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Abstract 21 

Extracting knowledge from complex and diverse chemical texts is a pivotal task for both 22 

experimental and computational chemists. The task is still considered to be extremely challenging 23 

due to the complexity of the chemical language and scientific literature. This study explored the 24 

power of fine-tuned large language models (LLMs) on five intricate chemical text mining tasks: 25 

compound entity recognition, reaction role labelling, metal-organic framework (MOF) synthesis 26 

information extraction, nuclear magnetic resonance spectroscopy (NMR) data extraction, and the 27 

conversion of reaction paragraph to action sequence. The fine-tuned LLMs models demonstrated 28 

impressive performance, significantly reducing the need for repetitive and extensive prompt 29 

engineering experiments. For comparison, we guided GPT-3.5 and GPT-4 with prompt 30 

engineering and fine-tuned GPT-3.5 as well as other open-source LLMs such as Llama2, T5, and 31 

BART. The results showed that the fine-tuned GPT models excelled in all tasks. It achieved exact 32 

accuracy levels ranging from 69% to 95% on these tasks with minimal annotated data. It even 33 

outperformed those task-adaptive pre-training and fine-tuning models that were based on a 34 

significantly larger amount of in-domain data. Given its versatility, robustness, and low-code 35 

capability, leveraging fine-tuned LLMs as flexible and effective toolkits for automated data 36 

acquisition could revolutionize chemical knowledge extraction. 37 

Introduction  38 

Chemical text mining is a crucial foundation in chemical research. It creates extensive 39 

databases that provide access to physicochemical properties and synthetic routes for experimental 40 

chemists. Additionally, it accumulates rich data and insights for computational chemists to use for 41 

modelling and predicting. More than just extracting information from chemical texts, the rule-42 

based transformation of chemical text is particularly interesting. For instance, synthetic procedures 43 
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can be converted into action sequences1,2 or programming languages3-5. This allows them to be 44 

understood and executed by robotic systems for automated syntheses.  45 

However, converting structured data from intricate scientific literature is a challenging task, 46 

especially due to the complexity and heterogeneity of chemical language. As a result, a number of 47 

text-mining tools have been developed. For instance, ChemDataExtractor6,7 was created to extract 48 

chemical entities and their associated properties, measurements and relationships from chemical 49 

documents, using unsupervised word clustering, conditional random fields, rule-based grammars 50 

and dictionary matching. ChemRxnExtractor8, a BERT-like model, was designed to extract the 51 

product and label associated reaction roles such as reactant, catalyst, solvent, and temperature from 52 

paragraphs of synthesis experiments. Vaucher et. al.1,2 developed task-adaptive pre-trained 53 

transformers to convert the synthesis protocol paragraphs into action sequences. SynthReader3 was 54 

built to convert literature syntheses to executable XDL formats, containing a series of domain-55 

specific algorithms with predefined rules. Historically, the focus has been on designing models 56 

and algorithms specific to certain tasks, requiring extensive domain knowledge and sophisticated 57 

data processing These tools, challenging to adapt for diverse extraction tasks, often require 58 

complementary collaboration to manage complex information extraction tasks, thus limiting their 59 

versatility and practicality.  60 

Recently, large language models (LLMs), represented by ChatGPT released in November 61 

2022, have shown the potential of Artificial General Intelligence (AGI). LLMs, such as GPT-3.5 62 

and GPT-4, can generate logical insights or content that meets requirements based on human 63 

instructions. We are entering a new era where AGI and medicinal chemists might work together. 64 

There have been some assessments of ChatGPT's chemistry capabilities, including tasks like 65 

synonym transformation, property prediction, retrosynthesis, and molecule design9-11. However, 66 

https://doi.org/10.26434/chemrxiv-2023-k7ct5-v2 ORCID: https://orcid.org/0000-0002-3323-3092 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k7ct5-v2
https://orcid.org/0000-0002-3323-3092
https://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

LLMs tend to "hallucinate", meaning they generate unintended text that misaligns with established 67 

facts and real-world knowledge12,13. Moreover, objectively evaluating the results of open-ended 68 

questions remains a significant challenge. 69 

At this juncture, LLMs may still find it difficult to accurately answer factual and knowledge-70 

based questions. However, using LLMs for knowledge extraction tasks should greatly alleviate 71 

hallucination and fully leverage their powerful text comprehension and processing capabilities, 72 

making them promising universal tools for chemical text mining. For instance, Zheng et al.14 used 73 

prompt engineering to guide ChatGPT in extracting information about metal-organic framework 74 

(MOF) synthesis. Patiny et al.15 tried to use ChatGPT to extract FAIR (Findable, Accessible, 75 

Interoperable, Reusable) data from publications. However, their approach of using LLMs simply 76 

based on prompt engineering tend to achieve poor performance in exact accuracy. According to 77 

the biomedical benchmark study by Chen et al.16, ChatGPT performed significantly worse on 78 

biomedical text mining compared to existing models. These findings seem contradicts the common 79 

belief in the LLMs’ superior comprehension abilities. Either way, LLMs have limitations due to 80 

their model architecture and memory, including a maximum length of prompt tokens. Additionally, 81 

human expressions can be ambiguous, incomplete, vague, and difficult to refine. Outputs may not 82 

strictly adhere to formatting requirements, leading to misunderstanding and poor performance in 83 

mining complex text, such as patents or scientific literature. Therefore, zero-shot or few-shot 84 

prompts are often insufficient to address the diversity of scenarios and cannot guarantee the quality 85 

of extracted data. 86 

In this study, we explore the effectiveness of fine-tuning LLMs on five challenging tasks in 87 

chemical text mining: compound entity recognition, reaction role annotation, metal-organic 88 

framework (MOF) synthesis information extraction, nuclear magnetic resonance spectroscopy 89 
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(NMR) data extraction, and conversion reaction paragraphs into action sequences. We found that 90 

fine-tuning GPT models significantly enhances performance in chemical text mining tasks, 91 

compared to prompt-only version, while also reducing dependency on the repetitive and extensive 92 

prompt engineering experiments. Meanwhile, we also evaluated other prevalent generative pre-93 

trained language models, such as Llama217, T518, and BART19. Among these, the fine-tuned 94 

ChatGPT (gpt-3.5-turbo) models achieved state-of-the-art (SOTA) performance across all five 95 

tasks. Remarkably, it even outperformed models that have been trained specifically for each task 96 

and subsequently fine-tuned, based on a significantly larger amount of in-domain data. This study 97 

highlights the potential of fine-tuning LLMs to revolutionize complex knowledge extraction with 98 

their versatility, robustness, and low code capability. Fine-tuned LLMs can be easily generalizable 99 

and can optimize the labor-intensive and time-consuming data collection workflow, even when 100 

trained with few data. This will accelerate the discovery and creation of novel substances, making 101 

them powerful tools for universal use. 102 
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 103 

Fig. 1. | Schematics of fine-tuning ChatGPT for chemical text mining. a, The pipeline of fine-tuning ChatGPT on proprietary 104 

data. The green OpenAI logo symbolizes official gpt-3.5-turbo, while the blue one symbolizes fine-tuned gpt-3.5-turbo. b, 105 

Supervised fine-tuned LLMs outperforms prompt-only LLMs in some customized scenarios. c, Illustration of cheminformatics 106 

insights to be extracted from paragraph. And illustration of the five practical tasks in chemical text mining with respective example 107 

outputs, including Paragraph2Compound, Paragraph2RXNRole, Paragraph2MOFInfo, Paragraph2NMR, and Paragraph2Action. 108 

  109 
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Results & Discussion 110 

Overview of Chemical Text Mining Tasks 111 

Given the complex and diverse information embedded in chemical literature, we designed 112 

five extraction tasks to demonstrate the potential and practicality of LLMs in chemical text mining 113 

(Fig. 1). Paragraph2Compound task is a relatively simple name entity recognition task, to extract 114 

all chemical compound entities from the given paragraph. Paragraph2RXNRole task is to label the 115 

reaction roles including product, reactant, catalyst, temperature, solvent, time, and yield in the 116 

paragraph. Paragraph2MOFInfo task is to extract all MOF synthesis conditions including 117 

compound name, metal source, metal amount, linker, linker amount, modulator, modulator amount 118 

or volume, solvent, solvent volume, reaction temperature and reaction time. Paragraph2NMR task 119 

is to extract the IUPAC name, experimental condition including frequency and solvent as well as 120 

chemical shift data for both 1H NMR and 13C NMR spectra. Paragraph2Action task is to convert 121 

experimental procedures to structured synthetic steps (action sequences). All tasks are unified to 122 

sequence-to-sequence formats to facilitate the uses of LLMs. More details can be found in the 123 

Methods section. 124 

Paragraph2Compound—Extract All Chemical Compound Entities. 125 

Fig. 2a illustrates the process of random sampling from millions of paragraph-entities pairs, 126 

which refer to UPSTO annotations. It starts by randomly selecting 100,000 samples, then choosing 127 

10,000 from them, followed by randomly picking 1,000, then 100, and finally 10. This sampling 128 

process ensures each smaller subset is included in the larger one, with each subset used for 129 

individual training. Fig. 2b demonstrates the performance of prompt-only models and fine-tuned 130 

models, which are evaluated on a consistent evaluation set of 1,000 samples across varying training 131 

data sizes. These results are obtained from three independent trials. In the case of prompt-only 132 
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models, randomness is intentionally introduced by altering the prompt and examples (Fig. 2c, 133 

Supplementary Fig. 2). Given the task’s straightforward nature and clear instructions, even the 134 

prompt-only language models achieved decent F1 scores over 0.6. For fine-tuned models, the 135 

sampling and training process for the training set is repeated three times, as depicted in Fig. 2a. As 136 

shown in Fig. 2b, all fine-tuned models demonstrate a performance improvement, especially in 137 

terms of the F1 score and Jaccard index, proportional to the increase in dataset size. These models 138 

outperform the prompt-only models designed for this task. When the training data size is 139 

substantial enough, the F1 scores of GPT-3.5-turbo, Llama2, and T5 can reach close to 0.9, and 140 

the Jaccard index can approach 0.8. Notably, gpt-3.5-turbo, when fine-tuned, showed minimal 141 

fluctuations and superior performance. However, it is essential to emphasize that the cost of fine-142 

tuning gpt-3.5-turbo increased tenfold with each tenfold increase in data volume. Our 143 

experimentation with gpt-3.5-turbo were capped at 10,000 training samples for 3 epochs due to 144 

OpenAI's limitations, resulting in a nearly 90-dollar expense—a low cost-effective investment in 145 

computational resources. In contrast, other fine-tuned language models have displayed notable 146 

cost advantages in this simple task. 147 
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 148 

Fig. 2. | Design and Performance for Paragraph2Compound task. a, The workflow of sampling and training based on USPTO 149 

dataset for Paragraph2Compound task. b, The performance of different models across varying size of training set. The data point 150 

and the shaded areas represent respectively the mean values and standard deviations derived from three independent trials. c, 151 

Example of the zero-shot and three-shots prompts utilized for Paragraph2Compound task.  152 
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Paragraph2RXNRole—Product Extraction and Reaction Role Labelling. 153 

According to Guo et al.8, the Paragraph2RXNRole task comprises two subtasks. The first is 154 

to extract the central product, and the second is to label the associated reaction roles within 155 

specified paragraphs (Fig. 3a). For these tasks, Guo et al. developed two-stage BERT-like token-156 

multi-classification models. To enable a fair comparison with generative language models, we 157 

converted the data into sequence-to-sequence formats by adding <Role*Compound*Role> 158 

annotations to the input paragraphs. We then converted the language models’ outputs back into 159 

lists of BIO-tags, followed by post-processing to align with the original BIO-tags labels for 160 

assessment. Notably, even though utilizing prompt engineering with 20-shots examples 161 

(Supplementary Fig. 3, 4), GPT-3.5 and GPT-4 perform poor on two Paragraph2RXNRole tasks, 162 

which may result from the complicated syntax cases and limited context length (Fig. 3b, 3c). 163 

However, the fine-tuned GPT models perform well. For product extraction, the fine-tuned gpt-3.5-164 

trubo (best over one epoch) achieved a F1 score of 77.1%, slightly surpassing the previous SOTA 165 

approach, ChemBERT, which scored 76.2% (Fig. 3b). For reaction role labelling, the fine-tuned 166 

gpt-3.5-trubo (best over five epochs) achieved a F1 score of 83.0%, significantly outperforming 167 

the previous SOTA approach, ChemRxnBERT, which scored 78.7% (Fig. 3c). It’s notable that the 168 

fine-tuned gpt-3.5-trubo models, which cost only $1 and $5 respectively, demonstrated extremely 169 

high cost-effectiveness with small training datasets. In contrast, ChemBERT was domain-adaptive 170 

pre-trained on 9,478,043 sentences from 200,000 journal articles, and ChemRxnBERT was further 171 

task-adaptive trained on 944,733 reaction-inclusive sentences. We should also mention that the 172 

outputs of fine-tuned GPTs and Llama2 align almost perfectly with the input text, with 100% and 173 

99% post-processing-free ratios respectively. On the other hand, most outputs of fine-tuned T5 174 

and BART require additional alignment due to their tokenization and vocabulary limitations, with 175 
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a ratio of only 31% that does not require post-processing. Even after post-processing, the F1 scores 176 

of T5 and BART were significantly lower than those token-classification BERT-like models or 177 

large language models such as GPTs and Llama2.  178 

 179 

Fig. 3. | Design and Performance for Paragraph2RXNRole task. a, Data formats of two subtasks in paragraph2RXNRole task. 180 

b, Performance of product extraction. c, Performance of reaction role labelling. 181 

 182 

Paragraph2MOFInfo—Extraction of MOF Synthesis Information. 183 

Our re-annotated dataset for the Paragraph2MOFInfo task displayed in Fig. 4a, mostly 184 

contains single reaction paragraphs with a few featuring multiple reactions. We used Levenshtein 185 

similarity and exact accuracy as metrics to objectively assess the models’ ability to extract 186 

formatted data that fully complies with customized requirements in the task. This approach is more 187 

objective and accurate with less manual intervention, compared to the manual analysis and 188 

evaluation used by Zheng et al.14. The fine-tuned gpt-3.5-turbo significantly outperforms the gpt-189 
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3.5-turbo with prompt engineering, improving exact accuracy by over 20% for both single and 190 

multiple reactions (Fig. 4b, Supplementary Fig. 5). It also surpasses other fine-tuned models, 191 

especially when handling complex multi-reaction paragraphs. Exact accuracy rates for single and 192 

multiple reactions are 82.7% and 68.8%, respectively (Fig. 4b). As depicted in Fig. 4c and Fig. 4d, 193 

while most models achieve high Levenshtein similarity across the 11 parameters, only a few 194 

maintain high exact accuracy, which is the golden metric that we mainly focus on. Considering 195 

that some MOF synthesis paragraphs may include multiple reactions, we provide an example of 196 

multi-reaction extraction by various models in Fig. 4e. The paragraph includes two reactions, the 197 

first with (R)-H3PIA and bipy as linkers, providing all reaction conditions explicitly, and the 198 

second with the substitution of (R)-H3PIA with (S)-H3PIA, keeping all other conditions 199 

unchanged. Most models successfully interpreted the semantics and extracted two reactions from 200 

the MOF synthesis paragraph. However, only the fine-tuned ChatGPT perfectly extracted 201 

information that matched our annotated ground truth. Other models showed varying degrees of 202 

incompleteness, particularly with items involving multiple components and their quantities. 203 
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 204 

Fig. 4. | Design and Performance for Paragraph2MOFInfo task. a, A statistic of the dataset. b, Mean performance of 205 

Levenshtein similarity and exact match accuracy by different models. c, Levenshtein similarity for 11 parameters in the 206 

Paragraph2MOFInfo task. d, Exact match accuracy for 11 parameters in the Paragraph2MOFInfo task. e, An example of extractions 207 

by different models from a multi-reaction MOF synthesis paragraph. The cells in yellow represented the ground truth. The cells in 208 

green represented the exact match predictions. The cells in blue represented the incorrect predictions.  209 
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Paragraph2NMR—Extraction of Experimental Conditions and NMR Chemical Shifts. 210 

The impact of training set sizes and the use of prompt engineering on the performance of fine-211 

tuning gpt-3.5-turbo in extracting NMR information is illustrated in Fig. 5a. Regardless of the 212 

training data size for fine-tuning (ranging from 25 to 300), or the presence of prompt engineering, 213 

there are hardly any significant fluctuations in performance. This holds true for metrics such as 214 

Levenshtein similarity and exact match accuracy of the fine-tuned gpt-3.5-turbo when the numbers 215 

of training samples exceed 50. This demonstrates the strong learning capability and robustness of 216 

LLMs. Fig. 5b illustrates the performance of different generative language models using the same 217 

200 training data. In terms of Levenshtein similarity, a metric based on edit distance, almost all 218 

fine-tuned language models achieved impressing scores, outperforming GPT models that solely 219 

rely on prompt engineering (Fig. 5b, Supplementary Fig. 6). However, when considering the exact 220 

match accuracy metric, where each character must perfectly align with the ground truth count, 221 

LLMs such as GPTs and Llama2 take the lead. While fine-tuned T5 and BART manage to extract 222 

the majority of the text, they often miss or mistakenly copy several characters. This contributes to 223 

a significant decrease in their exact match accuracy metric, as shown in Fig. 5c. In this context, 224 

the extraction of long complex text by LLMs is more standardized and high-quality, aligning more 225 

closely with human expectations. It is worth noting that fine-tuning Llama2 provides an alternative 226 

approach for deploying text mining locally, given its exceptional exact match accuracy. 227 
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 228 

Fig. 5. | Performance for Pargraph2NMR task. a, The performance of fine-tuning gpt-3.5-turbo with and without prompt 229 

engineering as it varies with training data size. b, Heat map illustrating Levenshitein similarity and exact match accuracy of various 230 

models in extracting each NMR information. c, Examples of error extractions by T5 and BART, compared with the ground truth. 231 

Paragraph2Action—Action Sequence Extracted from an Experimental Procedure. 232 

The above-mentioned extraction tasks simply require the model to replicate specific 233 

information from the paragraph. However, the Paragraph2Action task requires the model to 234 

understand and transform the paragraph. Clearly, GPT models with prompt engineering has 235 

difficulty with this task, especially when it involves multiple complex conversions and insufficient 236 

prompt descriptions (Table1, Supplementary Fig. 7). To gauge the maximum potential of ChatGPT 237 
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using only prompts, we incrementally increased the number of transformation examples from 6 to 238 

60. Despite encompassing all types of actions at least once and nearly reaching the token limit of 239 

4,096 for GPT-3.5 and 8192 for GPT-4, their performance in the few-shot scenario remains 240 

disappointingly poor. The currently best-performing LLM GPT-4 with 60 examples for in-context 241 

learning, it achieved only 32.7% full sentence exact accuracy, a BLEU score of 65.0, and a 242 

Levenshtein similarity of 72.8. However, fine-tuning pre-trained language models with a small 243 

amount of data could yield decent results (Table 1). Remarkably, after 3 epochs of fine-tuning gpt-244 

3.5-turbo on 1,060 hand-annotated training data, we achieved 62.5% full sentence exact accuracy, 245 

an 84.8 Modified BLEU score, and an 87.6 Levenshtein similarity. This process took only 1 hour 246 

and cost $3 for fine-tuning. These metrics surpass the SOTA results previously reported by 247 

Vaucher et al.1, which used an ensemble of three models, each task-adaptively pre-trained on 2 248 

million rule-based data and refined on 14,168 augmented data. Interestingly, further improvement 249 

was achieved by augmenting the training data size to 14,168. This resulted in 69.0% full sentence 250 

exact accuracy, an 86.4 Modified BLEU score, and an 89.9 Levenshtein similarity (Table 1). For 251 

autonomous robots, it is challenging to generate instructions that follow strict syntax rules. Fine-252 

tuning LLMs plays a crucial role in bridging the gap between fuzzy natural language and structured 253 

machine-executable programming languages, significantly improving the accuracy of 254 

customization with a small amount of annotated data. In similar tasks involving “fuzzy rules” or 255 

hard-to-define extraction, fine-tuning LLMs might offer considerable advantages in tailoring the 256 

transformation.  257 
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Tabel 1 | Performance on Paragraph2Action task.  258 

Model Training data strategy 
100% 

accuracy 

90% 

accuracy 

75% 

accuracy 

Modified 

BLEU score 

Levenshtein  

similarity 
Cost 

GPT-3.5-turbo (6-shots) No training 8.2 16.8 34.7 38.6 59.4 905 mean tokens 

GPT-3.5-turbo (12-shots) No training 8.8 19.3 42.3 43.1 62.3 1,374 mean tokens 

GPT-3.5-turbo (18-shots) No training 13.1 23.3 42.6 44.4 64.3 1,670 mean tokens 

GPT-3.5-turbo (24-shots) No training 14.8 25.9 45.5 47.0 65.8 2,598 mean tokens 

GPT-3.5-turbo (30-shots) No training 13.9 26.4 47.2 49.5 66.0 3,610 mean tokens 

GPT-4 (6-shots) No training 13.4 23.3 44.9 44.7 54.5 861 mean tokens 

GPT-4 (12-shots) No training 20.7 30.7 51.1 51.4 69.2 1,357 mean tokens 

GPT-4 (18-shots) No training 21.9 33.0 56.5 53.8 63.0 1,631 mean tokens 

GPT-4 (24-shots) No training 22.7 35.8 58.2 56.7 65.1 2,546 mean tokens 

GPT-4 (30-shots) No training 26.1 40.0 61.6 59.8 67.7 3,611 mean tokens 

GPT-4 (60-shots) No training 32.7 43.8 63.3 65.0 72.8 7,010 mean tokens, $ 41 

Transformer (single model) * No task-adaptive pretraining, hand-annotated data (1,060) 13.1 15.1 21.9 22.5 45.9 - 

BART-base (fine-tuned) No task-adaptive pretraining, hand-annotated data (1,060) 51.1 65.9 77.6 73.2 83.9 - 

T5-base (fine-tuned) No task-adaptive pretraining, hand-annotated data (1,060) 57.7 71.6 83.2 81.8 86.8 - 

Lama2-13b-chat (fine-tuned) No task-adaptive pretraining, hand-annotated data (1,060) 56.8 66.8 80.7 80.3 86.0 40 min for training  

GPT-3.5-turbo (fine-tuned) No task-adaptive pretraining, hand-annotated data (1,060) 62.5 72.7 82.9 84.8 87.6 3 epochs, 1h, $ 3 

Transformer (single model) * No task-adaptive pretraining, augmented data (14,168) 37.8 47.7 62.8 64.7 76.4 - 

BART-base (fine-tuned) No task-adaptive pretraining, augmented data (14,168) 52.0 68.5 80.1 74.4 84.8  

T5-base (fine-tuned) No task-adaptive pretraining, augmented data (14,168) 59.7 74.1 82.4 84.1 87.1 - 

Llama2-13b-chat (fine-tuned) No task-adaptive pretraining, augmented data (14,168) 60.2 70.4 83.5 81.6 87.9 9 hours for training 

GPT-3.5-turbo (fine-tuned) No task-adaptive pretraining, augmented data (14,168) 69.0 78.1 86.9 86.4 89.9 5 epochs, 1.5 h, $ 92 

Transformer (single model) * Task-adaptive pretraining (2 million), hand-annotate (1,060) 56.8 67.3 80.4 81.5 85.7 - 

Transformer (single model) * Task-adaptive pretraining (2 million), augmented data (14,168) 59.4 70.5 81.8 84.3 86.7 - 

Transformer (ensemble models) * Task-adaptive pretraining (2 million), augmented data (14,168) 60.8 71.3 82.4 85.0 86.6 - 

The symbol “*” represented the result reported by Vaucher et al.1 The result in black bold is the best previous 259 

performance. The result in red bold is the best new performance. 260 

Promising Performance and Potentials of Fine-tuning LLMs on Chemical Text Mining. 261 

Chemical text mining expedites scientific discovery in chemistry. Previously, tasks involving 262 

complex chemical language and sophisticated processing required the development of specific 263 

domain-focused models. Now, the fine-tuning of universal LLMs offers a highly generalized and 264 

cost-effective solution. We have demonstrated the impressive efficacy, flexibility, and high exact 265 

accuracy of fine-tuning LLMs, regarding all kinds of text mining tasks as generative problems. An 266 

examination of incorrect predictions revealed that only a small proportion were entirely incorrect, 267 

while most were acceptable alternatives to the ground truth or even pointed out the incorrect labels 268 
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(Supplementary Fig. 10-14). These errors can be attributed to inconsistent annotation standards 269 

and the inherent ambiguity of terms with multiple interpretations or functions. Therefore, 270 

improving the formatted data extraction requires continuous efforts, including the refinement of 271 

specific rules and the enrichment of annotations prone to misinterpretation during training and 272 

inference. With detailed specifications and high-quality formatted data, the fine-tuning method 273 

based on LLMs is highly reliable. It can be easily extended to tasks related to extracting 274 

information from scientific literature and transforming data into simple user-friendly reaction 275 

format20 that is both human- and machine-readable. This approach will significantly contribute to 276 

the development of extensive databases like Open Reaction Database21,22, SciFinder23 and 277 

Reaxys24, which gather comprehensive synthesis data through automated curation and expert 278 

verification, to make data more findable, accessible, interoperable, and reusable (FAIR).  279 

Nevertheless, leveraging fine-tuned LLMs is still insufficient to extract all synthesis 280 

information from chemical literature, which contains extensive complex figure and form contents. 281 

Recently, some tools have been developed to recognize molecular images25,26 and reaction 282 

diagrams27,28 from the literature. Integrating LLMs with these image recognition tools or 283 

developing advanced large multimodal models (LMMs) may be a promising unified solution for 284 

further chemical data mining. Notably, when extracting large amounts of data from copyrighted 285 

literature, it's essential to access the necessary permissions from scientific publications. 286 

In this work, we have scratched the surface of the vast potential of LLMs in chemistry and 287 

materials science by fine-tuning LLMs for chemical text mining. We can see that there is still a 288 

gap between open-source language models and GPT models, but considering GPTs' closed-source 289 

nature, it becomes imperative for researchers and communities to focus efforts on this direction. 290 

Technically, advancements like more effective fine-tuning strategies, improved open-source 291 
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model architectures, faster inference approaches, wider context windows, and lower computational 292 

costs in the era of LLMs are anticipated to further enhance text mining. Meanwhile, it’s more 293 

essential to consider what else can be achieved with LLMs and how we can develop more effective 294 

LLMs for chemistry and materials science. For instance, LLMs have the potential to revolutionize 295 

predictive modelling by incorporating the extensive “fuzzy knowledge” encapsulated within 296 

scientific literature, especially in chemistry and drug discovery. By combining empirical results 297 

with documented knowledge, LLMs could assist chemists identify patterns in experiments that 298 

might otherwise be missed, predict properties of compounds and outcomes of reactions, and even 299 

generate new chemical hypotheses and theories. Furthermore, the integration of LLMs’ 300 

comprehension with specialized tools could substantially lower the barrier of chemists to use these 301 

tools throughout the entire workflow, thanks to interactive interfaces in natural language. Future 302 

research could investigate how to merge formatted laboratory data with wealth of information in 303 

scientific literature and develop the multimodal capability to enrich specific domain knowledge 304 

for LLMs. This endeavor will require a sustained, long-term effort.  305 

Conclusion 306 

Here, we have demonstrated the effectiveness of fine-tuning LLMs in chemical text mining. 307 

We conducted five complex tasks: compound entity recognition, reaction role labelling, MOF 308 

synthesis information extraction, NMR data extraction, and the transformation from reaction 309 

procedures to action sequences. Chemical text mining remains a challenging professional domain 310 

when leveraging language model mining, even with prompt engineering. However, LLMs that are 311 

fine-tuned with appropriate annotations can produce structured outputs that perfectly fulfil human 312 

requirements not easily expressed in natural language. This feature fully utilizes their natural 313 

language understanding and formatting capability. Using chemical text mining as an example, this 314 
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study provides guidance on fine-tuning of LLMs to serve as universal knowledge extraction 315 

toolkits. These toolkits can be easily extended for automated extraction from documents and rule-316 

based formatted transformations. Our work lays the groundwork for the applications of LLMs in 317 

information extraction within the chemical domain, which will catalyze data-driven innovations 318 

in chemical and materials science.  319 
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Methods 320 

Data Preparation 321 

For the Paragraph2Compound task, we compiled an automatically annotated dataset. This 322 

dataset is based on the publicly accessed USPTO subset extracted by Lowe et al. 29,30, and includes 323 

millions chemical reaction paragraphs from patents, each paired with compound tags. We used 324 

regular expressions to identify compound labels within each paragraph, separating them with “|” 325 

symbol based on their sequential occurrence in the paragraph. For the Paragraph2RXNRole task, 326 

we used the manually annotated dataset by Guo et al.8, following the same data partitioning 327 

strategy. We transformed the data from the BIO-token classification format to a sequence-to-328 

sequence format using the annotation scheme “<Role*compound*Role>”. We processed 329 

paragraphs containing multiple central products and related reactions into several input and output 330 

pairs. For the Paragraph2MOFInfo task, we manually checked and re-annotated the raw data of 331 

Zheng et al.14, transforming them into a sequence-to-sequence format. This dataset comprises 332 

MOF synthesis paragraphs, extraction by ChatGPT, and human-evaluated answers. For the 333 

Paragraph2NMR task, we manually curated a dataset of 600 high-quality annotations. These were 334 

mainly sourced from various literature on PubMed to ensure a wide diversity. The task is aims to 335 

extract information such as IUPAC name, experimental conditions, including frequency and 336 

solvent, and chemical shifts data from both 1H NMR and 13C NMR spectra. For the 337 

Paragraph2Action task, we utilized the hand-annotated dataset by Vaucher et al., employing the 338 

same data partitioning strategy. This dataset is derived from the Pistachio dataset by NextMove 339 

software31. The details of datasets used for the five chemical text mining tasks are listed in 340 

Supplementary Table 1. 341 

 342 
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Prompt-only ChatGPT 343 

Prompt-only interaction enables users to efficiently communicate with large language models 344 

through simple prompts. This guides the model to produce relevant responses without further 345 

training. In a zero-shot scenario, the model generates responses using only a descriptive prompt 346 

and its pre-trained knowledge. However, in a few-shot approach, the model uses a small number 347 

of examples to improve its understandings and responses. To maximize the performance, we 348 

selected diverse examples and ensured a large number of tokens. We interacted with ChatGPT 349 

using API keys and employed model versions gpt-3.5-turbo-0613 and gpt-4-0613. The zero-shot 350 

and few-shot prompts for chemical text mining tasks can be found in Supplementary Fig. 2-7.  351 

Fine-tuning ChatGPT  352 

Since late August 2023, supervised fine-tuning capabilities have been available for the gpt-353 

3.5-turbo model32. The aim is to enhance performance in specific scenarios customized based on 354 

private data. In this study, we fine-tuned the gpt-3.5-turbo-0613 model for chemical text mining 355 

sceneries. We formatted the data into jsonl and uploaded them to OpenAI’s cloud servers, then 356 

initiated fine-tuning jobs. Once the training was complete, the fine-tuned gpt-3.5-turbo model was 357 

ready for inference. API keys were requisite throughout the training and inference procedures. 358 

Fine-tuning for the gpt-4-turbo model is expected in the future. 359 

Open-Source Language Models 360 

We selected the most widely used and representative generative pre-trained language models 361 

like Llama2,17 T518 and BART19. These serve as baselines for a comprehensive comparison with 362 

the fine-tuned ChatGPT across five chemical text mining tasks. Considering performance, 363 

efficiency, and hardware resource constraints, we used full parameter fine-tuning for BART-base 364 

and T5-base. We applied multitask-learning to BART and T5 in the Paragraph2MOFInfo task and 365 
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Paragraph2NMR task due to their limitations in generating multi-attribute long sentences 366 

(Supplementary Fig. 8, 9), aiming to enhance their performance. This approach significantly 367 

improved their performance. For Llama2, we used Q-LoRA33 to efficiently fine-tune llama2-13b-368 

chat. This method maintains most performance of full parameter fine-tuning while significantly 369 

reducing computational demands. We used vllm34 to speed up the inference of llama2-13b-chat, 370 

which is tens of times faster than Hugging Face’s pipeline. To ensure optimal performance, we 371 

adjusted hyperparameters such as learning rates, lora_r, and lora_alpha during the fine-tuning 372 

process of baseline models (Supplementary Table 2). More details of training, pre-processing, and 373 

post-processing can be found in the Supplementary Information. 374 

Metrics for Evaluation 375 

Since fine-tuning ChatGPT does not allow for early stopping based on optimal validation loss, 376 

we report the performances of all models at the best epoch selected from the evaluation set for fair 377 

comparison. Given the task specifics, we use metrics including precision, recall, and F1 score for 378 

evaluating entity-level performance. For sentence-level performance assessment, we use 379 

Levenshtein similarity, exact match accuracy, partial accuracy, and a modified BLEU score. 380 

Data Availability 381 

All datasets used in this work are available from the authors upon request.  382 

Code Availability 383 

All scrips for training and evaluating can be found on GitHub at https://github.com/zw-384 

SIMM/SFTChatGPT_for_chemtext_mining. 385 

  386 
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