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ABSTRACT:	A	simple	protocol	is	outlined	herein	for	rapid	access	to	enantiopure	unnatural	amino	acids	from	trivial	glutamate	
and	aspartate	precursors.	The	method	relies	on	Ag/Ni-electrocatalytic	decarboxylative	coupling	and	can	be	rapidly	conducted	
in	parallel	(24	reactions	at	a	time)	to	ascertain	coupling	viability	followed	by	scale-up	for	the	generation	of	useful	quantities	
of	UAAs	for	exploratory	studies.

Unnatural	 amino	 acids	 (UAAs)	 are	widely	 employed	 as	
pharmacophores,	spectroscopic	probes,	reagents	for	chem-
ical	 biology,	 and	 starting	 materials	 for	 peptidomimetics	
(Figure	1A).1-4	Historically,	the	synthesis	of	UAAs	relies	on	
polar	bond	disconnections,	which	are	generally	character-
ized	by	multistep	sequences	as	summarized	in	Figure	1B.	In	
general,	most	classic	approaches	require	the	use	of	organo-
metallic	reagents	as	starting	materials,	unstable	intermedi-
ates,	multiple	protecting	group	manipulations	 and	 labori-
ous	 reaction	 set	 ups.5	 In	 some	 cases,	 structurally	 sim-
ple/trivial	UAAs	needed	to	be	synthesized	in	as	much	as	10	
steps	with	only	one	of	those	steps	leading	to	a	core	modifi-
cation	of	the	structure	(i.e.	forming	a	C–C	bond).6-15	Over	the	
past	decade,	substantial	progress	towards	developing	more	
direct	approaches	to	UAAs	has	been	made.	For	instance,	pal-
ladium-catalyzed	activation	of	inert	b-C(sp3)–H	bonds	that	
can	capitalize	on	readily	available	amino	acid	starting	mate-
rials	 have	 been	 described.16	 A	 new	 appealing	 strategy	 is	
emerging	that	takes	advantage	of	the	native	functionality	of	
amino	 acids	 such	 as	 aspartate,	 glutamate,	 and	 lysine	
wherein	carboxylic	acid	and	amino	side	chains	can	be	acti-
vated	 for	 decarboxylative	 and	 deaminative	 radical	 cross	
coupling,	respectively.17-21	Building	on	our	expertise	on	de-
carboxylative	cross-couplings	 that	 leverage	Ag	 functional-
ized	electrode	and	Ni-electrocatalysis,22-24	we	were	poised	
to	demonstrate	how	the	arylation	of	inexpensive	and	com-
mercially	 available	 natural	 amino	 acids	 like	 aspartic	 and	
glutamic	derivatives	could	be	achieved	in	an	operationally	
simple	fashion.25,	26	Disclosed	herein	is	a	useful	exemplifica-
tion	of	this	strategy	laying	out	how	a	parallel	reaction	sys-
tem	can	be	used	to	rapidly	access	libraries	of	UAAs.	
The	current	study	was	pursued	with	the	goal	of	accessing	

UAAs	through	a	parallel	synthesis	protocol	for	use	in	an	on-
going	medicinal	chemistry	program.	As	illustrated	in	Table	
1,	the	commercial	"E-hive"	module	from	IKA	was	enlisted,	

which	conveniently	attaches	to	ElectraSyn	2.0.	The	applica-
tion	of	this	module	in	miniaturizing	reactions	and	rapid	as-
say	 generation	 has	 been	 demonstrated	 in	 multiple	 occa-
sions.	The	device	can	run	24	parallel	reactions	at	a	constant	
potential,	whereas	the	reaction	vessel	itself	operates	as	the	
anode	(stainless	steel),	and	a	small	graphite	rod	(part	of	the	
cap)	acts	as	the	cathode.	To	showcase	the	setup's	utility	for	
library	synthesis,	a	set	of	4	redox-active	esters	(RAEs,	Boc	
and	 Fmoc	 protected	 aspartic	 and	 glutamic	 acid	 A1-A4)	
were	selected	and	screened	against	20	arenes	(B1-E2,	80	
reactions	total)	that	were	of	particular	interest	(Table	1A).	
The	reactions	were	easily	set-up	using	stock	solutions	of	the	
respective	 starting	materials	 and	 reagents	 on	 a	 0.03-0.07	
mmol	scale	and	electrolyzed	for	12h.		Subsequently,	product	
formation	was	analyzed	via	UPLC-DAD	using	10	mol%	ter-
phenyl	as	an	internal	standard	and	the	success	of	the	corre-
sponding	reactions	was	divided	into	3	categories:	(Green)	
Product	vs.	internal	standard	ratio	is	higher	than	0.5;	(Yel-
low)	Product	vs.	 internal	standard	ratio	 is	 lower	than	0.5,	
and	(Red):	Desired	Product	was	not	detected.	Out	of	the	80	
reactions,	54	were	highly	successful	(green),	22	were	mod-
estly	successful	(yellow),	and	4	products	were	not	detected	
(red).	This	reactivity	assay	showcases	great	modularity	and	
high	functional	group	tolerance	of	the	utilized	decarboxyla-
tive	 Ag	 functionalized	 electrode	 Ni-electrocatalytic	 cross-
coupling	towards	diversly	substituted	(hetero)aryl	halides.		
Electron-rich	(6,	8,	9)	as	well	as	electron-poor	(1,	7)	aryl	

iodides,	imidazoles	(25),	pyridines	(18,	23),	pyrimidines	(2,	
4,	16,	24),	protected	and	unprotected	azaindoles	(5,	11,	12,	
20,	21,	26),	 unprotected	 pyridinones	 (19),	 chromenones	
(3,	14,	15,	27),	imidazopyridazines	(17,	22),	indazoles	(13)	
and	benzothiophenes	(10)	were	successfully	coupled	with	
at	least	one	amino	acid.	Additionally,	free	alcohols	(6,	8,	9,	
14,	 27)	 and	 amines	 (18),	 alkyl	 fluorides	 (7,	17,	22),	 thi-
oethers	(2,	16,	24)	and	esters	(2,	16,	24)	were	tolerated.	
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More	importantly	the	applied	method	shows	high	chemose-
lectivity	for	electron-poor	(hetero)aryl	iodides,	hence	toler-
ating	more	electron-rich	bromides	and	chlorides	(1,	4,	17,	
22,	 23).	 This	 allows	 for	 further	 substitution	 of	 the	 (het-
ero)arene	by	using	canonical	methods	such	as	Pd-catalyzed	
Suzuki	cross-coupling	and	therefore	opens	up	to	even	more	
diversly	designed	UAAs.	
With	 a	 robust	 reactivity	 assay	 in	 hand,	 a	 library	 of	 se-

lected	UAAs	by	synthesizing	the	corresponding	UAAs	on	a	
0.2-0.3	mmol	scale	(Table	1B).	Thus,	5	Boc	protected	(1-5)	
and	13	Fmoc	protected	(6-18)	aspartic	acid	analogs	as	well	
as	4	Boc	(19-22)	and	5	Fmoc	protected	(23-27)	glutamic	
acids	were	 successfully	 scaled-up	 and	 isolated	 (27	 exam-
ples	total),	without	any	loss	in	enantiopurity.	All	of	the	20	
arenes	 applied	 in	 the	 previous	 reactivity	 assay	were	 iso-
lated	in	at	least	one	example.	Notably,	the	electrode	materi-
als,	concentration,	and	current	density	applied	in	the	stand-
ardized	 procedure	 of	 the	 scale-up	 deviated	 significantly	
from	 the	 conditions	applied	 in	 the	 initial	 reactivity	 assay,	
proving	 the	 robustness	 and	 translatability	 for	 E-hive	
screening	in	this	reaction.	
To	further	demonstrate	the	ability	of	this	method	to	sim-

plify	UAA	synthesis,	six	that	were	studied	during	the	reac-
tivity	 assay	 and	 subsequently	 scaled-up	 have	 been	 previ-
ously	 synthesized	 using	 2e–	 methodologies	 (Figure	 3).	
Those	prior	approaches	required	multi-step	sequences	re-
quiring	the	use	of	rare	and	expensive	transition	metals	as	
well	 as	 toxic	 and	 pyrophoric	 reagents.	 Several	 examples	
were	synthesized	using	traditional	enolate	chemistry	(3,	8,	
10,	13,	18,	25).	Hence,	UAA	8	was	obtained	after	4	steps	in	
0.3%	overall	yield	(following	Lipase	resolution)	and	was	in	
contrast	obtained	as	UAA	8a	in	34%	via	DCC.27	UAA	10	was	
previously	obtained	in	40%	overall	yield	in	racemic	form	af-
ter	5	 steps.11	Despite	obtaining	UAA	10a	 in	only	25%	via	
DCC,	labor	intensive	processes	and	time	can	be	saved	and	a	
single	enantiomer	was	obtained.	Racemic	UAA	13	was	ob-
tained	in	7	steps	and	3%	overall	yield,	whereas	DCC	deliv-
ered	compound	13a	in	52%	as	a	single	enantiomer	in	one	
step.28	By	using	a	chiral	auxiliary	(Schöllkopf),	UAA	18	was	
obtained	after	6	steps	in	2%	yield.29	In	contrast,	the	current	
method	afforded	UAA	18a	in	47%.	UAA	3	was	obtained	in	
10-15%	yield	and	in	6	steps	via	ring	construction	of	the	re-
spective	chromenone.30	Instead,	bromination	of	the	respec-
tive	hydroxy	chromenone	followed	by	DCC	delivered	UAA	
3a	in	39%	yield.	Finally,	racemic	UAA	25	was	obtained	after	
7	steps	in	12%	overall	yield	utilizing	Strecker	chemistry,31	
whereas	DCC	afforded	enantiopure	compound	25a	in	30%	
yield	after	a	single	step.	
This	work	 demonstrates	 how	 a	 library	 of	 UAAs	 can	 be	

easily	constructed	in	two	stages	from	inexpensive	aspartate	
and	glutamate-based	RAE	precursors:	parallel	screening	on	
small	 scale	 using	 a	 commercial	 potentiostat	 followed	 by	
preparative	scale	reactions.	Even	though	no	substantial	at-
tempts	were	made	to	optimize	individual	reactions	beyond	
the	 originally	 published	 conditions,	 yields	 for	 these	 one-
step	 processes	 are	 reasonable	 given	 the	 rapid	 access	 to	
UAAs	that	is	enabled	for	exploratory	studies.		
	

	

FIGURE	1.	(A)	Bioactivity	and	application	of	unnatural	amino	
acids.	(B)	Prior	synthetic	approaches	for	the	preparation	of	un-
natural	amino	acids	and	the	proposed	radical	decarboxylative	
arylation	strategy.	
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FIGURE	2	(A)	Parallel	reaction	screen	for	unnatural	amino	acid	synthesis.	Accurate	reaction	conditions	and	description	of	the	setup	
are	reported	in	the	Supporting	Information.	(B)	Preparative	scale	synthesis	of	the	unnatural	amino	acids	previously	tested	in	the	
parallel	synthesis	platform.	
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Figure	3.	Electrochemical	synthesis	of	relevant	unnatural	amino	acids	compared	to	previous	routes	reported	in	literature.	
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