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Abstract: 

An organocatalytic method for silicon-free SuEEx click reaction of SO2F2 is 

described. Different organic bases such as DBU, TBD, triethylamine and Hünig’s base 

can efficiently catalyze the SuFEx of SO2F2 with various phenols to produce aryl 

fluorosulfates in 61-97% yields. Under the same conditions, pyridone, pyrazolone and 

secondary amines can also react with SO2F2 to afford the corresponding heteroaryl 

fluorosulfates or sulfamoyl fluorides in good yields. In this process, molecular sieves 

absorb the acidic HF efficiently, which avoid the using of stoichiometric amount of 

silicon reagents and excess of bases. 

 

Introduction: 

Organosulfur compounds have been widely utilized in organic synthesis, 

material science, pharmaceutical and agrochemical industry.1 Among different types 

of sulfur-containing compounds, aryl fluorosulfates can serve as triflate surrogates in 

transition-metal catalyzed coupling reactions2 (e.g. Suzuki-Miyaura coupling, 

Buchwald-Hartwig coupling, Negishi coupling), Substitution reactions3 and other 

reactions.4 More importantly, aryl fluorosulfates have been successfully used in 

chemical biology and drug discovery, including late-stage drug functionalization,5 
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late-stage radiosynthesis,6 the synthesis of fluorogenic probes7 and so on.8 As a result, 

the development of new method for the synthesis of aryl fluorosulfates is highly 

significant. Unfortunately, there was no applicable method for the preparation of these 

important organosulfur compounds for a long time. Early developed synthetic 

methods, such as the pyrolysis of arenediazonium fluorosulfate salts,9 the reaction of 

phenols with ClSO2F or fluorosulfonic acid anhydride10 usually suffer from risky 

conditions, costly starting materials and low reaction yield. In 2014, Sharpless and 

coworkers launched Sulfur (VI) - Fluoride Exchange (SuFEx) click chemistry.11 This 

new embodiment of click chemistry provides a powerful and robust tool for modular 

assembly of various sulfonylated compounds.12 In particular, Sharpless and coworkers 

recognized the gaseous SO2F2 as an valuable SuFExable hub.11a In the presence of 

excess of base, SO2F2 can react with phenols to give aryl fluorosulfates in excellent 

yields.13 Interestingly, using aryl silyl ethers instead of phenols, catalytic amounts of 

DBU can catalyze the reaction in quantitatively yields. Recently, Moses and 

coworkers reported an interesting accelerated SuFEx click chemistry for quick 

synthesis of various sulfonylated compounds.14 They reported that in the presence of 

1.0 equivalent of hexamethyldisilazane (HMDS), catalytic amount of Barton’s base 

BTMG can catalyze the heterogeneous SuFEx click reaction of phenols and SO2F2 to 

give aryl fluorosulfates in high yields within 15 min. Despite progress made in this 

research, no general and catalytic silicon-free for SuFEx of SO2F2 has been disclosed. 

As part of our continuous research on the synthesis of organosulfur compounds,15 

herein, we wish to report an organocatalytic silicon-free16 SuFEx reaction of SO2F2 

and phenols for facile synthesis of aryl fluorosulfates.  

Our initial studies were carried out with the commercially available 4-biphenylol 

1a and SO2F2 2a. Pleasingly, in the presence of 10 mol% triethylamine and 800 mg 

molecular sieves 4Å, the reaction proceeded smoothly in acetonitrile at room 

temperature to form aryl fluorosulfate 3a in 94% yield (Table 1, entry 1). Encouraged 

by this result, other common bases were then examined. The Hünig’s base catalyzed 

the reaction in 95% yield (Table 1, entry 2). DMAP, DABCO and cinchonine 

catalyzed the reaction in good yields (Table 1, entries3-5). Organic superbases DBU, 
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DBN, TBD and TMG catalyzed the reaction in high yields (Table 1, entries 6-9). t-

BuOK catalyzed the reaction to give 3a in 43% yield (Table 1, entry 10). Inorganic 

bases were also tested for the reaction. NaOH, K2CO3 and Cs2CO3 catalyzed the 

reaction in moderate yields (Table 1, entries 11-13). Using 10 mol% DBU as catalyst, 

we next studied the effect of different solvents. The product 3a was formed in low 

yield when the SuFEx reaction was performed in dichloromethane (Table 1, entry 14). 

Moderate yield of 3a was obtained when the reaction was conducted in 

dichloroethane (Table 1, entry 15). Other tested solvents, such as THF, MTBE, DME, 

toluene and DMF gave product 3a in high yield (Table 1, entries 16-21).  Decreasing 

the amount of DBU to 5 mol%, or reducing the loading of MS 4Å resulted in 

decreased reaction yield (Table 1, entries 22-23). Control experiments showed that in 

the absence of DBU, no desired product was formed (Table 1, entry 24). Without the 

addition of MS 4Å, only 27% yield of 3a was obtained (Table 1, entry 25). 

Table 1 Optimization of reaction conditions a 

 

Entry Base Solvent Time (h) Yield (%)b

1 Et3N  CH3CN 24 94 
2 DIPEA  CH3CN 24 95 
3 DMAP CH3CN 24 85 
4 DABCO CH3CN 24 70 
5 cinchonine CH3CN 24 70 
6 DBU CH3CN 24 97 
7 DBN CH3CN 24 82 

8 TBD CH3CN 24 97 
9 TMG CH3CN 24 89 

10 t-BuOK CH3CN 24 43 
11 NaOH CH3CN 24 63 
12 CS2CO3 CH3CN 24 35 
13 K2CO3 CH3CN 24 47 
14 DBU CH2Cl2 48 16 
15 DBU DCE 24 53 

16 DBU THF 24 78 
17 DBU MTBE 24 81 
18 DBU DME 24 92 
19 DBU toluene 24 94 
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20 DBU DMF 24 93 
21 DBU DMAc 24 87 
22c DBU CH3CN 24 81 
23d DBU CH3CN 24 86 
24 No base CH3CN 48 32 
25e DBU CH3CN 48 27 

% a 1a (0.80 mmol), base (10 mol%), MS 4Å (800 mg), solvent 2.0 mL, room temperature. b 

Isolated yield. c 1a (0.80 mmol), DBU (10 mol%), MS 4Å (400 mg). d 1a (0.80 mmol), DBU (5 

mol%), MS 4Å (800 mg). e Without MS 4Å. 

With the optimized reaction conditions in hand, we then examined the scope of 

phenols and the results are summarized in Table 2. Both electron-donating and 

electron-withdrawing substituents substituted phenols participated in the SuFEx 

reaction well, producing the corresponding aryl fluorosulfates in high yields. The 

electronic properties and different positions of the substituents have little influence on 

the rection yield (3b-3t). Many useful groups, such as halogenations (3e-3g, 3m-3o), 

nitrile (3h), aldehyde (3l), ketone and ester group (3i and 3j) were tolerated well. 

Pinacol boronic ester substituted phenol underwent the SuEFx reaction to give 3wt in 

71% yield (3u). Sterically hindered substrates 1o and 1t reacted with SO2F2 to afford 

the corresponding fluorosulfates 3o and 3t in 81% and 64% yields, respectively. 6-

hydroxyindole and pyridinol performed well yielding the corresponding heteroaryl 

fluorosulfates in good yields (3y and 3z). Interestingly, when 1,3-benzenediol 1h was 

used for the reaction, the corresponding fluorosulfate 3ah was formed in 85% yield, 

which is a very useful substrate in the synthesis of polysulfates. It is noteworthy that 

many natural phenols, such as (+)-δ-tocopherol， D-tyrosine，deoxyarbutin，maltol 

and so on，were proven to be very good reactants, furnishing the corresponding 

fluorosulfates in high yields (3ab-3ah).  

Table 2 Scope of phenols a 
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 a 1 (0.8 mmol), DBU (10 mol%), MS 4Å (800 mg), CH3CN (2.0 mL), room temperature, 24h, 

isolated yield. 
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To explore the synthetic utility of this organocatalytic protocol, gram-scale 

experiments were conducted (Scheme 1). The desired aryl fluorosulfate 3a was 

isolated in 1.245 g, 98% yield (eq. 1). The sterically hindered fluorosulfate 3x can 

also be obtained in 0.857g a and 65% yield (eq. 2). 

 

Scheme 1. Gram-Scale Synthesis of aryl fluorosulfates 

Interestingly, under the standard reaction conditions, pyridone and pyrazolone 

can react with SO2F2 to give the corresponding heteroaryl fluorosulfates in 33% and 

72% yields, respectively (Scheme 2). 

 
Scheme 2. SuFEx reactions of pyridone and pyrazolone 

To further demonstrate the utility of this organocatalytic method, the analogous 

SuFEx reaction of amines and SO2F2 was investigated. Under similar reaction 

conditions, different secondary amines reacted with SO2F2 smoothly to furnish the 

desired sulfamoyl fluorides in good yields (Scheme 3). 
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Scheme 3. SuFEx reactions of secondary amines and SO2F2 

Based on pioneering studies of Sharpless, Zuilhof, Moses and our previous 

report, a plausible mechanism was proposed and depicted in Scheme 4, the basic 

tertiary amine first reacts with phenol to generate the nucleophilic phenolate (I), 

which subsequently undergoes SuFEx click reaction with SO2F2 to produce aryl 

fluorosulfate with releasing of catalyst. The acidic HF the generated in the reaction 

can be absorbed by the basic MS 4Å. 
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Scheme 4. Proposed Mechanism 

In summary, have developed an organocatalytic silicon-free SuFEx click reaction 

of SO2F2 for modular synthesis of aryl fluorosulfates and sulfamoyl fluorides. This 

novel method features extreme mild conditions, generally high reaction yields and 

easy scalability. Further studies on a broader substrate scope and the applications of 

this organocatalytic approach are currently underway in our laboratory. 
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