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ABSTRACT 

Extended similarity indices (i.e. generalization of pairwise similarity) have recently gained 

importance because of their simplicity, fast computation and superiority in tasks like diversity 

picking. However, they operate with several meta parameters that should be optimized. Earlier, 

we extended the binary similarity indices to ‘discrete non-binary’ and ‘continuous’ data; now 

we continue with introducing and comparing multiple weighting functions. As a case study, the 

similarity of CYP enzyme inhibitors (4016 molecules after curation) was characterized by their 

extended similarities, based on 2D descriptors, MACCS and Morgan fingerprints. A statistical 

workflow based on sum of ranking differences (SRD) and analysis of variance (ANOVA) was 

used for finding the optimal weight function(s). Overall, the best weighting function is the 

fraction (“frac”), while optimal extended similarity indices were also found, and their 

differences are revealed across different data sets. We intend this work to be a guideline for 

users of extended similarity indices regarding the various weighting options available. Source 

code for the calculations is available at https://github.com/mqcomplab/MultipleComparisons.  
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INTRODUCTION 

The application of molecular fingerprints (binary strings of molecular features with 0/1 

denoting absence/presence) and similarity measures has been the backbone of cheminformatics 

for decades. Ligand similarity searches have constituted a high-throughput alternative for 

computational drug design and virtual screening,1,2 and they have remained tightly integrated 

even into today’s AI-enhanced, structure-based workflows,3 as well as generative models.4 

After our 2015 work that provided a statistical basis for the decade-long collective habit of 

preferring the Tanimoto coefficient,5 we have thoroughly investigated a large number of 

alternatives collected from diverse scientific fields by Todeschini et al.,6 regarding their use in 

metabolomics,7 molecular modeling8 and even food science.9 In certain cases, we could 

establish a perfect consistency between two or more metrics even with analytical methods.10 

As cheminformatics and related fields move gradually into the domain of big data, e.g. by 

handling molecular datasets in and above the billion regime,11,12 a deeply rooted bottleneck of 

similarity metrics gets revealed. By their original definition, similarity measures are calculated 

between exactly two entities, resulting in a disadvantageous, quadratic scaling of computational 

demand if we want to characterize (cluster, etc.) a large dataset by pairwise similarity 

calculations. To rectify this, we have recently developed and introduced an extension of the 

mathematical framework of similarity calculations, allowing for calculating a single similarity 

value for an arbitrarily large group of objects.13,14 Without reiterating the whole framework 

here, we briefly note that, for binary fingerprints, this extension is based on the generalization 

of the terms 

 a: the number of coincident 1′s (common on bits) 

 d: the number of coincident 0′s (common off bits) 

 and b+c: the number of 0-1 or 1-0 pairs 
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to the following, more general terms: 

 1-similarity counters: number of bit positions where 1’s occur over a coincidence 

threshold γ 

 0-similarity counters: number of bit positions where 0’s occur over a coincidence 

threshold γ 

 dissimilarity counters: number of bit positions where neither 1’s, nor 0’s occur over 

the coincidence threshold γ. 

An important feature of the resulting extended or n-ary similarity metrics is that they realize a 

true generalization of the well-known pairwise similarities, as they provide the same results in 

the n=2 case as the “traditional” pairwise definitions. As a further extension of the framework, 

we have defined extended many-item15 and extended continuous similarities16 to cases of 

discrete non-binary and continuous data, respectively. Most importantly, the usage of extended 

similarities displays a much more advantageous, linear scaling of computational demand vs. 

library size, during common tasks such as diversity selection or clustering.14 Recently, the 

various flavors of extended similarity metrics have been implemented into several workflows, 

including data visualization,17 activity cliff- detection,18 or molecular dynamics trajectory 

sampling.19 

Besides their many advantages, extended similarities require the optimization of several 

parameters that are absent from the traditional pairwise definitions. One such parameter is the 

definition of the coincidence threshold: when comparing five objects and having a bit position 

with three co-occurring 1’s and two 0’s, should we consider that a 1-similarity counter, or a 

dissimilarity counter? Similarly, should we distinguish the “strength” of similarity counters by 

assigning a larger weight to a bit position with five co-occurring 1’s vs. the bit position detailed 

above (three 1’s and two 0’s)? While we have thoroughly investigated the first question in our 

earlier reports, there is much left to be explored regarding the use of different weighting 

schemes and their effect on the outcome of extended similarity calculations. 
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Here, we will introduce multiple weighting schemes and compare their usage in a common 

scenario of differentiating two groups of active vs. inactive molecules against the important 

drug (anti)target, CYP 2C9.20 For continuity, we use the same dataset as in our recent work,16 

but use different molecular representations to cover the binary and continuous extended 

similarity metrics. 

METHODS 

Extended similarity 

The key insight behind the extended similarity indices is that a condensed vector of the whole 

dataset is enough to quantify the similarity of the set. That is, given N molecules represented 

by vectors with M components, we will arrange them in a N × M matrix. Then, we just need to 

calculate the sum of each of the columns of this matrix, thus generating a vector 

 1 2, ,..., M    . In order to recover the information about the 1-, 0-, and dissimilarity-

indicators (a, d, b + c) we need to calculate the indicator 2 k N   , which quantifies the 

“agreement” between elements in the kth column, and a coincidence threshold,  , that indicates 

up to which point we count the column as contributing to the similarity or dissimilarity of the 

set. However, even with this classification we still need to distinguish between cases with partial 

coincidence of elements in a column. For that, we need to define weight functions, that penalize 

the partial coincidence over the similar columns, sf , and the dissimilar ones df . These 

functions only need to obey very general conditions, namely: 
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Until now, all the extended similarity applications have only used a very particular form of 

these functions, with a simple linear dependency: 
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Here, we explore the effect of changing these weights in non-linear ways, as summarized in 

Table 1. 

Table 1. Weighting schemes introduced and compared in this work (for reference, we include 

the original, fractional weighting scheme, labeled “Frac” from here on). 

Order Notation 
sf  df  

1 Frac x

N
 

mod 2
1

x N

N


  

2 Poly_2 2
x

N

 
 
 

 

2
mod 2

1
x N

N

 
 
 

 

-2 Poly_M2 2
x

N



 
 
 

 

2
mod 2

1
x N

N


 

 
 

 

4 Poly_4 4
x

N

 
 
 

 

4
mod 2

1
x N

N

 
 
 

 

-4 Poly_M4 4
x

N



 
 
 

 

4
mod 2

1
x N

N


 

 
 

 

8 Poly_8 8
x

N

 
 
 

 

8
mod 2

1
x N

N

 
 
 

 

-8 Poly_M8 8
x

N



 
 
 

 

8
mod 2

1
x N

N


 

 
 

 

https://doi.org/10.26434/chemrxiv-2024-0b8sf ORCID: https://orcid.org/0000-0003-2121-4449 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0b8sf
https://orcid.org/0000-0003-2121-4449
https://creativecommons.org/licenses/by-nc-nd/4.0/


16 Poly_16 16
x

N

 
 
 

 

16
mod 2

1
x N

N

 
 
 

 

-16 Poly_M16 16
x

N



 
 
 

 

16
mod 2

1
x N

N


 

 
 

 

  

Dataset 

A large dataset of cytochrome P450 (CYP) 2C9 ligands from Pubchem Bioassay (AID 1851) 

was used to compare the different weighting schemes,21 to provide continuity with our earlier 

work.16 Cytochrome P450 enzymes (CYP) are important mediators of drug metabolism, 

therefore generally important anti-targets in drug design: consequently, many datapoints of CYP 

bioactivity for deposited into public databases, and CYP enzymes are likewise popular targets 

of QSAR and machine learning studies.22 In total, 12,161 molecules were applied after data 

curation: 4016 inhibitors with a potency of 10 μM or better (actives) and 8145 inactive species. 

MACCS23 and Morgan fingerprints (radius: 4, length: 1024)24 were generated with RDKit,25 

while the Dragon 7 software was used for the calculation of 2D descriptors.26,27 Highly 

correlated variables (above 0.997) and constant variables were excluded from the sets.28 The 

details and descriptions of the different descriptor sets can be found in the DRAGON software 

manual. 

 

RESULTS AND DISCUSSION 

First, similarity calculations were carried out for the three separate datasets (2D descriptors, 

MACCS and Morgan fingerprint) in the case of active and total groups. Our major assumption 

was that the better similarity metrics can provide higher similarity values for the actives and 

bigger differences between the actives and total similarity values. Some restrictions had to be 

made before the evaluation of the similarity values in each case studies. Based on previous 

assumptions, we have used only the non-weighted version of extended similarity values for the 
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further evaluations. While in the case of 2D descriptor dataset, coincidence threshold limit was 

set to minimum to avoid the combinatorial “explosion” in the further ANOVA evaluations, in 

the case of MACCS and Morgan fingerprints, similarity values were calculated in each 

coincidence threshold limits. SRD was used for the comparison of the similarity metrics in the 

case of each weighting function for the active group. The results of SRD were channeled into a 

factorial ANOVA, in which the weighting functions (9) and similarity metrics (16) were used 

as factors along with the different datasets (3). The workflow of the three datasets will be 

discussed in the next sections. 

In the case of 2D descriptors for the active set, the basic SRD input dataset contained 16 

similarity metrics in the columns, and 14 different 2D descriptor sets in the rows. The 

dimensions of the input dataset were the same for each weighting functions. Thus, the SRD 

calculations were carried out for the nine different weighting functions and the cross-validated 

SRD results were summed up for the further analysis.  

In the case of both MACCS and Morgan fingerprint datasets for actives, the similarity metrics 

were in the columns, and the similarity values for each coincidence threshold limits were in the 

rows. It resulted in 9 rows and 16 columns. Like in the case of 2D descriptors set, in total nine 

SRD calculations were carried out with the same settings and further analyzed by ANOVA. 

As SRD is in % scale for each case study, we have merged together the results for the factorial 

ANOVA. 

In the factorial ANOVA analysis, our aim was to find the differences and best solutions between 

the weighting functions for the different dataset alternatives, such as continuous (2D 

descriptors) and binary type vectors (fingerprints). Therefore, at first in Figure 1 we show the 

comparison of the weighting functions for the SRD results of the three datasets. 
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Figure 1. The SRD values (%) are plotted based on the weighting functions. 

As it is shown, the best weighting function is depending on the used dataset type. Significant 

differences were detected in the factor of the weighting functions (at alpha = 0.05). While 

MACCS had the lowest (best) SRD values in total, the binary datasets show almost the same 

pattern. Thus, the positive orders of the weighting functions are optimal for the continuous 

descriptor type sets (especially Poly_8 and Poly_16), while the negative orders and the fraction 

weighting functions are better for the binary datasets. 
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Figure 2. SRD values (%) based on the weighting functions. 

If we compare the SRD values for the actives together for the three datasets in the sense of 

weighting functions, we can see the most optimal ones overall in Figure 2. The fractional 

weighting function looks like the best option, but it is biased towards the binary datasets. 

Although the confidence intervals (95%) are wider in this case, the weighting functions have 

still significant impact on the outcome. 

 

From the similarity metrics point of view, we can safely say, based on Figure 3, that the current 

metrics are generally worse for continuous sets, than the binary ones. The extended similarity 

index denoted by eJa0 is close to random or even reverse ranking in the case of binary datasets, 

and interestingly eBUB produces dramatically different SRD scores for MACCS and Morgan 

https://doi.org/10.26434/chemrxiv-2024-0b8sf ORCID: https://orcid.org/0000-0003-2121-4449 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0b8sf
https://orcid.org/0000-0003-2121-4449
https://creativecommons.org/licenses/by-nc-nd/4.0/


fingerprints. However, the patterns for MACCS and Morgan datasets are still very similar. SRD 

scores for many extended similarity indices are the same or closely resemble the hypothetical 

best ranking. These datasets are in concordance with the previous results (cf. Fig. 5 in ref.13) 

that eCT1 and eCT2 indices are amongst the best ones for all the three datasets. We can extend 

this now with eAC, eRT and eSM, which are still suitable for the two binary case studies and 

acceptable for the continuous dataset as well. In the case of 2D descriptors, the list can be 

extended with eJa and eSS2, too. 

 

Figure 3. SRD values based on the similarity metrics and the dataset types. 

Next, we have analyzed the most frequent weighting functions and similarity indices with 

regard to the differences between the “active” and “total” group similarities for each dataset. 

Figure 4 shows the frequencies of the weighting functions occurring above the cut-off limit of 

0.10, while Figure 5 shows the most frequent similarity metrics above this cut-off limit. 
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Figure 4. Relative frequencies of the weighting functions above 0.10 similarity values in the 

case of Active-Total data. 

As shown, the top weighting functions in this case were the Poly_8 and Poly_16 variants. These 

two were the most frequent in all case studies regarding the Active-Total similarity values. 

Poly_8 and especially Poly_16 can be good options if the aim of the study is to maximize the 

difference between the active set and the whole database (actives and inactives). On the other 

hand, the Poly_2 weighting function is also a good choice for continuous descriptors as input 

data. 

We have evaluated the frequencies of the similarity metrics above the 0.10 cut-off value in the 

same way. Figure 5 shows the distribution of the similarity metrics in the three case studies for 

the Active-Total values. The result shows that eCT4 can be an optimal choice for the similarity 

calculations especially in the case of binary datasets like MACCS or Morgan, where the aim is 

to determine the differences between the actives and the whole dataset of molecules. On the 

other hand, the eGle, eJT, eJa and eSS1 indices are also good options for continuous variables 

in the input matrix. 
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Figure 5. Relative frequencies of the similarity indices above 0.10 cut-off limit for the Active-

Total similarity values of the three case studies. 

CONCLUSION 

We have compared several weighting functions in the case of extended similarity metrics based 

on sum of ranking differences (SRD scores) combined with factorial ANOVA. The superiority 

of positive-power weighting functions was clear for the continuous descriptors, while negative-

power alternative (and fraction) are better for binary variables in the input dataset. Interestingly, 

in the evaluation of Active-Total values (differences in the similarities of the active molecules 

vs. the whole dataset), positive weighting functions, especially Poly_8 and Poly_16 were 

amongst the best for all the case studies. Thus, weights can be optimized based on the aim of 

the application. From the extended similarity metrics point of view, we have seen that the most 

optimal ones are input variable dependent, while eCT1 and eCT2 are good choices for the 

similarity calculation of the active sets in any case. On the other hand, eCT3 and eCT4 are very 

promising for binary case studies in both Actives and Active-Total evaluation, while eJa can be 

an optimal index for the continuous descriptors in both Actives and Active-Total evaluation. As 

the used weighting functions and similarity metrics had significant impact on the outcome, 
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selecting the optimal ones in a case specific manner is of outmost importance in the similarity 

calculations stage of any cheminformatics related research. Source code for the calculations is 

available at https://github.com/mqcomplab/MultipleComparisons 
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