf nodes signify terminal
points, and synthetics molecules populate the structure.

Model Training:

o The RDKit chemical information tool was employed
to generate the Morgan fingerprint for each molecule.
Additionally, attributes indicating whether a molecule is
a target product and its availability for purchase were
labeled.

o The search for synthetic paths leading to target products
was carried out using recurrent learning, with the result-
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ing path data structured into a Tree Data Structure and
stored in the experience pool. Data from the experience
pool also plays a role in computing loss functions for
neural networks and quantum neural networks.

o The molecular fingerprint data obtained from RDKit must
be encoded in compliance with the constraints of the
quantum state density matrix. Once encoded, it is utilized
to estimate the loss value when fed into the quantum
neural network.

o Upon algorithm convergence, inputting target product
molecules yields locally optimal chemical reaction path-
ways structured within a tree-data structure.

C. Federated Learning

Federated learning is a machine learning paradigm that
prioritizes data privacy by keeping training data local while
facilitating global model training through the sharing of model
gradients. Our work leverages the FedAvg algorithm, which
follows this process: [20]

1 Initialize the global neural network model on a central
Server.
2 Distribute the global model to each participant.
3 Each device independently trains the model using its local
dataset and generates a gradient update for the model.
4 Transmit the gradient updates from each device back to
the central server.
5 The central server aggregates model updates from all
devices and computes their average.
6 The central server then returns the average to each device
for updating their local model.
These steps (3-6) are iteratively executed until the global
model converges or reaches a predetermined number of it-
erations.

D. Virtual Screening Model

In our research, we employed a deep learning model for pre-
dicting the strength of Tau interactions with small molecules
and for filtering target molecules from the USPTO-50k dataset,
drawing inspiration from the open-source work, DeepDTA.
To adapt the model to our needs, we retrained it using the
PBDbind dataset. We transformed the inputs, represented as
SMILES, into vectors using dictionaries and utilized embed-
ding vectors to project these vectors into a higher-dimensional
space. This preprocessing step optimized the input data for
ligands, enhancing computational efficiency.For processing
sequence data, we followed a similar approach. [21]

In our virtual screening model, we constructed a DeepDTA
network model, incorporating a convolutional neural network
(Convld), a linear layer, and a ReLU activation function.
The preprocessed ligand SMILES and receptor data served as
inputs, processed in batches. To minimize the error between
predicted and true values, we employed the Mean Squared
Error (MSE) loss function. The Adam optimizer was utilized to
fine-tune the model parameters, reducing errors and enhancing
model fit. During the training process, we set a learning rate
of 0.001, ran 600 epochs, and processed 32 samples per batch.

These parameters were carefully chosen to facilitate gradual
learning of input data characteristics and to incrementally
improve prediction accuracy. Through diligent training and
optimization, we successfully developed a regression model
tailored for ligand-receptor interactions.

III. RESULTS AND DISCUSSION
A. Workflow

Federated Quantum Reinforcement Learning for Synthesis
Path Planning of Targeted Drugs for Tau Proteins is presented
in Figure 11. Our research hinges on the USPTO-50k chem-
ical reaction template database, where we conducted training
for both quantum reinforcement learning and reinforcement
learning for reverse synthetic path analysis. Additionally, we
introduced federated learning to safeguard the security of
chemical reaction data.

Furthermore, we harnessed this deepDTA model to predict
the interaction strength between Tau proteins and targeted
small molecules. Quantum reinforcement learning and rein-
forcement learning models were employed to meticulously
craft optimal reaction pathways for these targeted small
molecules.

In this comprehensive workflow, we independently imple-
mented quantum reinforcement learning, federated retrosyn-
thesis algorithms, and applied these models to dissect the
synthetic pathways of ligand molecules for Tau proteins.

Protein/Target Information USPTO Datasets
| 7/
MAP-Tau Compound SMILES
I /
Affinity Prediction Model
y i
Candidates SMILES Retrosynthesis Design
v L 2
Chemical Rection Route by Q-RL with FL

Fig. 1. Federated quantum reinforcement learning workflow for retrosynthesis
of ligand Molecules targeting the Tau protein.

B. Screening candidates for the microtubule-associated pro-
tein Tau

G. Lee et al. provided essential information about tau
protein and its significance in neurobiology and Alzheimer’s
disease, which provides a foundation for further research and
exploration of this protein’s functions and roles in health and
disease. [15] To screen candidate targeting small molecules
from the database of uspto-50k, we used the open-source
DeepDTA model that is developed by Elif Ozkirimli et.
al. As shown in Fig. 2a, this method first uses Convld to
extract features from protein sequences and small molecule
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SMILES coding, and employs an aggregation network to pre-
dict binding energies. Specifically, we retrained the DeepDTA
model using the PDBbind dataset. It completed convergence
after 300 epochs. We used the model to analyse the affin-
ity energy values between Tau and ligand molecules. These
ligand molecules are from uspto-50k datasets. In Fig. 2b,
we have represented the distribution of affinity energies of
drug molecules in bar degrees. Among them, We selected the
molecule that has the largest value of binding energy with
Tau. The chemical structure of this molecule was shown in
Fig. 2c. We assessed the drug-like properties of molecules via
MolWt (molecular weight), BertzCT (molecular complexity
index), TPSA (molecular polar surface area), LogP (Wildman-
Crippen LogP value71), and NumHAcceptors (number of
hydrogen acceptors). These proprties were calculated with
RDKkit. In subsequent stages, we intend to leverage the trained
reinforcement learning model to generate synthetic paths.
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Fig. 2. Ligand molecule screening for Tau proteins. a. predictive model-
ing of affinity energy using convolutional neural networks and multilayer
perceptronic (MLP) Neural Networks; b. statistical distribution of affinity
between Tau proteins and small molecules in the USPTO-50K dataset; c.
chemical structural formula of the screened molecules; d. the molecular
weight, molecular complexity index, molecular polar surface area, Wildman-
Crippen LogP value, and number of hydrogen acceptors of molecules.

C. Reinforcement Learning Algorithms for Chemical Ret-
rosynthesis

We have developed an inverse synthesis algorithm for
chemical reaction path planning using reaction template data
sourced from the USPTO-50k dataset. Our reinforcement
learning inverse synthesis algorithm draws inspiration from
prior works. This reinforcement learning-based retrosynthetic
model, utilizing the reaction template database, incorporates
molecular fingerprints and information on the purchasability
of molecules for synthetic path planning.

As shown in Fig. 3a, a neural network is employed to predict
the reaction type, and this information is deposited into the
experience pool (Buffer). The neural network parameters are
continuously updated using data from the reaction database.
The algorithmic flow is described in the Methods section. Be-
sides, we have replaced this MLP neural network (Fig. 3c) with
a quantum neural network (Fig. 3b). In our quantum neural
network, the density matrix of this quantum state is determined

through the Hermitian matrix calculation, which is related to
structural information of the molecule. The visual depiction
of the quantum circuits in our quantum neural network can
be observed in Fig. 3b, illustrating each layer comprising
rotation operators of Pauli gates and controlled operators.
For constructing the loss function, we rely on the final state
following quantum state evolution and its corresponding mea-
sured values. Throughout the reinforcement learning training
process, our quantum neural network continuously adjusts the
learnable phase information. At the present stage, quantum
neural networks are executed within a quantum simulator
environment.
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Fig. 3. Quantum reinforcement learning (QRL). a. reinforcement learning for
retrosynthesis; b. quantum neural network as the agent; c. MLP as the agent.

D. Quantum information processing boosts communication
efficiency

Considering the commercial value and privacy concerns
surrounding chemical reaction datasets, we implemented fed-
erated learning to safeguard their privacy. Figure 4 illus-
trates our approach about Federated Quantum Reinforcement
Learning (FQRL). Introducing quantum neural networks into
privacy-preserving federated learning leads to enhancements
in communication efficiency. Communication between server
and client come from the exchange of the parameter of agent
neural network.

We distribute the chemical reaction template data across
various clients, and the neural network, along with the initial
model parameters, is transmitted from the central server to
these clients. We’ve chosen the FedAvg algorithm for training
the neural network and updating parameters within the feder-
ated learning framework. Similarly, quantum neural networks
have been integrated into this federated learning workflow.

In our approach, molecules undergoing processing are as-
signed a molecular feature vector using the ECFP fingerprint,
resulting in a vector of length F' = 255. This vector, along
with the depth value of the reaction path, collectively gen-
erates a 256-bit molecular features. Subsequently, following
the quantum information processing procedure, we derive a
8-qubit input quantum state for the parameterized quantum
circuits, considering log(F) = log256 = 8. The number of
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parameters in an MLP algorithm, which employs an input-
hidden-output layer structure, is chiefly determined by input
features and the dimensions of the hidden and output layers.
However, employing the same molecular description vector
with the density matrix of a 8-bit quantum state obtained
after quantum information processing significantly reduces the
number of parameters in the quantum neural network.

a b
Server molecular morgan fingerprints
Execution of FedAvg
—J TRV cos
vector of molecular descriptors:256
MLP-NNs [ acns |
input Imw qubits of circuits:
. l0g(256)=8;
8 hidden Iayers phase paeameters per
3 g qubit:
| Buffer ] NNS_| e -
’ 1 total:
uploda = I 8*15
weights 1 256*500+500*1
u_ ‘

Fig. 4. Federated Quantum Reinforcement Learning (FQRL). a. communi-
tation between the server and client; b. comparison of parameters between
MLP and quantum neural network.

While the quantum neural network effectively reduces its
parameter count to address the same task, it demonstrates the
capability to execute the training task within the federated
learning framework. We were able to find a comparison be-
tween Federated Reinforcement Learning(FRL) and Federated
Quantum Reinforcement Learning(FQRL) in the Fig. 5a. Due
to the decreased parameters in the quantum neural network, the
communication between the server and the client per round is
now only 0.1 percent of its previous value. Simultaneously, we
conducted synthetic route planning for molecules exhibiting
the highest affinity energy values predicted by DeepDTA,
with the results depicted in Fig. 5c. To further understand
the retrosynthesis in Fig. 5., DFT calculations by ORCA
5.0.1 [22] at B3LYP [23]-[25] /def2-SVP [26] level of theory
conjunction with the SMD [27] continuum solvation model
in the solvent of Chlorobenzene and Grimme’s D3 [28]-[30]
dispersion corrections were performed. The calculations show
the reaction is exothermic by 7.5 kcal mol-1, confirming the
reaction is favorable thermodynamically.

We have been investigating the performance improvements
achievable in quantum machine learning applications. Quan-
tum reinforcement learning, exemplified by its communication
efficiency gains in federated learning, stands out as a positive
outcome. However, it’s important to note that not all quantum
machine learning tasks exhibit comparable results, as the
reduction in the number of parameters may be impacted by
model convergence. Furthermore, the training of federated
reinforcement learning, characterized by changes in algorith-
mic logic and update strategy, experienced some efficiency
degradation compared to reinforcement learning training. We
aim to address and enhance these aspects in our future work

Traning of federated learning

— FQRL
— FRL

Communication efficiency in federal learning

FORL:120

P rge

Costs

99.9%
FRL:128500

Federated learning rounds Q m
g 2 >—g/ )tf(\ °

J C N
Choose reaction by RL ,\j

Fig. 5. The communication efficiency of federated retrosynthesis. a. the
training of FQRL and FRL; b. comparison of communication costs between
FQRL and FRL; c. Synthesis path given by reinforcement learning.

IV. CONCLUSION

In our study, we introduce quantum information processing
to enhance the privacy-preserving capabilities of reinforcement
learning inverse synthesis algorithms. Our implementation of
the quantum reinforcement learning algorithm successfully ac-
complishes the task of reverse synthesis of chemical reactions
while substantially reducing the parameter load in server-client
communication for federated learning.

Our exploration of the potential of quantum machine learn-
ing is particularly profound within the context of molecular
design of ligands for Tau proteins. This endeavor not only
furthers our understanding of quantum machine learning but
also delves into its real-world applicability, serving both
academic and industrial interests.
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