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Abstract. In a scenario in which the manufacturing of high-

performance, safe batteries on an unprecedented large scale is crucial 
for the energy transition and fight against climate change, research 
laboratories and cell production industries are facing challenges due to 
the lack of efficient data management and training tools. In this context, 
the use of intelligent devices plays an important role on the path 
towards the optimization of the manufacturing process and the 
enhancement of the battery performance while reducing production 
costs. In this Concept, we show how Mixed Reality technology can be 
used for data collection and training in real-time in battery research 
laboratories and pilot lines. We introduce a Mixed Reality application 
run on Microsoft HoloLens 2 glasses, provide a deep analysis on its 
ergonomic and usability aspects, and we describe how we solved the 
problems found during its development. Thanks to this application, 
users can collect data while keeping their hands free and receive 
advice in real time to design and build batteries with tailored properties. 
This optimizes data management in complex and dangerous 
environments, like the ones found in battery research laboratories or 
pilot lines. Now, thanks to our Mixed Reality application, users can 
collect data in the place of work, save this data automatically on a 
server and exploit it to receive advice and feedback to support their 
decision-making and learning of the manufacturing process.  

 

1. Introduction 

The ongoing global energy transition is driving an 

unprecedented increase in the demand for rechargeable 

batteries, with Lithium Ion Batteries (LIBs) emerging as the 

cornerstone technology. The establishment of new 

Gigafactories is essential to support the production scale-

up required for widespread adoption of electric vehicles 

and renewable energy storage, and, in this scenario, the 

European Union, and France in particular, have taken on 

board the strategic importance of batteries in the energy 

transition and in reducing greenhouse gas emissions. In 

this direction, initiatives are underway to strengthen 

Europe's independence in the battery sector, create jobs 

and stimulate innovation [1]. For example, with the Battery 

2030+ research initiative, Europe has put together a global 

roadmap to push battery research for a safer, more 

sustainable and more competitive future [2]. Within this 

framework, several critically-needed research themes 

have been identified, including Artificial Intelligence (AI)-

driven accelerated discovery  of battery interfaces and 
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materials, and the integration of smart sensing and self-

healing functionalities into the battery cells. This ambitious 

international initiative unfolds a comprehensive global 

roadmap, steering battery research toward transformative 

goals, and promotes the use of new technologies to 

stimulate and accelerate battery research and 

development. 

The integration of intelligent digital technologies and 

data management tools into manufacturing and industrial 

processes is the main pillar of the Industry 4.0 concept, 

which promotes the use of new technologies such as big 

data analytics, blockchain and the Internet of Things (IoT), 

as well as Virtual Reality (VR), Augmented Reality (AR) 

and Mixed Reality (MR). VR, MR and AR are immersive 

technologies, since they create a simulated environment 

that the user can interact with in a way that feels real. VR 

is fully immersive, creates a 3D computer-generated 

environment and generally uses a headset, thus making it 

a compelling alternative for gaming and training 

applications [3]. On the other hand, AR allows users to 

keep seeing the real environment, but overlies virtual 

elements, and MR combines and allows real and virtual 

environments to coexist, with the user interacting with both 

of them at the same time [4]. MR offers spatial flexibility for 

interacting with virtual objects in real time in a more natural 

way, and is the only technology that frees up hands, which 

can be particularly useful in situations where users need 

to keep their hands free for other tasks [5,6]. Thanks to their 

unique properties, immersive technologies become 

outstanding alternatives for a wide range of applications, 

including manufacturing and assembly, where they can be 

used to improve the efficiency and accuracy of industrial 

processes with real-time guidance and assistance; 

customer service and sales, since they can provide 

customers with product information and support in real 

time to increase sales; or Education and training, since 

they can provide a more engaging and effective learning 

experience than traditional methods [7]. Additionally, 

thanks to the development of immersive devices such as 

MR glasses, data collection and access have become 

more pervasive and accessible. Interconnected 

computers, smart devices and intelligent machines 

communicate with each other and can reduce the human 

activity while automating and facilitating data flow 

management [8]. This revolution is also changing the way 

we work, by redefining tasks. Digitization is speeding up 

research, increasing efficiency and productivity, as well as 

quality and customization [9]. In battery cell manufacturing, 

integrating new technologies and artificial AI can facilitate 

predictive maintenance and the optimization of production 

processes. Overall, Industry 4.0 gives the promise to  

revolutionize the way battery cells are produced and used, 

leading to a more sustainable and efficient energy future, 

but several challenges still remain.  

In order to seamlessly incorporate immersive 

technologies in battery research and production, it is 

essential to have a profound understanding of the battery 

manufacturing process. Battery cell manufacturing is a 

challenging and complex process, with strict safety and 

environmental requirements, which involves a sequence 

of steps [8]. The manufacturing process of LIB cells is 

highly sensitive to numerous process parameters, for 

instance to small variations in temperature, composition, 

pressure, humidity and other conditions that have a strong 

impact on the battery cell performance and lifespan, thus 

making it crucial to optimize them to obtain better batteries 

[10]. LIBs are the dominant battery technology today due to 

their relatively high energy density, long lifespan, low 

maintenance and low cost, but there is still room to 

improve their performance. The LIB cell manufacturing 

process (Figure 1) begins with the selection of the 

formulation and premixing of the active material, additive 

conductive and binder powders. Next, the liquid solvent is 

added to obtain a liquid, viscous ink, and, after mixing, the 

resulting slurry is coated on the current collector and dried 

in an oven to evaporate the solvent. Afterwards, the 

resulting electrode is calendered between two rollers that 

apply uniform pressure to the strip to increase the 

electrical conductivity by reducing its thickness and its 

porosity. The process must be repeated to obtain the 

second electrode, thus producing a LIB cell consisting of 

an anode (negative electrode), a separator and a cathode 

(positive electrode). The two electrodes are cut according 

to the battery cell format required and assembled using a 

porous separator, involving either the stacking (e.g. pouch 

cell format) or winding (cylindrical format) of the 

components. Next, the terminals are welded,  the cell is 
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inserted into a partially sealed capsule, and, the can is 

filled with electrolyte. The battery cell must be 

degassed before it is completely sealed. Next, the Solid 

Electrolyte Interphase (SEI) formation step is performed, 

and finally, the cell is ready to be used for its application.   

  
 
Figure 1. Scheme of the Battery Manufacturing Process. 

Figure adapted from Denisart et al. [11]. 

 

This manufacturing process for LIB cells is highly 

complex, with many interdependencies and a high degree 

of sensitivity to numerous parameters and a large number 

of different parameter combinations and work conditions 

[10]. Therefore, in order to accelerate research and 

development strategies, it is essential to create a systemic 

understanding to identify and understand the correlations 

between the different parameters (e.g. formulation, mixing 

speed, comma gap, temperature, etc.) and the electrode 

and cell properties (e.g. electrode conductivity, cell energy 

density). A better understanding of the manufacturing 

process at the mesoscale is essential, but efficient 

manufacturing Data Management and Training are also 

critical. The right Data Management policies are 

necessary to post-process and exploit the manufacturing 

data correctly, and Training is important to guarantee 

efficiency, productivity and data quality: the realization of 

both aspects through immersive technologies, as 

proposed by us in this Concept, arises as a promising 

approach to automate and accelerate battery 

manufacturing optimization.   

 Data management has been proven to be essential for 

accelerating research and development, and has been 

increasingly explored in recent years [12]. Data 

management is the process of collecting, storing, 

organizing and preserving the data created and collected 

by an individual, a research group or a company[13], and 

can be divided into three stages: quick and easy data 

capture, data storage and preservation, and data analysis 

for reuse to accelerate research.  When data is poorly 

managed, it can be inaccurate, incomplete or inconsistent, 

thus making it difficult for researchers or engineers to draw 

meaningful conclusions from it and leading to wasted 

resources and time[14]. This can lead to a significant 

number of lost opportunities for better science and 

engineering. Thus, data governance and data quality have 

become top priorities and, for this, it is important to 

dispose of efficient data management processes and the 

right technology. When LIB cells are manufactured, a 

large amount of data is generated (i.e. input parameters 

such as formulation, coating speed, drying rate, 

calendering degree, and output parameters such as 

electrode porosity, cell energy density), and, therefore, it 

is essential to have tools that facilitate data collection and 

improve understanding of the data, while highlighting 

avenues for exploring data analysis. Several tools have 

already been described, although there are no common 

standards or policies widely accepted for data 

management in the battery field [15].  In this paper, we 

elucidate how MR tools emerge as an invaluable tool for 

data collection in hazardous environments during the 

battery manufacturing process. By seamlessly blending 

the physical and virtual realms, MR tools enhance safety 

and efficiency, providing an innovative solution for 

navigating and gathering crucial data in lab and industrial 

environments, optimizing the data management process 

as a whole. 

Optimized data management has the potential to 

reduce scrap rates, improve battery quality and identify the 

process stages or materials that cause failures. Ultimately, 

this will enable a large number of still unexplored avenues 

of research to be explored more quickly and clearly. In this 

scenario, VR, AR and MR have a strong potential to 

optimize data collection and training. Numerous studies 

have examined the contribution of these technologies as 

training and activity support tools [16,17], with excellent 

results in different applications, including gaming, 

healthcare, training and automotive manufacturing [18].  
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Through our previous works which pioneered the use 

of VR and MR in the field of battery chemistry, we have 

shown that these technologies have many advantages in 

particular for education purposes, because they allow 

users to enjoy a unique immersive and interactive 

experience in real-time. Also, thanks to their unique 

characteristics, each of these technologies can be used 

for specific purposes. We believe that MR, in particular, 

has the potential to revolutionize the battery 

manufacturing process by improving worker training, 

inspection and assembly tasks. Through the use of 

headsets and holographic displays, workers can access 

data and instructions in real-time, improving efficiency and 

reducing the risk of error [19]. MR can also facilitate 

maintenance and remote assistance, allowing experts to 

guide and troubleshoot manufacturing processes remotely 

[20,21]. It has already been shown in other application 

contexts that MR is a suitable technology for making 

decisions and carrying out certain tasks, such as the 

design review process [22]. Finally, a study in the field of 

architecture shows that users seem convinced that using 

MR increases their personal satisfaction, particularly in 

collaborative situations [22].   

On the other hand, the construction of several 

Gigafactories in Europe requires a workforce trained in 

many aspects such as understanding battery 

electrochemistry, safety protocols, quality control and 

production processes [23]. In recent years, training has 

made increasing use of digital technologies such as VR, 

but it is still essential to adapt training activities to the real 

Gigafactories’ needs, to enable them to produce high-

quality batteries and achieve their production targets. 

Especially as staff training is a continuous process, 

focused on real needs. The training process is highly 

complex and time-consuming, and must include the 

technical skills needed to manufacture battery cells 

properly (i.e. safe handling of chemicals and operating 

machinery) and understand the correlations between 

parameters [24]. The use of immersive technologies such 

as VR for professional training has become widespread in 

other disciplines, with demonstrated improved efficiency 

and quality of procedural tasks in several fields such as 

healthcare and automotive industry [25]–[28]. Due to total 

immersion, and therefore the impossibility of perceiving 

the outside environment, the main disadvantage of VR is 

that it has to be used in rooms with a large amount of 

space, and is therefore impossible to use in real 

workspaces (like a battery manufacturing pilot line or a 

battery factory), which might be cluttered and which are 

subject to strict safety regulations [11]. MR, which lets the 

user see both digital information and the external 

environment, is therefore a step forward, and offers the 

possibility of being assisted and trained at his/her own 

workstation.  

  The development of the final version of our solution 

took two years. Three generations of our MR infrastructure 

were developed in the context of the STARS (Smart 

Augmented Reality Training Assistant for Battery 

Scientists) and SMARTISTIC (Smart Battery 

Manufacturing Research and Development Assistant 

based on Augmented Reality Technology and powered 

with the ARTISTIC project) research projects, running in 

parallel and led by Prof. Alejandro A. Franco at Université 

de Picardie Jules Verne, Amiens, France. The aim of the 

STARS project was to build a MR software to train 

students, scientists, engineers and operators on the 

formulation and manufacturing of battery cells, while the 

SMARTISTIC project aimed to develop a MR software to 

support decision-making by scientists, engineers and 

battery operators when they are working on the electrode 

formulation and battery cell manufacturing in laboratories, 

pilot lines or factories.  In order to maximize the usefulness 

and minimize user experience concerns and health 

impacts, we conducted extensive and rigorous ergonomic 

studies of these experiences.  

Ergonomics is described as a "scientific discipline 

concerned with the understanding of interactions among 

humans and other elements of a system, and the 

profession that applies theory, principles, data, and design 

methods to optimize human well-being and overall system 

performance [29]".  Ergonomics helps make human-

machine interaction more intuitive by keeping the human 

in the center [29,30]. Ergonomics provides a batch of efficient 

methods to analyze the real activity of the users and 

highlight the needs and constraints they face during their 

activities. Subsequently, ergonomics allowed us to include 

future users in the design process of our MR 

infrastructure, in order to understand user scenarios, their 

https://doi.org/10.26434/chemrxiv-2023-q0vnf-v2 ORCID: https://orcid.org/0000-0001-7362-7849 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-q0vnf-v2
https://orcid.org/0000-0001-7362-7849
https://creativecommons.org/licenses/by/4.0/


 

 

5 

 

tasks and their working environment and then build an 

optimal and comfortable user experience that corresponds 

to their real needs [31].      

In this Concept, we introduce a transformative MR 

application on Microsoft HoloLens 2 glasses that presents 

a groundbreaking solution to data collection and training 

challenges in the field of battery manufacturing. By 

enabling users to see both digital information and their 

external environment, our MR application fosters a hands-

free approach, allowing users to collect data seamlessly 

and receive real-time guidance during battery design and 

manufacturing, and addresses the complexities of data 

management by automatically saving collected data on a 

server, overcoming the hurdles associated with 

dangerous workspaces. This innovative MR solution not 

only enhances safety and efficiency but also facilitates 

experiential learning in the experimental setting, marking 

a significant stride in advancing battery manufacturing 

processes. In Section 2, we describe how our MR solution 

was developed and tested, while the description of the 

application of the different developed prototypes  is 

provided in Section 3. In Section 4 we conclude and 

indicate future directions for our work. 

      

2. Method     

2.1 Description of device use 

The infrastructure of our MR application was adapted 

to assist in the training,  data collection and decision-

making of battery scientists, engineers and operators 

while they are working in electrode formulation and battery 

cell manufacturing in laboratories, or pilot or production 

lines. This innovative technology promises to improve the 

quality and safety of battery production, ultimately 

benefiting consumers and the environment, and emerges 

as a fascinating tool with a high potential to break down 

the barriers between the real and the virtual battery 

manufacturing worlds. It is a novel and secured software 

usable from MR glasses (HoloLens 2) by hand gesture. By 

wearing the MR glasses, the user can see holographic 

objects overlaid in the real environment with which he/she 

can interact (Figure 2a). These objects contain either 

instructions and advice in the form of panels or 3D objects 

on how to reproduce an experiment carried out by 

someone else or learn how to perform a manufacturing 

process, either a holographic notebook for data collection 

and providing assistance for decision-making to the user 

to achieve his/her desired electrode or cell properties. By 

simply using the MR interface and without the need for 

programming skills, the user can also update databases in 

real-time from the data she/he is acquiring from her/his 

ongoing experiments (e.g. battery electrode porosity 

measurement).       

Our study was embarked on the development of a 

cutting-edge MR tool, implemented through the Unity 

platform, specifically tailored for Microsoft HoloLens 2 

glasses. The software development phase involved 

coding in Unity, followed by extensive testing at user level. 

Noteworthy emphasis was placed on seamless integration 

with the HoloLens 2 platform, ensuring optimal 

performance and a cohesive user experience. With this 

application, the MR glasses were in continuous 

Figure 2. a) User wearing HoloLens during battery manufacturing. b) Data is collected through the HoloLens and sent to the Server for storage. 
The Server provides feedback to the user in the form of training or decision-making recommendations. 
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communication with a server storing the collected data 

and/or providing feedback to the MR user, such as 

recommendations on the training recipe or the 

manufacturing parameter values to adopt to achieve the 

desired electrode or cell property (Figure 2b). This raised 

the training and R&D efficiency because there is no need 

to expend time in compiling Excel-type files on computers 

or taking notes in hard notepads: our MR infrastructure 

enables engineers and lab technicians to visualize 

explanatory models and access to formulation guidance in 

real-time while running experiments in a lab or battery 

manufacturing pilot line. 

Several ergonomic interventions were carried out as 

part of the projects, starting with the study of the activity of 

battery manufacturing to collect and analyze information 

about operator tasks.  

2.2 Observations 

Several sequences of observations were carried out to 

capture the actual activity of LIB manufacturing. In order 

to collect the most reliable data, we asked a post-doctoral 

researcher to manufacture a battery on the pilot line of our 

laboratory, and filmed all her communications, 

movements and tasks. We recorded this activity twice, one 

month apart, to identify possible variations in the 

conditions under which the task was performed. The data 

collected was used to describe and explain how the 

experimenters went about carrying out the tasks. In order 

to find out more about the sequences of the tasks, the 

distribution of functions between people and machines, 

the layout of the workplace and training needs.  Each 

stage of the battery cell manufacturing was recorded and 

then analyzed with the Boris software [32].  

To enrich these observations, we conducted a self-

confrontation interview with the observer, asking her to 

provide feedback on her actions. During this interview, she 

explained her intentions (what she did or what she might 

or might not have done when she saw himself on the 

screen). These analyses provided us with valuable 

insights into the activity.       

2.3 Interviews with professionals 

We also supplemented our observations with 

interviews with battery researchers from various research 

laboratories and battery companies (PhD students, post-

doctoral, engineers and professors, for a total of 10 hours 

of interviews). The interviewees were volunteers, and the 

interviews took place by Zoom or face-to-face in a meeting 

room in our laboratory. Several topics were addressed, 

including training needs, descriptions of activity in their 

organizations with different production scales, and their 

opinion about possible applications of MR in their activity. 

These interviews were an opportunity for professionals to 

project themselves into the future, imagine useful 

functionalities compatible with real needs and help 

generate optimal lab experiences. We aimed to provide a 

better user experience to guarantee satisfaction. In highly 

competitive sectors like the one of batteries, this 

satisfaction could be turned into higher sales growth, 

greater loyalty and a greater tendency to recommend the 

service [33,34]. 

All the interviewees' responses were transcribed and 

analyzed using Nvivo 11 software[35]. After analysis of the 

needs and constraints, a new version of the prototype was 

designed. 

2.4 Usability testing 

We tested the new version of the prototype in a real-life 

situation. We asked four experimentalists from our 

laboratory with diverse profiles (experience, gender, level 

of education, frequency of use of the pilot line) to make an 

electrode assisted by our prototype (V1). Previously, the 

participants filled in several questionnaires on their socio-

demographic data, their tendency towards technophilia 

and technophobia[36]  and their level of simulation 

sickness[37]. Each step of the HoloLens 2-assisted 

manufacturing process was filmed and lasted around 3 

hours and 30 minutes. After use, the participants 

completed several questionnaires to measure cognitive 

load[38], level of simulation sickness (compared with pre-

use score) and perception of the device[39]. 

3. Results     

The first version (V.1) of our MR infrastructure was 

designed in 2021 without future users (Figure 3.a). 

Wearing a HoloLens 2 headset, the user had to first stand 

in front of a QR code in order to start using the application. 

The QR codes had to be strategically placed in front of 

each workstation (near each manufacturing process 

machine - mixer, coater, calender - and characterization 

spot - weight scale of the electrode before and after 
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calendering, the thickness Gauges of the electrode before 

and after calendering) within our battery manufacturing 

pilot line so that the user could easily read and interact 

with the corresponding holographic panel (see video in 

Supplementary Material). Then, the headset brought up 

the holographic interactive panel corresponding to the 

associated QR code. An example of an interactive 

holographic panel displaying different information (slurry 

formulation, coating speed, calendering pressure in this 

case) is shown in Table 1. All the data entered by the user 

was automatically stored in the data server in real-time (cf. 

Figure 2b). Table 2 shows the variables that the user can 

collect at each manufacturing step with the Hololens for 

their storage in the database.  

On this first version of our MR solution, we carried out 

a heuristic analysis to optimize its usability by minimizing 

design flaws before presenting the prototype to the first 

users. We used Jakob Nielsen's 10 heuristics, and Bastien 

and Scapin's criteria [40,41]. This enabled us to modify the 

positions of the buttons within the panels, and reduce the 

workload by eliminating certain information that was 

unnecessary for the user or by reducing the number of 

actions required for each step. Then, each panel showed 

the instructions to assist the user, and display input 

parameters for obtaining an electrode with the desired 

properties. To use this technology, users had to reproduce 

the electrode of their choice and enter the numeric data 

using a numeric keypad (they could not enter the wording). 

We asked four experimentalists (2 PhD students, 1 

Engineer and 1 Researcher who had all experience in 

battery manufacturing in the pilot line of our lab) to use the 

device in real electrode manufacturing conditions and we 

observed a number of difficulties in terms of legibility, arm 

and neck pain during use, mental workload and visual 

fatigue. We also worked on safety to guarantee the safety 

of MR users in the experimental rooms when handling 

(dangerous) chemicals. Usually, experimenters have to 

wear personal protective equipment (PPE) such as a 

gown, gloves, goggles or a mask to avoid breathing in 

vapor or powders.  We found out that the fixed position of 

the panels could be dangerous. We also fixed the QR 

codes so that the holographic panels were in front of the 

eyes and above the lab benches, but it turned out that this 

position was inconvenient because the user had to stretch 

his/her arm out in front of him/her, and dangerous because 

he/she was leaning over the bench and there was a risk of 

spilling a chemical product. This was not acceptable, so 

we felt that it would be better to leave users free to choose 

the position according to their preference and the 

characteristics of the situation. Furthermore, the use of 

MR made it easier and quicker to manufacture the 

electrodes, as users no longer had to search for 

information in their notes or laboratory notebooks or enter 

their data in Excel-like files on computers, as all the 

Table 1.  Table describing the evolution of versions according to changes implemented and ergonomic problems identified. 
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necessary information and data collection functionalities 

were presented right in front of their eyes. We also 

observed that users had very positive impressions of the 

device after use, particularly in terms of its usefulness and 

attractiveness[42].  

 

Manufacturing Step Input Variables 

Formulation • Active material mass 
• Carbon additive mass 
• Binder mass 
• Solid Content 

Premixing • Machine Type 
• Mixing Time 

Mixing • Machine Type 
• Mixing Time 
• Solvent Mass 

Coating & Drying • Comma Gap 
• Coating Speed 
• Coating Temperature 

Calendering • Rolls Gap 
• Rolls Speed 
• Rolls Temperature 
• Mass of final product 
• Thickness of final product.  

 
Table 2. Input parameters that can be collected through our 
Mixed Reality solution for the different battery electrode 

manufacturing steps. 
 

In order to fix the problems detected in the first version, 

we designed a second version (V.2) of our MR application, 

based on users' feedback from usability testing and input 

from future users at several stages of the MR design 

process (Figure 3.2)). The V.2 was finalized in October 

2022. V.2 was brighter and the vocabulary was adapted to 

the language used by experimentalists (e.g. weight 

change in mass). We have also added some missing 

information, such as the possibility of inputting the 

thickness and mass of samples to characterize the 

electrode after calendering. V.2. enabled data to be 

entered quickly and easily and stored on a dedicated 

server, so that it can retrieve the information from its 

computer in his/her office. To make data entry easier, we 

added a panel tracking feature to give users the option of 

positioning the panel where they want it and tracking it in 

real time. We also worked on the quality of the interface 

and the reactivity of the system to create a better, more 

memorable customer experience. We had seen from the 

user tests carried out in the previous version that 

responsiveness was an essential element, and that a lack 

of responsiveness could be a hindrance. We therefore 

tested the prototype on the prototyping line 3 times with 

the group's ergonomics specialist and people new to MR. 

After each test, we gave feedback to the developers to 

improve the fluidity of the device. In particular, because 

V.2 allowed the device to be linked to a server so this is 

something we wanted to improve. Thanks to the 

comments and experience of the experimenters involved 

in the projects, we were able to validate the usability and 

effectiveness of the system. We did not carry out user 

tests on this version because we wanted to test the 

coordination between the experiment assistant and 

training modes. 

 

 
Figure 3. a) V.1 of the device at mixing step, b) V.2. of the device at 

mixing step, c) V.3 of the device showing the training mode at the 
calendering step, d)  V.3 of the device showing an animation of the 

mixing process in training mode. 

 
V.3 of our MR infrastructure was finalized in May 2023 

and combined the management of battery manufacturing 

data and a training functionality for this process in the 

same system (Figure 3.c). The manufacturing assistant 

has been made more intuitive. The biggest change was 

the addition of a tutorial mode, allowing users to learn in a 

real manufacturing situation by following the instructions 

and advice available at each stage. The tool features 

videos, audio and animations to help the user understand 

the manufacturing process and the interaction between 

the input parameters and the final characteristics of a 

battery electrode in the experimentation or pilot line room 

(Figure 3.d). To define the subjects and the format that 

might be appropriate, and to design a useful and effective 

training course, we drew our inspiration from the needs 

expressed during interviews. Indeed, professionals told us 

that it is essential to understand the manufacturing 

process before being able to apply the methods. To this 

end, while the trainee is making an electrode, he or she 
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can benefit from advice on setting up the machines or on 

the elements to which attention must be paid. All the 

advice has been written by an experimentalist from our 

research group who regularly trains newcomers, so she 

has the necessary experience to identify the blocking or 

difficult points for trainees. The aim of this advice is to help 

users apply the theoretical principles during the 

manufacturing process.  At the end of each manufacturing 

sequence, the user has a summary of the parameters and 

the formulation, and can compare them with the objectives 

they were supposed to achieve. Errors are therefore part 

of the learning process, and each difference between the 

objectives and what has been achieved is accompanied 

by advice or assistance. 

 Finally, depending on the user's success and errors, a 

subsequent training session is proposed to the user to 

match their needs.  

4. Conclusion 

In this Concept paper, we showed how MR can be 

beneficial in the battery manufacturing industry. 

Integrating MR technology into data management, 

decision making and training in the field of battery 

manufacturing can offer a significant number of benefits, 

including increased working efficiency due to real-time 

data capture, reduced errors and accelerated skills gains. 

In particular, our solution can be used to optimize battery 

prototyping processes, thanks to intuitive manufacturing 

and properties data collection and the ability to retrieve 

data effortlessly. As a complement, we are also building a 

computer-based tool to help users analyze the data 

collected by using our MR solution. Thanks to MR, battery 

labs and companies will be able to improve their 

manufacturing processes and accelerate research and 

development in the field, while reducing costs and 

guaranteeing a high-quality product. Therefore, we 

believe that MR is a valuable technology to support the 

battery manufacturing sector. In the coming months, we 

hope to extend the use of MR to other applications, 

notably other types of battery chemistries and 

technologies. We believe that our MR solution allows 

bringing digital twins, data and computer simulations 

directly in the place of experimentation: it can be seen then 

as a fantastic enabler of the removal of the frontier 

between the real and the digital environments, therefore 

maximizing the impact of digitalization in battery 

manufacturing.  

SUPPLEMENTARY MATERIAL 

We include one video as supplementary material showing 

the use of V.1 from an external point of view and from a 

user perspective. 
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